Editorial La revista Diabetes Internacional publica su segundo número del volumen 1 de 2009. Se aceptaron dos artículos de revisión por reputados investigadores. El profesor Zafar Israili hizo una extensa revisión del tema de las drogas moduladoras del sistema incretina que ha generado un grupo de drogas antidiabéticas, hasta el momento tenemos en el mercado venezolano la sitagliptina (januvia) y la vidagliptina (galvus), ambas de dos casas comerciales internacionales. El profesor Valmore Bermúdez y su grupo de investigación en diabetes mellitus de Maracaibo han revisado la alimentación en la genealogía de la diabetes. Aportan datos que el tipo de alimentación del ser humano que usualmente se basa en ingesta de altos carbohidratos y grasas saturadas puede inducir la diabetes en presencia de aspectos hereditarios y situaciones de stress.
Editores en Jefe Dr. Manuel Velasco Dr. Valmore Bermúdez Dr. Luis Fernando Chacín
33
Diabetes Internacional
www.diabetesinternacional.com
Editores
Editores en Jefe Velasco Manuel (Venezuela) Bermúdez Valmore (Venezuela) Chacín Luis Fernando (Venezuela) Editores Ejecutivos Gaslonde Luis (Venezuela) Contreras Freddy (Venezuela)
Comité Editorial Arciniegas Enrique (Venezuela) Bolli Peter (Canadá) Bustos Elizabeth (Venezuela) Camejo Manuel (Venezuela) Cordero Marilin (Venezuela) Cubeddu Luigi (USA) Crippa Giuseppe (Italia) De Santis Juan (Venezuela) Escobar Edgardo (Chile) Feldstein Carlos (Argentina) Hernández Rafael (Venezuela) Israili Zafar (Estados Unidos) Lares Mary (Venezuela) Levenson Jaime (Francia) López Jaramillo Patricio (Colombia) López Mora José (Venezuela)
Lucani Miguel (Venezuela) Manfredi Roberto (Italia) Mathison Yaira (Venezuela) Marante Daniel (Venezuela) Morales Eduardo (Venezuela) Muci Rafael (Venezuela) Obregón Oswaldo (Venezuela) Palacios Anselmo (Venezuela) Parra José (México) Ruiz Miguel (Venezuela) Salaverria Nancy (Venezuela) Sanabria Tomas (Venezuela) Silva Honorio (USA) Stulin Irene (Venezuela) Urbina Douglas (Venezuela) Zanchetti Alberto (Italia)
Sumario
Volumen I, Nº 2, 2009 Treatment of type 2 diabetes mellitus by drugs modulating the incretin system Zafar H. Israili
35
La alimentación en la genealogía de la diabetes Food genealogy in diabetes
Maryluz Núñez Pacheco, Ángel Alberto Oroño García, Rafael Lopez Sanz, Abdón Toledo, Maricarmen Chacín, Edgardo Mengual, Roberto Áñez, Valmore Bermúdez Pirela y Manuel Velasco
COPYRIGHT Derechos reservados. Queda prohibida la reproducción total o parcial de todo el material contenido en la revista sin el consentimiento por escrito de los editores. Volumen 1, Nº 2, 2009 Depósito Legal: pp200902DC3118 ISSN: 1856-965X www.diabetesinternacional.com Dirección: Escuela de Medicina José María Vargas Cátedra de Farmacología, piso 3. Esq. Pirineos. San José. Caracas-Venezuela. Telfs. 0212-5619871/0212-565.1079/ Cel. 0414-1361811 manuel.veloscom@gmail.com / veloscom@cantv.net E-mail:diabetesinternacional@gmail.com Comercialización y Producción: Felipe Alberto Espino Telefono: 0212-881.1907/ 0416-811.6195 / 0412-363.45.40 E-mail: felipeespino7@gmail.com
34
Diabetes Internacional
Diseño de portada y diagramación: Mayra Gabriela Espino Telefono: 0412-922.25.68
E-mail: mayraespino@gmail.com
54
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
Treatment of type 2 diabetes mellitus by drugs modulating the incretin system
Zafar H. Israili Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA Address for correspondence: Dr. Zafar H. Israili, Department of Medicine, Emory University School of Medicine, 69 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, USA. Tel: 678-480-5860 e-mail: zisrail@emory.edu Recibido: 02/02/2009
Aceptado: 20/02/2009
Abstract (incretin mimetics) have been developed. Since, the incretin mimetics have to be injected, orally active inhibitors of DPP-4, the incretin enhancers, have also been introduced for the treatment of T2DM. The GLP-1 receptor agonists and DPP-4 inhibitors are useful in the management of T2DM because they provide effective reductions in levels of fasting plasma glucose (FPG) and postprandial glucose (PPG), partly through their actions on pathogenic causes of T2DM that are not addressed by other glucoselowering agents. In addition, the GLP-1 receptor agonists promote weight loss, whereas the DPP-4 inhibitors are mostly weight neutral, and there is a low risk of symptomatic hypoglycemia with both type of agents. The GLP1 receptor agonists and DPP-4 inhibitors are effective as monotherapy in drug-naive patients as well as in those in whom other treatments (for example with metformin, sulfonylureas, thiazolinediones, etc.) have been inadequate to achieve glycemic control. When combined with other glucose-lowering agents, the GLP-1 receptor agonists and DPP-4 inhibitors further lower FPG and PPG levels, and hemoglobin A1c. Consequently, these agents can be used for all stages of T2DM. However, the durability and long-term safety of these drugs remains to be determined. This review focuses on the therapeutic potential of the incretin mimetics and incretin enhancers in treating T2DM. In addition, the review also presents some information on the mechanism of action(s), efficacy, pharmacokinetics, pleiotropic effects, drug interactions and adverse effects of the main drugs which modulate levels and activity of endogenous incretins.
Internacional
Diabetes
Diabetes, specifically type 2 diabetes mellitus (T2DM), one of the most common non-communicable diseases, poses a major health problem throughout the world. T2DM is characterized by insulin resistance, impaired glucose-induced insulin secretion and inappropriately regulated glucagon secretion which in combination eventually result in hyperglycemia and in the longer term microvascular and macrovascular complications of diabetes. Traditional treatment modalities, even multidrug approaches, for T2DM are often inadequate in getting patients to achieve glycemic goals as the disease progresses due to a steady, relentless decline in pancreatic β-cell /number/function. Furthermore, current treatment modalities are often limited by inconvenient dosing regimens, safety and tolerability issues, the latter including hypoglycemia, body weight gain, edema and gastrointestinal side effects. A novel category of antihyperglycemic therapy based on modulation of the endogenous incretin system has recently evolved. The incretins, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are gut-derived peptides secreted in response to meals, specifically the presence and absorption of nutrients in the intestinal lumen. The incretins potentiate meal-induced insulin secretion and trophic effects on the β-cell; the GLP-1 also inhibits glucagon secretion, and suppresses food intake and appetite. The activity/level of the incretins is diminished in T2DM. Both GLP-1 and GIP are rapidly degraded by the endogenous dipeptidyl-peptidase-4 (DPP-4). Hence, stable long-acting GLP-1 analogs/GLP-1 receptor agonists
35
Introducción Diabetes, specifically type 2 diabetes mellitus (T2DM), one of the most common non-communicable diseases, is emerging as an epidemic of the 21th century and a major health problem throughout the globe1,2. Complications from diabetes, such as cardiovascular (CV) disease, peripheral vascular disease, stroke, diabetic neuropathy, amputations, renal failure and blindness result in increasing disability, reduced life expectancy and enormous health costs for virtually every society4. T2DM is a polygenic disease characterized by multiple defects in pancreatic insulin secretion and insulin action in muscle, adipose, and liver3. About 80-85% of T2DM patients have insulin resistance, and impaired β-cell function occurs in 50% of newly diagnosed T2DM5,6, and after that there is a linear decline in β-cell number/function with time, despite therapy with sulfonylurea, metformin or insulin7,8, as a result of glucotoxicity, lipotoxicity, proinflammatory cytokines, leptin, and islet cell amyloid leading to accelerated apoptosis and loss of β-cell function/mass. The treatment goals for T2DM patients are related to effective control of blood glucose, as well as management of coexisting pathologies, such as hypertension, dyslipidemia, and excess body weight, and ultimately, to avert the serious complications associated with sustained tissue exposure to hyperglycemia. Although, intensive glycemic control reduces the appearance and progression of microvascular and neuropathic complications (retinopathy, nephropathy and neuropathy)9-12, long-term intensive therapy to achieve target HbA1c in T2DM patients has been associated with increased mortality without significant beneficial effect on major CV events13. In addition, tighter glycemic control (using intensive therapy) burdens the patients with complex treatment regimens, increased risk of hypoglycemia, possible weight gain, and relatively high costs, while offering uncertain benefits in return14-16. Hence, ideal treatment in T2DM should be to control hyperglycemia and its adverse consequences without increasing CV or other risks such as hypoglycemia, by healthy lifestyle, preventive care, and individualizing and optimizing medications (combinations, if necessary) and their doses, for initiation and intensification of therapy to achieve a target hemoglobin A1c (HbA1c), depending on patients’ circumstances.
36
Prevention and control of diabetes with diet, weight control and physical activity has been difficult. Treatment of T2DM has centered on a) increasing insulin levels, either by direct insulin administration or oral agents that promote insulin secretion (insulin secretagogues, such as oral sulfonylureas), b) improving insulin sensitivity to insulin in tissues, such as by metformin or thiazolidinediones (TZDs), or c) reducing the rate of carbohydrate absorption from the gastrointestinal tract by the use of α-glucosidase inhibitors and/or agents that decrease gastric motility. Despite significant improvement achieved over the last
decade in the management of T2DM with the use of drugs such as metformin, sulphonylureas, α-glycosidase inhibitors, TZDs and insulin preparations, often in high doses and in combinations, a large proportion of patients are unable to reach recommended therapeutic targets (>60% with HbA1c > 7%)6,7,9,17. Furthermore, current treatments do not address the issue of progressive β-cell dysfunction/ failure/loss, such that the development and continued progression of diabetes is a consequence of the failure of the β-cell to overcome insulin resistance. In addition, current therapies, with the exception of insulin, have limited glucose-lowering capacity, and become less effective over time as a result of progressive loss of β-cell function/ number.17 Also, there are major adverse effects associated with the use of current medications, especially weight gain2,18, which may undermine the benefits of glycemic control. Therefore, strategies that aim to prevent hyperglycemia must also aim to stabilize the progressive decline of β-cells. In this regard, intensive efforts have been made and are still continuing to develop newer classes of drugs to control hyperglycemia in T2DM patients without insulin and preserve β-cell number/function. Recent breakthroughs in the understanding of incretin-based therapies have provided additional options for the treatment of T2DM, and one of the main strategy has been to modulate the levels of incretins (see below), the endogenous substances involved in glucose control to treat T2DM. This review describes the therapeutic potential in treating T2DM (used as monotherapy or in combination with other antidiabetic drugs), mechanism of action(s), efficacy, pharmacokinetics, pleiotropic effects, drug interactions and adverse effects of the main drugs which modulate levels and activity of endogenous incretins. The incretins In 1902, Bayliss and Starling proposed that intestinal mucosa contains a hormone that stimulates the exocrine secretion of the pancreas (“secretin”). In 1932, La Barre proposed the name incretin for a hormone extracted from the upper gut mucosa, which caused hypoglycemia and proposed possible therapy for diabetes. In 1970, gastric inhibitory peptide (GIP) was isolated from intestinal mucosa and sequenced by Brown and co-workers. The original name gastric inhibitory peptide was dropped and GIP was renamed glucose-dependent insulinotropic peptide in 1973 after Brown and colleagues, showed that GIP (Table 1) stimulates insulin secretion19. Of the several glucagon-like peptides-1 (GLP-1) detected in the intestinal secretions, the GLP-1 (7-36) amide, was found to have the insulinotropic effect in humans21,22. It was determined that the incretin effect is mainly due to GLP-1(736) amide and GIP (Figure 1). GLP-1 (7-36) is a 30 amino acid peptide produced (from proglucagon) and released from the neuroendocrine L-cells of the lower small intestine (ileum) and the colon, in response to dietary fat and carbohydrates21-24, while GIP is a 42-aminoacid peptide secreted from the K-cells of mainly the duodenum and
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
jejunum20,23. Both endogenous incretins have a very short half-life (t), of the order of minutes, as a result of degradation by the serum enzyme dipeptidyl-peptidase-IV (DPP-4, CD-26, EC 3.4.14.5)25-28. GLP-1 (7-36) is rapidly degraded (Table 1) to GLP-1 (9-36) with a plasma t½of 1–2 minutes, while GIP is also quickly degraded with a t½= 4.3 min to GIP (3-42)20,23-27. Earlier, it was thought that the degradation products of GIP and GLP-1 were inactive, however, it has been shown that some of the extra-pancreatic effects of GLP-1 (lowering of post-prandial glycemia by decrease in hepatic glucose production and vasodilatory effect) are mediated via the metabolite GLP-1 (9-36)28,29, and improvement in insulin sensitivity by GIP (3-42)29. Figure 1
tors, is the product of a gene mapped to the short arm of human chromosome 6 (6p21.1) and binds specifically GLP-1; it has a much lower affinity for related peptides such as GIP and glucagon21,26,30,31. GIP has a GIP-specific G-protein-coupled receptor with no cross-reactivity with the GLP-1 receptor. 22,30,31 Intravenous administration of GLP-1 activates the GLP-1 receptor, which results (Table 2) in a) increased cAMP production and activation of ATPsensitive K channel mediated by β-arrestin-132,33, leading to increased synthesis and release of insulin; b) glucosedependent enhancement of insulin release by improving β-cell responsiveness to glucose via increased expression of glucose transporter-2 (GLUT 2) and glucokinase genes; insulin release is high at high glucose level and decreases as the glucose level drops, c) increase in tissue sensitivity to insulin, d) glucose-dependent secretion of amylin from the pancreas, e) delay in gastric emptying, mediated by vagal afferents34, f) suppression of appetite (by a central mechanism, possibly partially mediated by increased serotonin release in the hypothalamus35, and producing a feeling of fullness36, and satiety37, leading to decreased body weight, g) improvement in glycemic control, and h) decrease in glucagon secretion (from α-cells), possibly mediated by increased somatostatin secretion, resulting in reduced hepatic glucose production (Table 2)21-23,26,38. Interaction of GIP with its receptor also increases glucose-dependent pancreatic insulin secretion, but it has no effect on hepatic glucose output, gastric motility, satiety or body weight (Table 2), however, it does induce lipogenesis and glucagon secretion, and suppress
Table 1. Amino acid sequence of incretins and analogs
GLP-1
(7-36; human)
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-amide
GLP-1
(9-36; human)
EGTFTSDVSSYLEGQAAKEFIAWLVKGR-amide (metabolite of GLP-1)
GIP (1-42; human)
YAEGT-FISDY-SIAMD-KIHQQ-DFVNW-LAQKG-KKNDW-KHNHI-TQ
GIP (3-42; human)
EGT-FISDY-SIAMD-KIHQQ-DFVNW-LAQKG-KKNDW-KHNHI-TQ (metabolite of GIP)
Exendin-4 (synthetic) (Exenatide)
HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-amide
Exendin (9-39)
DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-amide (major circulating metabolite of exendin-4)
Liraglutide (1-31) HAEGTFTSDVSSYLEGQAAKEFIAWLVRGR | C-16-fatty acid-albumin -----------------A = Ala; D = Asp; E = Glu; F = Phe; G = Gly; H = His; I = Ile; K = Lys; L = Leu; M = Met; N = Asn; P = Pro; R = Arg; Q = Gln; S = Ser; T = Thr; V = Val; W = Trp; Y = Tyr The position of action of the enzyme DPP-4 is indicated by (above) to give the respective metabolites; other metabolites are also formed by the action of various enzymes.
Incretin receptors Both the incretins have specific receptors. The GLP-1 receptor, a member of the seven-transmembrane domain glucagon receptor family of G-protein-coupled recep-
gastric acid secretion23,26,28. In addition to improving insulin sensitivity, the incretins also promote proliferation/ neogenesis of β-cells and prevent loss of β-cells by apoptosis, stimulate proinsulin gene transcription and transla-
Internacional
Diabetes
37
tion39,40,23,26,28. Additionally, there are several mechanisms of regulating hepatic and muscle glucose flux via GLP-1 receptor, independent of insulin effect41,42. Receptors for both GLP-1 are found in the pancreatic islet β-cells, as well as in the stomach, adipose tissue, skeletal muscle, bone, heart, kidney, stomach, lung and brain20,21,23,27 and GIP receptors are mainly expressed in β-cells23,27. Table 2. Comparative actions of GLP-1 and GIP Increase glucose-dependent insulin secretion (from pancreatic β-cells)
Yes
Yes*
Enhance insulin sensitivity
Yes
Yes
Suppress glucagon secretion (from pancreatic α-cells)
Yes
No*
Stimulate insulin biosynthesis
Yes
Yes
Decrease apoptosis of β-cells
Yes
Yes
Lower blood glucose
Yes
Yes
Inhibit gastric emptying (decrease gastric motility)
Yes
No
Inhibit gastric acid secretion
Yes
Yes
Inhibit hepatic insulin extraction
Yes
Yes
Inhibit post-prandial glucose excursion
Yes
Yes
Extrapancreatic glucose lowering
Yes
Yes
Enhance satiety (suppress appetite)
Yes
No*
Yes
No*
Decrease body weight Enhance β-cell survival Increase β-cell neogenesis Stimulate β-cell expansion (mass) ------------------------------------------------------------ * = the effect is not consistent
Incretins in normoglycemic individuals and in patients with type 2 diabetes mellitus In healthy normoglycemic individuals, plasma glucose levels are maintained within a narrow range by pancreatic insulin and glucagon (having opposite effects on glucose), and by glucoregulatory hormones, amylin and the incretins (GLP-1 and GIP)22,23. Ingestion of nutrients results in the release of the incretins, which stimulate the release of insulin from the pancreatic β-cells20,21. Incretin action is required for glucose homeostasis (24-hr blood glucose control) as well as control of postprandial glucose; about 50-70% of stimulation of insulin secretion after a meal is due to incretin effect39,40.
38
effect is either greatly impaired as a result of decrease in postprandial GLP-1 secretion (about 15%) and a marked reduction in insulinotropic response of β-cells to GIP25,43-46; hyperglycemia decreases the levels of GIP and GLP-147. The reduced incretin effect is believed to contribute to impaired regulation of insulin and glucagon secretion in T2DM. This impaired action of incretins in T2DM patients may be, at least partly, restored by improved glycemic control, as shown in studies involving intensive GLP-1 GIP diabetic therapy39,48.
In T2DM, the amount of insulin released from the β-cells in response to a meal is insufficient and/or the target tissues (fat, liver and muscle) develop insulin resistance (decreased insulin sensitivity). In addition, the incretin
Treatment of type 2 diabetes mellitus based upon modulation of incretins An option for the treatment of T2DM involves modulation of levels of endogenous incretins, mainly GLP-1, which control the release of insulin and glucagon from the pancreas in response to meals. Since, the levels of GLP-1 are decreased in T2DM43-46 and both GLP1 and GIP have a very short t, of the order of minutes, as a result of degradation by DPP-420,23,27, enhancement of incretin action has been achieved by the development of novel metabolically stable activators of the GLP-1 receptor (incretin-mimetics)47-70, as well as, by inhibitors of DPP-4 (incretin enhancers)39,49,52,56-60,62-65,67,69-83,84.
GLP-1 receptor agonists -- Incretinmimetics Because of very short t, native GLP-1 is Yes Yes not useful as a therapeutic agent unless administered by continuous subcutaneYes Yes ous infusion24,61. Hence, several synthetYes Yes ic incretin-mimetics with longer t have recently been introduced, such as the exendins, which act by stimulating the GLP-1 receptors, and thus, stimulating glucose-dependent insulin secretion and inhibiting glucagon release after meals. Exendin-4, a 39 amino acid peptide found in the saliva (venom) and isolated from the salivary gland of the lizard Heloderma suspectum (Gila monster)85, is a naturally occurring analog of GLP-1 (53% homology to GLP-1) (Table 4), that binds and activates the GLP-1 receptor with the same potency as GLP-186-87. A synthetic version of exendin 4 (exenatide, 39-aminoacid peptide, Byettta®) is an insulin secretagogue with glucoregulatory effect, which has been approved in the USA (2005) as add-on therapy in T2DM patients with metformin, TZDs, sulfonylureas, and/or insulin to improve glucose control88-90. Though the effects of exendin-4 (exenatide) treatment on glucose control are likely due to several actions that are similar to those of GLP-1, the activity of exendin-4 is much greater than that of GLP-1 in controlling hyperglycemia, which may be due to its resistance
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
to degradation by DPP- 491. In human plasma it has a t½of 9.6 hr92, but in the circulation the t is 2.4 hr93. In response to a meal, exenatide a) causes initial rapid release of insulin (from β-cells), b) suppresses pancreatic glucagon release, c) delays gastric emptying and thus decreases appearance of glucose after a meal, and d) reduces appetite - all of which function to lower blood glucose55,90,91. The results of the clinical studies with exenatide have been reviewed56-58,62,65,70,94; some data are presented in Table 4, which demonstrate that exenatide improves glycemic control (reduces HbA1c by 0.8%1.4%) and decreases body weight by ~2-4 kg in T2DM patients88,94-110, who fail to achieve glycemic control with metformin and/or a sulfonylurea. Monotherapy with exenatide (5-10 g/dose) for 24 weeks in T2DM patients, in
addition to decreasing HbA1c (0.7-0.9%), resulted in a significant weight loss (2.8-3.1 kg)95. Most patients using exenatide slowly lose weight, and generally the greatest weight loss is achieved by people who are the most overweight at the beginning of exenatide therapy. Sustained glycemic control (reduction of HbA1c by about 1%) and weight loss continues with long-term therapy (>5 kg in 2-3 yr) with exetanide97,106,108. No ethnic differences were found in the efficacy and safety of exenatide110. Since metformin has been found to inhibit DPP-4 activity114, addition of metformin to the antidiabetic regimen would enhance the beneficial effects of GLP-1 analogs. The use of exenatide with meglitinides and α-glucosidase inhibitors has not been studied. Exenatide is administered (510g) twice daily subcutaneously (s.c.) before or within 60
Table 4. Clinical studies with liraglutide Dose of Reference liraglutide (LIRA)
N
Study Other Change Duration treatment in HbA1c (wk)
Seino131
LIRA-0.5-0.9 mg/d
226
14
Diet
- 1.7%
- 46
Madsbad133
LIRA- 0.225-0.450 mg/d.
193
12
Diet
- 0.2% to 0.5%
- 14 to - 23
- 0.7 to -1.
12
Diet
- 0.5%
- 22 to - 34
- 0.3 to -0.4
12
Diet
+ 0.2%
+ 13
Glimepiride
Harder134
LIRA 0.6 mg/d
Placebo
Vilsbøll
LIRA-0.6 mg/d
LIRA-1.2 mg/d
Garber
LIRA-1.2 mg/d
LIRA 1.8 mg/d
Glimepiride 8 mg/d
Feinglos130
LIRA-0.225 mg/d
LIRA-0.450 mg/d
LIRA-0.600 mg/d
LIRA-0.750 mg/d
Placebo
129
135
Nauck
33 165
0.0
12
Diet
- 0.6%
- 38
+1.0
8
Diet
- 0.3%
- 5
- 0.7
8
Diet
+ 0.5%
+ 5
- 0.9
14
Diet
- 1.0%
- 36
+ 0.2
14
Diet
- 1.4%
- 54
- 0.7
LIRA-1.9 mg/d
14
Diet
- 1.5%
- 54
- 3.0
Placebo
14
Diet
+0.2%
+ 5
- 1.8
52
Diet
- 0.8%
- 15
- 2.0
52
Diet
- 1.1%
- 26
- 2.5
764
210
Diet
- 0.51%
- 5
+ 1.1
Diet
+ 1.3%
+ 36
- 1.9%
12
Diet
+ 0.9%
+ 11
- 1.2%
12
Diet
+ 0.2%
+ 0
- 0.6%
12
Diet
+ 0.3%
+ 16
- 0.9%
12
Metformin
+ 0.1%
- 4
- 0.6%
52 12
LIRA-0.5-2.0 mg/d
144
5
Metformin + SU
- 0.8%
- 50
- 1.5
Nauck136
LIRA- 0.6 mg/d
1091
26
Metformin > 1 g/d
- 0.7%
- 20
- 1.8
LIRA- 1.2 mg/d
26
Metformin > 1 g/d
- 1.0%
- 29
- 2.6
LIRA- 1.8 mg/d
26
Metformin > 1 g/d
- 1.0%
- 31
- 2.8
Glimepiride 4 mg/d
26
Metformin > 1 g/d
+ 0.1%
- 23
+ 1.0
132
0
Marre
26
Glimepiride 2-4 mg/d
- 1.1%
- 31
- 0.2
Rosiglitazone 4 mg/d
26
Glimepiride 2-4 mg/d
- 0.4%
- 18
+ 2.1
Placebo
26
Glimepiride 2-4 mg/d
+ 0.2%
+ 16
- 2.0
Russell-Jones139
LIRA-1.8 mg/d
Metformin + glimepiride
- 1.3%
-1.8
137
LIRA-1.2-1.8 mg/d
1041
Placebo
Buse111
LIRA-1.8 mg/d
EX-10 ug b.i.d.
464
Metformin + glimepiride
- 0.2%
26
Metformin + SU
- 1.1%
- 29
- 3.2
26
Metformin + SU
- 0.8%
- 11
- 2 .9
Wk = week; b.i.d. = twice a day; t.i.d. = three-times a day; d = day; FPG = fasting plasma glucose levels; SU = sulfonylurea; LIRA = liraglutide; EX = exenatide. For glucose levels, to convert mg/dL to mmol/L divide by 18
Internacional
Placebo
Change in Weight (kg)
Diabetes
LIRA- 0.60-0.75 mg/d.
Change in FPG (mg/dL)
39
min of the morning and evening meals95,96. Unlike sulfonylureas and meglitinides, exenatide increases insulin synthesis and secretion only in the presence of glucose, lessening the risk of hypoglycemia. However, if used in combination with sulfonylureas, exenatide may increase the risk of sulfonylurea-induced hypoglycemia102, and therefore, the dose of sulfonylurea should be decreased if co-administered with exenatide. In patients with normal renal function, doses higher than 2.5g are needed for adequate glycemic response, but in patients with renal dysfunction dose adjustment is required115; it is contraindicated in patients with severe renal impairment. The main adverse effect of exenatide is nausea, which is mild to moderate depending on the dose, and may be transient. However, in some studies, up to 14% patients had to discontinue the drug due to nausea101-103,105. Other gastrointestinal symptoms include dyspepsia, vomiting and diarrhea90. Exenatide may also cause acute pancreatitis116, abdominal pain with or without vomiting, and sometimes renal failure117. In addition to being injected once or twice a day, other drawbacks of exenatide include lack of long-term studies to evaluate sustained efficacy and safety, as well as high cost. The pharmacokinetic and pharmacodynamic profiles of exenatide have been evaluated90,118-121; after a single s.c. injection (5-10 µg), the drug is rapidly absorbed with mean peak plasma levels (tmax) achieved in 1.03.0 hr90. Based on animal studies, the bioavailability of exenatide after s.c. injection has been estimated to be between 65% and 75%90. The mean apparent volume of distribution (Vd) after administration of a single s.c. dose is 28.3 L.90 Plasma levels decrease with a mean t1/2 of 2.4 hr (range 0.9-4.0 hr)90,118-120. The drug does not accumulate after repeated dosing. No ethnic differences were observed in the pharmacokinetics of exenatide119-121. The t of exenatide is increased in patients with renal dysfunction and it is poorly tolerated in patients with severe renal insufficiency and end-stage renal disease115; doses of 5-10g are unsuitable in such patients. The drug is eliminated predominantly by glomerular filtration followed by proteolytic degradation90. There are no significant pharmacokinetic interactions of exenatide with warfarin121, digoxin122, lisinopril123, and lovastatin124.
40
GLP-1 analogs with long duration of action A long-acting-release (LAR) formula of exenatide, which is to be injected once a week is under development. Initial trials have shown that the LAR formulation is approximately twice as effective as the original twice-daily injectable form, with a similar safety profile but with rate of nausea rates and greater weight loss112,113,125,126. Exenatide LAR injection (in doses of 0.8-2.0mg), administered onceweekly for 15 weeks with or without metformin, reduced HbA1c by 1.4-1.7%113. In a 30-week study, exenatide LAR (2.0 mg) once weekly was found to be superior to exenatide (10 g) twice daily (Table 3) in terms of glycemic control (HbA1c of 6.4% versus 6.8%) and the number
of T2DM patients achieving HbA1c of <7.0% (77% versus 61%)112,113. Adverse effects of exenatide-LAR include nausea, gastroenteritis and hypoglycemia113,114. Several other long-acting analogs of GLP-1 such as liraglutide (NN2211; Victoza®) and albiglutide (naliglutide, GSK716155, Albugon®, Syncria®), are being developed for the treatment of T2DM. Liraglutide is a 30-amino acid peptide attached to a fatty acid molecule and then bonded to albumin (Table 2)127,128; it has 97% homology with GLP-1128. After s.c. administration, the drug is released slowly into circulation (tmax = 9-13 hr), and then cleared slowly (t½of 11-15 hr) and excreted by the kidney127,128. The duration of action is about 24-hr, allowing once-daily s.c. dosing, which effectively reduces fasting as well as postprandial hyperglycemia (12 hr after administration) (Table 5) by increasing insulin secretion, delaying gastric emptying, and suppressing prandial glucagon secretion127,128. Liraglutide administration (0.9 mg/day for 14 weeks) resulted in 75% of patients achieving HbA1c <7.0% and 57% achieving HbA1c <6.5%129, and once daily administration (0.75-2 mg for 5-12 weeks) caused significant improvement in glycemic control (HbA1c reduction of 0.8-1.9%) and a weight loss of up to 3.0 kg128,130, as compared to placebo or glimepiride131; liraglutide administration also decreased appetite causing minimal side effects (nausea, vomiting, and diarrhea) with negligible risk of hypoglycemia128. The clinical efficacy of liraglutide, given as monotherapy or in combination with other antidiabetic drugs, has been amply demonstrated in a large number of clinical trials including the Liraglutide Effect and Action in Diabetes series (LEAD-1 to -6) of studies in more than 4400 T2DM patients (Table 6)111,127-141. In addition to robust glycemic control, liraglutide reduced weight in most patients, improved beta-cell function, lowered blood pressure and triglycerides, and was well tolerated with minimal risk of hypoglycemia; addition of liraglutide to oral antidiabetic regimen improved glycemic control128,129,139,140. A once-aday s.c. injection may be sufficient in normal use. Dosage adjustment may not be required in patients with renal impairment142. In some populations, especially at higher doses, liraglutide decreases body weight111,129,131,134,136,138. Some studies suggest that the efficacy and tolerability of liraglutide administered once-a-day is comparable or even better than exenatide given twice-a-day94,111. An ethnic difference in the effects of liraglutide was observed, in that in Japanese T2DM patients given half the dose of the Caucasian patients, the reduction in HbA1c was more prominent, suggesting that liraglutide may be more effective in Asian than in Caucasian patients possibly due to their improvement of early phase insulin secretion143. The main adverse effects of liraglutide include nausea, vomiting and diarrhea128,135-137. The US-FDA advisory includes the risk of developing pancreatitis and papillary thyroid tumors144,145. After s.c. administration of 1.0 mg of liraglutide in healthy individuals, Cmax of 15-20 nmol/L was obtained at tmax of 12-14 hr; plasma t of liraglutide
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
Table 5. Clinical studies with Sitagliptin
Aschner185
SITA -100 mg/d
24
SITA -200 mg/d
Placebo
741
Change in HbA1c
Change in Change in FPG (mg/dL) Weight (kg)
Diet
- 0.79%
- 13 to 18
- 0.2
24
Diet
- 0.94%
- 16 to 22
- 0.1
24
Diet
+ 0.18%
+ 5
- 1.1
18
Diet
- 0.48%
- 13
- 0.2
Raz
SITA -100 mg/d
SITA -200 mg/d
18
Diet
- 0.36%
- 11
- 0.6
Placebo
18
Diet
+ 0.12%
+ 7
- 0.7
203
521
Other treatment
Hanefield191
SITA - 25-50 mg b.i.d./q.d.
555
12
Diet
- 0.4 to -0.6%
Nonaka205
SITA - 50 mg b.i.d.
151
12
Diet + exercise
- 1.3%
- 49
SITA - 100 mg q.d.
12
Diet + exercise
- 0.8%
- 41
Placebo
12
Diet + exercise
- 0.2%
- 7
24
Metformin (>1500 mg/d)
- 0.67%
- 16
- 0.6
24
Metformin (>1500 mg/d)
- 0.02%
+ 9
- 0.7
24
Pioglitazone 30-45 mg/d
- 0.85%
- 16
+1.8
24
Pioglitazone 30-45 mg/d
- 0.15%
12
Diet + exercise
- 0.4% to -0.8%
211
Charbonnel
SITA -100 mg/d
701
Placebo
Rosenstock212
SITA -100 mg/d
353
-11 to -17
Placebo
Scott200
SITA - 12.5 – 50 mg b.i.d.
Glipizide (5-20 mg/d)
12
Diet + exercise
- 0.76% to -1.38% + 23
Placebo
12
Diet + exercise
+ 0.23%
+ 8
1172 52
Metformin > 1500 mg/d
- 0.67%
- 10
- 1.5
52
Metformin > 1500 mg/d
- 0.67%
- 8
+1.1
4
Metformin > 1500 mg/d
- 22
Nauck
SITA -100 mg/d
Glipizide (5-20 mg/d)
Brazg214
SITA - 100 mg/d
215
28
Placebo
Goldstein216
SITA- 100 mg/d
SITA- 50 mg/d
SITA- 50 mg/d.
Hermansen
743
4
0
0
+1.5
-13 to -18
+ 0.1 to +0.4
Metformin > 1500 mg/d
- 7
Diet + exercise
- 0.83%
- 23
24
Metformin 1000 mg/d + Diet
- 1.5%
- 53
24
Metformin 2000 mg/d + Diet
- 2.07%
- 70
Placebo
24
Metformin 1000 mg/d + Diet
- 0.99%
- 33
Placebo
24
Metformin 1000 mg/d + Diet
- 1.3%
- 35
Placebo
24
Diet + exercise
+ 17%
+ 6
1091 24
24
Glimepiride
- 0.30%
- 2
+1.1
SITA -100 mg/d
24
Glimepiride/Metformin
- 0.59%
- 7
+ 0.4
Placebo
24
Glimepiride
+ 0.27%
+ 18
Placebo
24
Glimepiride/Metformin
+ 0.30%
+ 12
- 0.7
Scott213
217
SITA -100 mg/d
SITA -100 mg/d
273
18
Metformin >1500 mg/d.
- 0.7%
- 11
- 0.4
18
Metformin >1500 mg/d.
- 0.8%
- 23
+ 1.5
Placebo
18
Metformin >1500 mg/d
- 0.2%
- 54
- 0.8
Mohan
SITA -100 mg/d
Roziglitazone 8 mg/d
Placebo
218
0
Roziglitazone 8 mg/d
441
18
Metformin 1500 mg/d.
- 1.0%
- 31
18
Metformin 1500 mg/d
- 0.8%
- 23
+ 1.5
18
Metformin 1500 mg/d.
- 0.2%
- 54
- 0.8
Wk = week; b.i.d. = twice a day; t.i.d. = three-times a day; d = day; N = number of patients in the study; d = per day; FPG = fasting plasma glucose levels; SU = sulfonylurea; for glucose levels, to convert mg/dL to mmol/L divide by 18
Internacional
Study Duration (wk)
Diabetes
Dose of Reference sitagliptin (SITA) N
41
was 11-15 hr146. There is no effect of age or gender on the pharmacokinetics of liraglutide146. Liraglutide is being considered for approval by the US-FDA in 2009. Another drug of this class, albiglutide, a recombinant human GLP-1-albumin-fusion protein (genetic fusion of a DPP-4-resistant GLP-1 dimer to human albumin) has a long duration of action (t½= 6-8 days) and is to be injected every 5-8 days to control hyperglycemia147,148. In (Table 5) addition to controlling blood sugar, it also suppresses appetite. In T2DM patients, albiglutide (16-64 mg given by s.c. injection) improved fasting plasma glucose and postprandial glucose with a low adverse effect profile (mainly, headache, nausea and flatulence)147,148. After injection, albiglutide is readily absorbed but tmax is reached in 3-5 days and its plasma t is between 6 and 8 days147,148.
42
cagon- and adrenergic-receptor mediated lipolysis.23,55 Thus, GIP promotes energy storage and reduces insulin at the adipocyte level while it stimulates insulin secretion from the β-cells. Hence, there is interest in developing GIP receptor agonist for the treatment of obesity and insulin resistance.55 Although, several GIP analogs have been synthesized, no human studies with GIP analogs have been reported.
Although, the GLP-1 receptor agonists (incretin mimetics) are effective in reducing HbA1c and post-prandial glucose in patients failing sulphonylurea and/or metformin therapy, the role of these drugs in the treatment of T2DM is still debated. An earlier consensus algorithm of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)149, http:// www.eje-online.org/cgi/content/full/160/6/909 - BIB4 suggested to limit the use of GLP-1 receptor agonists only to some specific cases, without considering those agents as the main-line drugs. The reasons for this exclusion were their perceived limited efficacy in decreasing HbA1c in comparison with other agents, their poorly defined safety profile, and their cost94. However, the newer Consensus algorithm issued by ADA/EASD suggests that GLP-1 receptor agonists can be used, in selected cases, as an add-on treatment to metformin150.
Pleiotropic effects of incretins and incretin-mimetics The incretins have a number of pleiotropic (extrapancreatic) actions which have therapeutic benefits beyond controlling hyperglycemia20,21,151-153. As mentioned earlier, GLP-1 and exenatide delay gastric emptying, suppress appetite and cause satiety by central mechanism(s), which translates into reduction in body weight. GLP-1, exenatide and liraglutide have been shown to increase insulin sensitivity and β-cell function (Table 3)111,128,135,139,140,154156 In animal experiments, both exenatide and liraglutide increased β-cell mass, by increasing proliferation and neogenesis and reduction in apoptosis 27,38,157-159; it is not known if these effect on β-cells are also applicable to humans. GLP-1 and analogs regulate cell proliferation and apoptosis in various tissues (such as pancreas, gut and the CNS)158. Exenatide also improves lipid profile (decrease in total cholesterol, LDL-cholesterol and triglycerides, apo B, and an increase in HDL-cholesterol)100. Liraglutide administration also decreases triglyceride levels111,128. Furthermore, exenatide treatment in patients with the metabolic syndrome produced significant improvement in cardiometabolic risk factors and anthropometric parameters160. Since exendin-4 was shown to reverse hepatic steatosis in ob/ob mice161, the GLP-1 mimetics may be a therapeutic option for (human) hepatic steatosis162.
GIP analogs and GIP receptor antagonists In addition to the insulinotropic action of GIP on the pancreatic β-cell, GIP also has been shown to stimulate β-cell proliferation and inhibit apoptosis in islet cell lines. Additionally, functional GIP receptors have been identified on adipocytes, which have been shown to stimulate glucose transport, increase fatty acid synthesis, and stimulate lipoprotein lipase activity in animal models. Thus, there is some interest in GIP analogs as novel therapeutic option for the treatment of T2DM. However, there are several limitations to using GIP itself as a therapeutic agent: a) GIP (1-42) has a short biological t in the circulation due to rapid cleavage and degradation by DPP-4, b) the cleaved metabolite (GIP 3-42) (Table 2) is not only inactive but may also function as a GIP receptor antagonist in vivo, c) clinical GIP infusion studies in T2DM patients have resulted in blunted insulin responses, since GIP no longer modulates glucose-dependent insulin secretion in T2DM even at supraphysiological plasma levels.22 However, the interaction of GIP with its functional receptor on adipocytes results in a) increase in lipoprotein lipase, b) stimulation of lipogenesis, c) enhancement of fatty acid and glucose uptake, d) augmentation of insulin-mediated fatty acid incorporation, and e) inhibition of both glu-
Activation of GLP-1 receptors by GLP-1 in the endothelium, and cardiac and vascular myocytes, has been shown to increase levels of cAMP and cGMP resulting in vasodilation, enhanced coronary blood flow, and increased functional recovery and cardiomyocyte viability after ischemia-reperfusion injury in experimental studies163,164. Exenatide has also been reported to prevent ischemicreperfusion injury in experimental animal models165. It is possible that the incretins and incretin-mimetics may protect the heart against ischemia-reperfusion injury in humans. The central action of GLP-1 also contributes to central regulation of metabolic and cardiovascular homeostasis155, GLP-1 decreases BP and increases myocardial contractility151, and in heart failure patients, infusion of GLP-1 improves endothelial function and symptoms of heart failure43,159,166,167. Some of these beneficial effects are mediated via a nitric oxide synthase-requiring mechanism that is independent of the interaction of GLP-1 with its receptor168. Exenatide decreased both the systolic and diastolic BP in patients following 82-week treatment, probably as a secondary consequence of improvements in blood levels of glucose and lipids and a reduction in body weight97. In other short term (24-week)95 and long term (82-week)107 studies, exenatide (5-10g bid) lowered
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
Table 3. Clinical studies with exenatide and exenatide LAR
232
Study Other Change Change Change in Duration treatment in HbA1c in FPG Weight (kg) (wk) (mg/dL)
Moretto95
EX- 5 µg b.i.d.
24
Diet/exercise
- 0.7%
- 18
- 2.8
EX-10 ug b.i.d.
24
Diet/exercise
- 0.9%
- 19
- 3.1
Placebo
24
Diet/exercise
- 0.2%
- 5
- 1.4
Nelson96
EX-10 µg b.i.d.
4
Diet/exercise
- 0.4%
- 36
---
Placebo
4
Diet/exercise
+ 0.2%
+ 11
---
30
Diet/metformin
- 0.9%
30
Diet/exercise
- 1.0%
99
Nelson
EX-10 µg b.i.d./20 q.d.
EX-10 ug b.i.d./20 q.d.
Fineman88
EX-0.08 µg b.i.d./t.i.d.
109
4
SU + Metformin
- 1.0- -1.1%
---
Placebo
4
SU + Metformin
- 0.3%
---
---
Ratner97
EX-10 µg b.i.d.
Metformin
- 1.3%
- 31
5.3
Poon98
EX-5 µg b.i.d.
Ex-10 ug b.i.d.
Placebo
Barnett99
Ex-10 ug b.i.d.
96
127
- 4.3 - 3.7 ---
92
82
156
4
Diet/exercise/metformin - 0.4%
- 20
- 1.4
4
Diet/exercise/metformin - 0.5%
- 17
- 1.8
4
Diet/exercise/metformin + 0.1%
+ 7
16
Metformin/SU
- 1.4%
- 52
- 2.2
Insulin glargine
16
Metformin/SU
- 1.4%
- 74
+2.3
Klonoff
EX-5-10 ug b.i.d.
16
Metformin + SU
- 1.0%
Placebo.
16
Metformin + SU
- 0.4%
- 0.2
- 0.1
Monami94
EX-5-10 ug b.i.d.
16
Metformin + SU
- 1.2%
- 1.3
- 1.2
Placebo.
16
Metformin + SU
- 0.4%
- 0.2
- 0.1
deFronzo101
EX- 5µg b.i.d.
30
Metformin (1000 mg/d)
- 0.4%
- 7
- 1.6
EX-10 µg b.i.d.
30
Metformin (1000 mg/d)
- 0.8%
- 11
- 2.8
Placebo
30
Metformin (1000 mg/d)
+ 0.2%
+14
- 0.3
Buse102
Ex- 5 µg b.i.d.
30
Glimepiride (4 mg/d)
- 0.5%
- 5
- 0.9
EX-10 µg b.id
30
Glimepiride (4 mg/d)
- 0.9%
- 11
- 1.6
100
138 217 466
336
377
0
- 5.3
Placebo
30
Glimepiride (4 mg/d)
+ 0.1%
+ 7
- 0.6
Kendall103
EX-5 µg b.i.d.
30
Metformin + SU
- 0.6%
- 9
- 1.6
EX-10 µg b.i.d.
30
Metformin + SU
- 0.8%
- 11
- 1.6
Placebo
30
Metformin + SU
+ 0.2%
+14
- 0.9
Zinman104
EX-10 µg b.i.d.
16
Metformin + TZD
- 0.9%
- 29
- 1.8
Placebo
16
Metformin + TZD
+ 0.1%
+ 2
- 0.2
Heine105
EX-10 µg
26
Metformin + SU
- 1.1%
- 26
- 2.3
Insulin glargine
26
Metformin + SU
- 1.1%
- 52
+1.8
733 233 551
Nauck106
EX-10 µg b.i.d.
Biphasic insulin
501
52
Metformin + SU
- 1.0%
- 32
- 2.5
52
Metfromin + SU
- 0.9%
- 31
+ 2.9
Blonde107
EX-5-10 µg b.i.d.
314
82
Metformin + SU
- 1.1%
- 4.4
EX-5-10 µg b.i.d.
551
82
Metformin + SU
- 0.9%
- 3.5
Buse108
EX-5-10 µg b.i.d.
283
30
Metformin + SU
- 0.9%
- 2.1
EX-5-10 µg b.i.d.
52
Metformin + SU
- 1.1%
Brodows109
EX-5-10 µg b.i.d.
314
24
Metformin + SU
- 0.7% to -0.9%
- 18
- 2.8 to -3.1
Gao
EX-5-10 ug b.i.d.
466
16
Metformin + SU
- 1.2%
- 1.3
- 1.2
Placebo.
16
Metformin + SU
- 0.4%
- 0.2
- 0.1
Buse111
EX-10 ug b.i.d.
26
Metformin + SU
- 0.8%
- 11
- 2.9
Liraglutide 1.8 mg/d
26
Metformin + SU
- 1.1%
- 29
- 3.2
Drucker112
EX-10 µg b.i.d.
30
Metformin + SU
- 1.5%
- 25
- 3.8 - 4.3
110
464 295
EX-LAR 2.0 mg/wk
Kim113
EX-LAR 0.8 mg/wk
- 4.7
30
Metformin + SU
- 1.9%
- 41
15
Metformin/diet/exercise - 1.4%
- 43
0.0
EX-LAR 2.0 mg/wk
15
Metformin/diet/exercise - 1.7%
- 40
- 3.8
Placebo
15
Metformin/diet/exercise + 0.4%
+18
0.0
45
Wk = week; b.i.d. = twice a day; t.i.d. = three-times a day; d = day; EX = exenatide; EX-LAR = Long-acting exenatide; FPG = fasting plasma glucose levels; SU = sulfonylurea; TZD = thiazolinedione. For glucose levels, to convert mg/dL to mmol/L divide by 18
Internacional
N
Diabetes
Dose of Reference exenatide (EX)
43
BP, which was independent of weight loss. Liraglutide administration also decreased systolic BP128,129, which occurs even before the weight loss. Exenatide treatment has been shown to prevent early diabetic retinopathy in experimental animals169. The incretins may also be involved in the regulation of taste function, since GLP-1 signaling in taste buds modulates taste sensitivity170. The apparent ability of exendin-4 (exenatide) to arrest progression of, or even reverse nigral lesions once established, normalize dopamine imbalance, and increase the number of cells positive for markers of dopaminergic neurons in the substantia nigra in a model of Parkinson’s disease suggests that pharmacological manipulation of the GLP-1 receptor system could be of therapeutic value in Parkinson’s disease171,172. Furthermore, GLP-1 has been shown to decrease endogenous amyloid-beta peptide (Abeta) levels and protect hippocampal neurons from death induced by Abeta and iron173; these observations suggest that GLP-1 and analogs may be useful in the therapy of Alzheimer’s disease174,175. Since, exenatide potently decreases ghrelin levels in fasting rats, incretin-mimetics could offer a therapeutic option for syndromes characterized by substantial amounts of circulating ghrelin176. Additionally, exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease177. It is expected that other GLP-1-receptor agonists and inhibitors of DPP-4 will have some of the above mentioned pleiotropic effects of GLP-1 and agonists.
44
Dipeptidyl-peptidase-4 inhibitors - incretin enhancers Since the incretin-mimetics have to be given subcutaneously, efforts to find orally active compounds that enhance the endogenous incretin effect, have resulted in the development of inhibitors of DPP-471,76,78,79,84, the enzyme which rapidly inactivates the endogenous incretins. DPP-4, a serine protease/peptidase, involved in many important processes related to nutrition, excretion and immune function (such as maintaining lymphocyte composition and memory T cell generation), is present in many tissues of the body but mostly in the kidney178,179. Serum levels of DPP-4 have been shown to increase with prolonged hyperglycemia180, and its levels decrease with normalization of blood glucose. Increased levels of DPP4 could contribute to the reduction in circulating active GLP-1 and to the consequent postprandial hyperglycemia in T2DM patients with poor metabolic control180. Inhibitors of DPP-4, called the gliptins, block the active site of DPP-4 and thereby prevent the inactivation of incretins, thus prolonging the duration of action of GLP-1 and GIP181. These “incretin enhancers” increase postprandial insulin secretion, effectively improve glycemic control (reduce HbA1c), suppress glucagon release and endogenous glucose production (in the liver), and improve islet cell function (increased β-cell sensitivity to glucose), without a significant effect on gastric motil-
ity or body weight57,80,82,182-199. The DPP-4 inhibitors are more effective in patients with significant residual β-cell function as compared to those with long-standing insulin deficiency. The data on the effect of gliptins on appetite and body weight are not consistent in that some investigators claim that gliptins do not have any effect on these parameters57,58,63,75,76,200,201, while others indicate that the gliptins have a modest effect on appetite (slowing gastric motility and inducing a feeling of satiety) and reduction in body weight189,202,203. Preclinical studies have demonstrated that an approximately 80% inhibition of DPP-4 activity is necessary to achieve a near-maximal effect on glucose concentration204. In humans, 80-88% inhibition is achieved with DPP-4 inhibitors given at the therapeutic doses182,192,205,206, which results in significant rise in GLP-1 and GIP levels192,197. If animal studies turn out to be applicable to man, chronic treatment with DPP-4 inhibitors may prevent the decline in β-cell function and increase basal GLP-1 levels207. Interestingly, the observation that atorvastatin inhibits DPP-4208 suggests that the statin may offer clinical benefit in treating T2DM patients with dyslipidemia. In general, the DPP-4 inhibitors are well tolerated and the risk of hypoglycemia is low when used as monotherapy or in combination with metformin or TZDs. In addition, these drugs have a low gastrointestinal side effect profile and drug administration does not require injection, thus enhancing patient compliance. However, the risk of nasopharyngitis, urinary tract infection and upper respiratory infection increases with the use of these drugs56,71,189. The effect of inhibition of DPP-4 could potentially have some adverse consequences, since DPP-4 has a large number of physiological (endogenous) substrates, and DPP-4 has been implicated in the control of lymphocyte and immune function, cell migration, viral entry, cancer metastasis, and inflammation71. It is possible that inhibition of neuropeptides, other closely related serine proteases such as DPP-2, DPP-8, DPP-9, fibroblast activation protein-alpha/seprase, prolyl endopeptidase, and tryptase may account for the occasional anemia, thrombocytopenia, neurogenic inflammation, allergic reactions, hypertension and splenomegaly that have been reported with certain non-selective DPP-4 inhibitors177,178,209. However, no such adverse effects have been reported in humans with short-term (12 months) use of the approved selective inhibitors at the therapeutic doses81. On the other hand, the DPP-4 inhibitors may be useful to decrease liver inflammation and steatosis, in conditions in which DPP-4 levels are high210. However, the durability and long-term safety of these drugs remains to be determined. Sitagliptin (MK-0431, Januvia®) has been approved (2006) in the USA, and vildagliptin (LAF 237, Galvus®) in Europe (2008), as oral antidiabetic agents, to be used either as monotherapy in T2DM patients inadequately controlled with diet and exercise, or as add-on therapy in combination with metformin, TZDs, or insulin, who have failed oral agents73,185,190, 194. If used as monotherapy, sitagliptin is re-
Sitagliptin may cause gastrointestinal side effects, nasopharyngitis, upper respiratory infection and headache57; cases of severe idiosyncratic hepatotoxicity have also been reported63. Since, sitagliptin is highly selective for DPP-4 and shows little interaction with other proteas (Table 6) es or closely related enzymes, in particular DPP-8 and DPP-9, it is not associated with multiorgan toxicities exhibited by inhibitors of DPP-8/DPP-9 in animal studies209. Never-the-less, another DPP-4 inhibitor, vildagliptin, has been reported to cause skin lesions and kidney impairment in animals, but, no such adverse effects have been reported with short-term (12 months) use of sitagliptin or vildagliptin at therapeutic doses81. Some drawbacks of using sitagliptin include a lack of long-term safety and efficacy data, as well as high cost. After oral administration, sitagliptin is rapidly absorbed (tmax = 1-4 hr), the absorption is not influenced by food intake182,192. The oral bioavailability of sitagliptin is 87%; it exhibits low and reversible binding to plasma proteins (approximately 38%) and is widely distributed in tissues (Vd = 198 L)182,192. The Cmax and AUC are dose-dependent in the 25–400 mg dose range226. Plasma levels decline in a biphasic pattern (t½of the alpha phase = 2-4 hr; terminal t½= 8-14 hr ), independent of the dose182,192. Sitagliptin is mostly excreted (80-87%) by the kidney182,192,227; metabolism by hepatic CYP 3A4 and CYP2C8 accounts for 17% of the administered drug192,227. Pharmacokinetic and pharmacodynamic parameters of sitagliptin are not significantly altered in moderately obese subjects228 or
in diabetic patients192,221. However, pharmacokinetic parameters of sitagliptin are altered in patients with renal insufficiency, with values of Cmax, AUC, and terminal t1/2 increasing with the degree of renal dysfunction: AUC increase 4-5-fold, and Cmax and terminal t1/2 increase 2-fold in patients with end-stage renal disease223,224. The pharmacokinetics of sitagliptin is not significantly affected by mild to moderate hepatic dysfunction.229 Sitagliptin does not alter the pharmacokinetic parameters of glyburide196,230, metformin196,221, rosiglitazone231, simvastatin196,232, warfarin196 or oral contraceptives196. Vildagliptin is used as monotherapy or in combination with metformin, sulfonylureas or TZDs in T2DM patients with inadequate glycemic control following monotherapy; it is also used as monotherapy or in combination with a TZD in patients who cannot tolerate metformin or sulfonylureas194,220. At an oral dose of 100 mg, vildagliptin almost completely inhibits DPP-4 for up to 24 hr233. At least 19 clinical trials have been conducted in more than 7000 randomized patients56-58,65,74,80,82,84; results of some of these studies are presented in Table 6183,188,201,202,235-248. Vildagliptin dose-dependently improves glycemic control in T2DM patients: at doses of 25 to 50 mg b.i.d., the decrease in HbA1c ranges between 0.8% and 1.1%, and fasting glucose levels (by 15 mg/ dL to 30 mg/dL) after monotherapy201,202,234, with further improvement in these parameters when given in combination with metformin188,194,197,198,239,244,246, the effect on weight is minimal237,243,244,246. Vildagliptin is as effective as pioglitazone, and In T2DM patients failing TZD monotherapy, vildagliptin in combination with pioglitazone improved glycemic control240,241,247,249 without additional risk of hypoglycemia240,241. Vildagliptin in combination with metformin, a sulfonylurea or a TZD (given for 2452 wk) not only improved glycemic control in T2DM patients but also appeared to slow the progression of β-cell degeneration187,194,250. Vildagliptin has a low risk of hypoglycemia and is generally well-tolerated at doses of up to and including 200 mg a day in trials lasting up to 52 wk201,251. The drug is also available as a fixed-dose formulation with metformin (Eucreas®)252-254. Vildagliptin improves islet-cell function by increasing both α- and β-cell responsiveness to glucose; improvement in β-cell function (assessed by increase in HOMA-β), insulin sensitivity (reduction in HOMA-insulin resistance), postprandial insulin secretion, and a reduction in postprandial glucagon secretion were observed with vildagliptin (at doses of 25-200 mg/day)75,187,193,194,199,253-264. Vildagliptin improves lipid profile237. After oral administration, vildagliptin is rapidly absorbed giving rise to dose-dependent Cmax (tmax = 1.0-2.0 hr) across the dose range of 25- 200 mg; its oral bioavailability is 85%256,265-268. Food has no effect on the absorption of vildagliptin268. Vildagliptin exhibits low protein binding (9.3%), and it is quickly eliminated (t of ~ 2-3 hr)256,265,266; the t½is dose-dependent (range 1.6-2.5 hr)267-269. There is
Internacional
ported to be less effective than sulfonylurea and metformin in lowering HbA1c211. The efficacy of sitagliptin has been demonstrated in least 11 clinical trials conducted in 6781 randomized patients57,59,65,84,185,186,191,195,200,203,205,211,212-220; some data are presented in Table 6. Sitagliptin monotherapy (50-100 mg/day) usually results in a reduction in HbA1c of 0.8-0.9% and glucose levels of 18-22 mg/ dL195,200,203, while addition of metformin211,213,216,219,221 or TZDs212,220 to the antidiabetic regimen improves the efficacy; combination with metformin increases the efficacy in part by the reported inhibition of DPP-4 by metformin114. The drug (at doses of 100-200 mg/d) is well-tolerated in trials lasting up to 52 weeks, and it has a low risk of hypoglycemia57,186,200,203,215,219-222. Sitagliptin may be used as monotherapy in patients who cannot tolerate metformin or sulfonylureas and it may also be used as an alternative to metformin in renal insufficiency57, however, the dose has to be decreased in patients with moderate to severe renal dysfunction or end-stage renal disease223,224. An ethnic difference in the efficacy of the gliptins (sitagliptin and vildagliptin) was observed in that at the same doses, the reduction in HbA1c was 1.5 times higher in Japanese T2DM patients as compared to the Caucasian patients225. Sitagliptin improves β-cell function and decreases insulin resistance157,191,211,214-216. Sitagliptin has a favorable effect on lipid profile (decrease in free fatty acids, triglycerides and increase in HDL-cholesterol)200.
Diabetes Internacional. Volumen I. Nº 2. Año 2009
Diabetes
www.diabetesinternacional.com
45
Table 6. Clinical studies with Vildagliptin Dose of Reference vildagliptin (VILD) Kikuchi 234
VILD â&#x20AC;&#x201C; 25-50 mg b.i.d.
Placebo
Dejager202
VILD - 50 mg q.d.
Pi-Sunyer
Change in FPG (mg/dL)
12
Diet Diet
+0.1%
- 9
- 0.2
24
Diet
- 0.8%
- 18
- 1.8
VILD - 50 mg b.i.d
24
Diet
- 0.8%
- 14
- 0.3
VILD -100 mg q.d.
24
Diet
- 0.9%
- 14
- 0.8
Placebo
24
Diet
- 0.3%
- 4
- 1.4 - 0.4
632
0
24
Diet
- 0.5%
- 9
VILD - 50 mg b.i.d
24
Diet
- 0.7%
- 22
0
VILD -100 mg q.d.
24
Diet
- 0.8%
- 20
- 0.4
Placebo
24
Diet
0.0
+ 2
- 1.4
Pan235
VILD - 50 mg b.i.d.
24
Diet
- 1.4%
- 16
Acarbose 300 mg/d
24
Diet
- 1.3%
- 27
Schweizer236
VILD - 50 mg b.i.d.
52
Diet
- 1.0%
- 16
+ 0.3
52
Diet
- 1.4%
- 31
+ 1.6
52
Diet
- 0.9%
0
52
Diet
- 1.1%
+ 4.7
Metformin 1000 mg b.i.d.
Rosenstock237
VILD - 50 mg b.i.d.
Rosiglitazone 8 mg/d.
Scherbaum238
VILD - 50 mg q.d.
Placebo
Ahren239
VILD - 50 mg q.d.
354
-1.0% to - 1.2%
Change in Weight (kg)
12
VILD - 50 mg q.d.
291
Study Other Change Duration treatment in HbA1c (wk)
201
660 780 598 306 107
52
Diet
- 0.2%
- 7
- 0.5
52
Diet
+0.1%
+ 8
- 0.2
12
Metformin
- 0.6%
- 18
- 0.4
12
Metformin
+ 0.1%
+ 4
- 0.5
24
Diet
- 1.1%
- 23
- 0.6
Placebo
Rosenstock240
VILD -100 mg q.d.
VILD - 50 mg q.d.
24
Pioglitazone 15 mg q.d. + Diet
- 1.7%
- 43
+ 1.4
VILD -100 mg q.d.
24
Pioglitazone 30 mg q.d. + Diet
- 1.9%
- 50
+ 2.1
Placebo
24
Pioglitazone 30 mg q.d. + Diet
- 1.4%
- 34
+ 1.5
Garber241
VILD - 50 mg q.d.
24
Pioglitazone 45 mg/d.
- 0.8%
- 14
+ 0.1
607
463
VILD - 50 mg b.i.d.
24
Pioglitazone 45 mg/d.
- 1.0%
- 18
+ 1.3
Placebo
24
Pioglitazone 45 mg/d
- 0.3%
- 9
+ 1.4
Garber242
VILD - 50 mg q.d.
24
Glimepiride
- 0.6%
- 5
- 0.1 + 1.3
515
VILD - 50 mg b.i.d.
24
Glimepiride
- 0.6%
- 7
Placebo
24
Glimepiride
+ 0.1%
+ 4
- 0.4
Fonseca243
VILD - 50 mg b.i.d.
24
Insulin 82U/d
- 0.5%
- 14
+ 1.3
Placebo
24
Insulin 82U/d
- 0.2%
- 4
+ 0.3
296
Bosi
VILD - 50 mg q.d.
24
Metformin >1500 mg/d
- 0.7%
- 14
- 0.4
VILD - 50 mg b.i.d.
24
Metformin >1500 mg/d
- 1.1%
- 31
+ 0.2
Placebo
24
Metformin >1500 mg/d
+0.2%
+ 13
- 1.0
- 47
188
544
Bosi
VILD - 50 mg b.i.d.
1179 24
Metformin 2000 mg/d
- 1.8%
VILD - 50 mg b.i.d.
24
Metformin 1000 mg/d
- 1.6%
VILD - 50 mg b.i.d.
24
Diet
- 1.1%
- 27
Placebo
24
Metformin 2000 mg/d
- 1.4%
- 35
0
Rosenstock245
VILD - 50 mg b.i.d.
24
Diet
- 1.1%
- 23
- 0.3
VILD - 50 mg q.d.
24
Rosiglitazone 8 mg q.d. + Diet
- 1.3%
- 41
+ 1.6
244
Bolli
VILD - 50 mg b.i.d.
Pioglitazone 30 mg q.d.
Goke247
VILD - 50 mg b.i.d.
246
46
N
Metformin 2000 mg/d
Ferrannini248
VILD - 50 mg b.i.d.
Glimepiride 4.5 mg/d
786 576 305
0 0 0
24
Metformin 2000 mg/d
- 0.9%
- 38
+ 0.2
24
Metformin 2000 mg/d
- 1.0%
- 25
+ 1.9
52
Diet + pioglitazone
- 1.0%
- 0.5
52
Diet + pioglitazone
- 1.5%
2789 52
Metformin 2000 mg/d
- 0.44%
- 18
+ 2.5
52
Metformin 2000 mg/d
- 0.53%
- 21
N = number of patients in the study; b.i.d. = twice a day; q.d. = once a day; d = day; FPG = fasting plasma glucose levels; SU = sulfonylurea; For glucose levels, to convert mg/dL to mmol/L divide by 18
- 0.23
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
Conclusions Traditional first-line therapy (sulfonylureas, metformin, TZDs, etc.) might not be appropriate for all T2DM patients. In addition, these drugs have significant adverse effects, such as hypoglycemia and weight gain. The recently developed diabetes therapies based upon GLP-1 receptor agonists (e.g., exenatide, liraglutide) and DPP-4
References 1.
Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:10471053.
2.
Horton. Can newer therapies delay the progression of type 2 diabetes mellitus? Endocrine Pract 2008;14:625-638.
3.
International Diabetes Federation. Diabetes Atlas, Brussels, Belgium: International Diabetes Federation, 2006.
4.
DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992;15:318-368.
5.
Del Prato S, Marchetti P. Beta- and alpha-cell dysfunction in type 2 diabetes. Hormone Metab Res 2004;36:775–781.
6.
U K Prospective Diabetes Study Group. UK prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 1995 44 1249–1258.
7.
Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999;281:2005-2012.
8.
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102–110.
9.
UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–853.
10. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose
Internacional
Several other DPP-4 inhibitors, including alogliptin (SYR-322)84,274,275,276,277 and saxagliptin (BMS-477118; Onglyza ®)84,275,278,279, etc., are in various stages of development. Both vildagliptin and saxagliptin are apparently close to being approved by the USA-FDA. Monotherapy with alogliptin (12.5-25 mg per day) improved glycemic control (decrease in HbA1c by 0.6%) in T2DM patients without raising the risk of hypoglycemia274,276.280. It appears to be effective and safe in treating T2DM, when added to metformin in patients not sufficiently controlled on metformin monotherapy.281 In addition to metformin, alogliptin can also be combined with TZDs, sulfonylureas and insulin274,277. The drug is well tolerated and has an excellent safety profile, except that hypoglycemia is significant at 800 mg dose282; it appears to be weight neutral. Combination of alogliptin with pioglitazone (in ob/ob mice) increased GLP-1 and insulin levels and reduced glucagon concentration, and exhibited a complementary effect in terms of improved glycemic control and lipid profile283. Never-the-less, studies in diabetic patients are needed to evaluate the long-term safety and efficacy of alogliptin284. After single oral doses (25-800 mg), alogliptin is rapidly absorbed (tmax = 1-2 hr) and is slowly eliminated (t½= 12 – 21 hr). A small fraction of the dose is metabolized (8%), and 60 - 71% of the dose of the drug is eliminated by the renal route282,285. Results of clinical studies with saxagliptin appear to be encouraging, in that a dose-dependent inhibition of DPP-4 is achieved resulting in reduction in HbA1c (by 0.7-0.9%), fasting serum glucose, postprandial glucose levels, with low incidence of adverse effects, and no significant effect on body weight84,275,278, 279,286.
inhibitors (e.g., sitagliptin, vildagliptin) are useful in the management of T2DM because they provide effective reductions in fasting plasma glucose and postprandial glucose levels. In addition, the GLP-1 receptor agonists promote weight loss, whereas the DPP-4 inhibitors are weight neutral, and there is a low risk of symptomatic hypoglycemia. These drugs are effective as monotherapy in drug-naive patients as well as in those in whom other treatments (for example with metformin, sulfonylureas, thiazolinediones, etc.) have been inadequate to achieve glycemic control. When combined with other glucoselowering agents, the GLP-1 receptor agonists and DPP4 inhibitors the efficacy of treatment is increased. These drugs appear to have beneficial effects on β-cell dysfunction, although, the ability of GLP-1 receptor agonists to reduce and/or reverse the progressive β-cell loss remains unclear. Also, it is not known that long-term therapy based upon incretin-mimetics/incretin-enhancers will have sustained benefits, especially in later-stages of the disease; the long-term safety has also not been established. Neverthe-less, the current consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes about the medical management of hyperglycemia in T2DM patients has included GLP-1 receptor agonists as an option when weight loss or risk of hypoglycemia are major considerations. In general, antidiabetic agents should be individualized on the basis of their efficacy as hypoglycemic agents and their extraglycemic effects (on lipids, BP and weight), tolerability and safety, complication of long-term use, ease of drug administration, and costs.
Diabetes
no accumulation after repeated dosing. The metabolism of vildagliptin is mainly by hydrolysis to inactive metabolites265. Some 80% to 85% of an oral dose is eliminated in urine, including 22% to 29% of unchanged drug in Chinese subjects, which is similar to that observed in nonChinese subjects256,265-269. There is no significant effect of gender or obesity on the pharmacokinetics of vildagliptin, however, total exposure (AUC) of the drug increases, but clinically insignificantly in the elderly267. Hepatic dysfunction does not have any effect on the pharmacokinetics of vildagliptin, therefore, dosage adjustment is not necessary269. Vildagliptin does not have a significant effect on the pharmacokinetics of digoxin270 , amlodipine271 valsartan271, ramipril271, simvastatin272 and warfarin273.
47
control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–865. 11. United Kingdom Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. Br Med J 1998;317:703-713.
36. Wang GJ, Tomasi D, Backus W, et al. Gastric distension activates satiety circuitry in the human brain. Neuroimage 2008;39:1824-1831.
12. Holman RR, Paul SK, Bethel MA, Neil HA, Matthews DR. Long-term followup after tight control of blood pressure in type 2 diabetes. N Engl J Med 2008;359:1565-1576.13. Action to Control Cardiovascular Risk in Diabetes Study Group. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358:2545-2559.
37. Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol Regul Integr Comp Physiol 1999;276:R1541-R1544.
14. Montori VM, Fernández-Balsells M. Glycemic Control in Type 2 Diabetes: Time for an Evidence-Based About-Face? Ann Intern Med Apr 20, 2009:150: javascript:AL_get(this, ‘jour’, ‘Ann Intern Med.’);[Epub ahead of print].
39. Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. [Review]. Mol Cell Endocrinol 2009;297:127-136.
15. The ADVANCE Collaborative Group: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-2572. 16. Duckworth W, Abraira C, Moritz T et al. Glucose control and vascular complications in Veterans with type 2 diabetes. N Engl J Med 2009;360:129-139.
38. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007;113:546–593.
40. Bloomgarden Z, Drexler A. What role will ‘gliptins’ play in glycemic control? Cleveland Clinic J Med 2008;75:305 - 310. 41. Ionut V, Zheng D, Stefanovski D, Bergman RN. Exenatide can reduce glucose independent of islet hormones or gastric emptying. Am J Physiol Endocrinol Metab 2008;295:E269-E277.
17. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355: 2427–2443.
42. Ayala JE, Bracy DP, James FD, Julien BM, Wasserman DH, Drucker DJ. The glucagon-like peptide-1 receptor regulates endogenous glucose production and muscle glucose uptake independent of its incretin action. Endocrinology 2009;150:1155-1164.
18. Hermansen K, Mortensen LS. Body weight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus. [Review]. Drug Saf 2007;30:1127-1142.
43. Elahi D, MvAloon-Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept 1994;51:63-74.
19. Creutzfeldt W. The [pre-] history of the incretin concept. Regul Pept 2005;128:87-91.
44. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993;91:301-307.
20. Drucker DJ. The biology of incretin hormones. Cell Metab 2006;3:153-156 21. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131–2157. 22. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment [Review]. Pharmacol Rev 2008; 60:470-512.
45. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717-3723.
23. Meier JJ, Nauck MA. Clinical endocrinology and metabolism. Glucosedependent insulinotropic polypeptides/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab 2004;18:587-606.
46. Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001;50:609–613.
24. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;214:829-835.
47. Vollmer K, Gardiwal H, Menge BA, et al. Hyperglycemia acutely lowers the postprandial excursions of glucagon-like peptide-1 and gastric inhibitory polypeptide in humans. J Clin Endocrinol Metab 2009;94:1379-1385.
25. Visbøll T, Agersø H, Lauritsen T, et al. The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type 2 diabetic patients and healthy subjects. Regul Pept 2006;137:168-172. 26. Nauck MA. Unraveling the Science of Incretin Biology. Am J Med 2009;122(Suppl.6A) S3–S10. 27. Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. [Review]. Mol Endocrinol 2003;17:161-171. 28. Elahi D, Egan JM, Shannon RP, et al. GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide. Obesity 2008;16:1501-1509. 29. Parker JC, Lavery KS, Irwin N, et al. Effects of subchronic exposure to naturally occurring N-terminally truncated metabolites of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), GIP (3-42), GLP-1 (9-39) amide, on insulin secretion and glucose homeostasis in ob/ob mice. J Endocrinol 2006;191:93-100. 30. Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GPL-1, and GLP-2 receptors. Receptors Channels 2002;8:179-188. 31. Estall JL, Drucker DJ. Glucagon and glucagon-like peptide receptors as drug targets. [Review]. Curr Pharm Des 2006;12:1731-1750. 32. Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophy 2008;478:136-142.
48
35. Brunetti L, Orlando G, Recinella L, et al. Glucagon-like peptide 1 (7-36) amide (GLP-1) and exendin-4 stimulate serotonin release in rat hypothalamus. Peptides 2008;29:1377-1381.
48. Holst JJ, Orskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes 2004;53(Suppl.3):S197–S204. 49. Chia CW, Egan JM. Incretin-based therapies in type 2 diabetes mellitus. J Clin Endocrinol Metab 2008;93:3703-3716. 50. Hellwig B. The incretin system as basis of new antidiabetic drugs. Deutsche Apotheker Zeitung 2009;149:64-67. 51. Yu B-S, Wang A-R. Glucagon-like peptide 1 based therapy for type 2 diabetes. [Review]. World J Pediatr 2008;4:8-13. 52. Flatt PR, Bailey CJ, Green BD. Recent advances in antidiabetic drug therapies targeting the enteroinsular axis. [Review] Curr Drug Metab 2009;10:125-137. 53. Holst JJ. Pharmacology of GLP-1-based therapies. Brit J Diabetes 2008;8:S10S18. 54. Green BD, Flatt PR. Incretin hormone mimetics and analogues in diabetic therapeutics. Best Pract Res Clin Endocrinol Metab 2007;21:497-516. 55. van Gaal LF, Gutkin SW, Nauck MA. Exploiting the antidiabetic properties of incretins to treat type 2 diabetes mellitus: glucagon-like peptide 1 receptor agonists or insulin for patients with inadequate glycemic control? [Review]. Eur J Endocrinol 2008:158:773-784. 56. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007; 298: 194–206. 57. Mikhail N. Incretin mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials for the treatment of type 2 diabetes. Expert Opin Investig Drugs 2008;17:845-853.
33. Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu JC, Olefsky JM. Beta-arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Nat Acad Sci (USA) 2008;105:6614-6619.
58. Madsbad S, Krarup T, Deacon CF, Holst JJ. Glucogon-like peptide receptor agonists and dipeptidyly peptidase-4 inhibitors in the treatment of diabetes: a review of clinical trials. [Review]. Curr Opin Clin Nutr Metabolic Care 2008;11:491-499.
34. Imeryüz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 1997;273:G920-927.
59. St. Onge EL, Miller SA, Taylor JR. Novel approaches to the treatment of type 2 diabetes. J Pharm Pract 2009;22:320-332. 60. Krentz AJ, Patel MB, Bailey CJ. New drugs for type 2 diabetes mellitus: what
is their place in therapy?. [Review]. Drugs 2008;68:2131-2162. 61. Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 1998;41:271–278.
Diabetes Internacional. Volumen I. Nº 2. Año 2009 87. López de Maturana R, Willshaw A, Kuntzsch A, Rudolph R, Donnelly, D. (2003). The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J Biol Chem 2003;278:10195-10200.
62. Bolen S, Feldman L, Vassy J, et al. Systematic Review: Comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 2007;147: 386-399.
88. Fineman MS, Bicsak TA, Shen LZ, et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003; 26: 2370–2377.
63. Nathan DM. Finding new treatments for diabetes: how many, how fast, how good? N Engl J Med 2007;356:437–440.
89. Dungan K, Buse JB. Glucagon-like peptide 1-based therapies for type 2 diabetes: a focus on exenatide. Clin Diabetes 2005;23:56-62.
64. Waring W.S. Antidiabetic drugs. Medicine 2007;35:590-591.
90. Bray GM. Exenatide. Am J Health Syst Pharm 2006;63:411 - 418.
65. Bosi E, Lucotti P, Setola E, Monti L, Piatti PM. Incretin-based therapies in type 2 diabetes: A review of clinical results. Diabetes Res Clin Pract 2008;82(Suppl. 2):S102-S107.
91. Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept 2004;117:77-88.
66. Inzucchi SE, McGuire DK. New drugs for the treatment of diabetes: Part II: incretin-based therapy and beyond. Circulation 2008;117: 574-584.
92. Chen J, Yu L, Wang L, Fang X, Li L, Li W. Stability of synthetic exendin-4 in human plasma in vitro. Protein Pept Lett 2007;14:19-25.
67. Srinivasan BT, Jarvis J, Khunti K, Davies MJ. Recent advances in the management of type 2 diabetes mellitus: a review. Postgrad Med J 2008;84:524-531.
93. Ritzel U, Leonhardt U, Ottleben M, et al. A synthetic glucagon-like peptide-1 analog with improved plasma stability. J Endocrinol 1998;159:93-102.
68. Irwin N, Moodley M, Flatt PR. Review: Maximizing the therapeutic potential of glucagon-like peptide-1 in type 2 diabetes. Br J Diabetes 2009;9:44-52.
94. Monami M, Marchionni N, Mannucci E. Glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized clinical trials. Eur J Endocrinol 2009;160:909-917.
69. Gilbert MP, Pratley RE. Efficacy and safety of incretin-based therapies in patients with type 2 diabetes mellitus. Am J Med 2009;122(Suppl.6A): S11–S24.
95. Moretto TJ, Milton DR, Ridge TD, et al. Efficacy and tolerability and efficacy of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2008;30:1448-1460.
70. Kendall DM, Cuddihy RM, Bergenstal RM. Clinical application of incretinbased therapy: therapeutic potential, patient selection and clinical use. Am J Med 2009;122(Suppl.6A):S37–S50.
96. Nelson P, Poon T, Guan X, Schnabel C, Wintle M, Fineman M. The incretin mimetic exenatide as a monotherapy in patients with type 2 diabetes. Diabetes Technol Ther 2007;9:317-326.
71. Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes. Preclinical biology and mechanisms of action [Review]. Diabetes care 2007;30:1335-1343.
97. Ratner RE, Maggs D, Nielsen LL et al. Long-term effects of exenatide therapy over 82 weeks on glycaemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 2006;8:419-428.
73. Pratley RE, Salsali A. Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. [Review]. Curr Med Res Opin 2007;23: 919-931. 74. Ahren B. Dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. Diabetes Care 2007;30:1344–1350. 75. Ahren B. DPP-4 inhibitors. Insulin 2009;4:15-31. 76. Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diabetes Vasc Dis Res 2006;3:159–165. 77. Bloomgarden Z, Drexler A. What role will ‘gliptins’ play in glycemic control? Cleveland Clinic J Med 2008;75:305 - 310. 78. Flatt PR, Bailey CJ, Green BD. Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes. [Review]. Front Biosci 2008;13:3648-3660. 79. Wani JH, John-Kalarickal J, Fonseca VA. Dipeptidyl peptidase-4 as a new target of action for type 2 diabetes mellitus: A systematic review. Cardiol Clin 2008; 26:639-648. 80. Bohannon N. Overview of the gliptin class (dipeptidyl peptidase-4 inhibitors) in clinical practice. [Review]. Postgrad Med 2009;12140-145. 81. Moore KB, Saudek CD. Therapeutic potential of dipeptidyl peptidase-IV inhibitors in patients with diabetes mellitus. Am J Ther 2008;15:484-491. 82. White JR. Dipeptidyl peptidase-IV inhibitors: Pharmacological profile and clinical use. Clin Diabetes 2008;26:53-57. 83. Ahren B. Emerging dipeptidyl peptidase-4 inhibitors for the treatment of diabetes. [Review]. Expert Opin Emerg Drugs 2008;13:593-607. 84. Miller SA, St. Onge EL, Taylor JR. DPP-IV inhibitors: A review of sitagliptin, vildagliptin, alogliptin, and saxagliptin. Formulary 2008;43:122-134. 85. Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 1992;267:7402-7405. 86. Goke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993;268:19650-19655.
98. Poon T, Nelson P, Shen L, et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol Ther 2005;7:467-477. 99. Barnett AH, Burger J, Johns D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninriority trial. Ann Intern Med 2007;143:559-569. 100. Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 2008;24:275-286. 101. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2-diabetes. Diabetes care 2005;28:1092-1100. 102. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylureatreated patients with type 2 diabetes. Diabetes Care 2004;27:2628-2635. 103. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. 2005;28:1083-1091.
Diabetes
72. Elrishi MA, Khunti K, Jarvis J, Davies MJ. The dipeptidyl-peptidase-4 (DPP-4) inhibitors: A new class of oral therapy for patients with type 2 diabetes mellitus. Practical Diabet Int 2007;24:474-482.
Internacional
www.diabetesinternacional.com
104. Zinman B, Hoogwerf BJ, Durán García S, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2007;146:477–485.
105. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG; GWAA Study Group. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005;143:559-569. 106. Nauck MA, Duran S, Kim D, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia. 2007;50:259-267.
107. Blonde L, Klein EJ,Han J, et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes, Diabetes Obes Metab 2006;8:436–447. 108. Buse JB, Klonoff DC, Nielsen LL, et al. Metabolic effects of two years of
49
exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes: an interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials. Clin Ther 2007;29:139-153. 109. Brodows R, Milton D, Ridge TD, et al. Exenatide monotherapy improves glycemic control and is well tolerated over 24 weeks in drug-naïve patients with type 2 diabetes. [Abstract]. Diabetes 2008;57(Suppl.1):A145. 110. Gao Y, Yoon KH, Chuang LM, et al. Efficacy and safety of exenatide in patients of Asian descent with type 2 diabetes inadequately controlled with metformin or metformin and a sulphonylurea. Diabetes Res Clin Pract 2009;83:69-76. 111. Buse JB, Rosenstock J, Sesti G, et al. Liraglutide once-a-day versus exenatide twice a day for type 2 diabetes: a 26 week, randomized, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; published online June 8, 2009. DOI:10.1016/S0140-6736(09)60659-0. 112. Drucker DJ, Buse JB, Taylor K, et al. DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomized, open-label, non-inferiority study. Lancet 2008;372:1240-1250. 113. Kim D, MacConell L, Zhuang D, et al. Effects of once-weekly dosing of a longacting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007;30:1487-1493. 114. Green BD, Irwin N, Duffy NA, Gault VA, O’harte FP, Flatt PR. Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic effects of glucagon-like peptide-1. Eur J Pharmacol 2006;547:192-199.
132. Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J, NN2211-1499 Study group. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type-2 diabetes. Exp Clin Endocrinol Metab 2006;114:417-423. 133. Madsbad S, Schmitz O, Ranstam J, et al. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004; 27:1335–1342. 134. Harder H, Nielsen L, Tu DT, Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes.Diabetes Care 2004; 27:1915–1921. 135. Garber A, Henry R, Ratner R, et al. for the LEAD-3 (Mono) Study Group, 2008. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, paralleltreatment trial. Lancet 2009;373:473-481. 136. Nauck MA, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes Care 2009;32:84-90.
115. Linnebjerg H, Kothare PA, Park S, et al. Effect of renal impairment on the pharmacokinetics of exenatide. Br J Clin Pharmacol 2007; 64:317-327.
137. Marre M, Shaw J, Brandle M, et al. Liraglutide, a once-daily human GLP-1 analog, added to a sulfonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU). Diabetes 2009;26:268-278.
116. FDA-1, 2008: Federal Drug Administration Information for Healthcare Professionals, Exenatide (marketed as Byetta) available at: http://www.fda.gov/cder/drug/InfoSheets/HCP/exenatide2008HCP.htm, retrieved July 2009.
138. Zinman B, Gerich J, Buse JB, et al. Efficacy and safety of the human GLP-1 analog liraglutide in combination with metformin and TZD in patients with type 2 diabetes mellitus (LEAD-4 Met+TZD). Diabetes Care 2009 Mar 16. [Epub ahead of print] DOI:10.2337/dc08-2140.
117. Weise WJ, Sivanandy MS, Block CA, Comi RJ. Exenatide-associated ischemic renal failure. [Letter]. Diabetes Care. 2009;32:e22-e23.
139. Russell-Jones D, Vaag A, Schmitz O, et al. Significantly better glycemic control and weight reduction with liraglutide, a once-daily human GLP-1 analog, compared with insulin glargine: all as add-on to metformin and a sulfonylurea in type 2 diabetes. [Abstract]. Diabetes 2008;57(Suppl.1):A159.
118. Kolterman OG, Kim DD, Shen L, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health-System Pharm 2005;62:173-181. 119. Kothare PA, Linnebjerg H, Isaka Y, et al. Pharmacokinetics, pharmacodynamics, tolerability, and safety of exenatide in Japanese patients with type 2 diabetes mellitus. J Clin Pharmacol 2008;48:1389-1399. 120. Zhao X, Cui YM, Zhou Y, et al. Exenatide pharmacokinetics in healthy Chinese subjects. Int J Clin Pharmacol Ther 2008;46:459–465. 121. Soon D, Kothare PA, Linnebjerg H, et al. Effect of exenatide on the pharmacokinetics and pharmacodynamics of warfarin in healthy Asian men. J Clin Pharmacol 2006;46:1179–1187. 122. Kothare PA, Soon DK, Linnebjerg H, et al. Effect of exenatide on the steadystate pharmacokinetics of digoxin. J Clin Pharmacol 2005;45:1032–1037. 123. Kothare PA, Linnebjerg H, Atkins M, Mace K, Mitchell M. Effect of exenatide on lisinopril pharmacodynamics in patients treated for hypertension. [Abstract]. Clin Pharmacol Ther 2005;77: PI-24. 124. Kothare PA, Linnebjerg H, Skrivanek Z, et al. Exenatide effects on statin pharmacokinetics and lipid response. Int J Clin Pharmacol Ther 2007;45:114-120. 125. Malone J, Trautmann M, Wilhelm K, Taylor K, Kendall DM. Exenatide once weekly for the treatment of type 2 diabetes. [Review]. Expert Opin Invest Drugs 2009;18:359-367. 126. Scheen AJ. Exenatide once weekly in type 2 diabetes. Lancet 2008;372:11971198. 127. Gallwitz B. Liraglutide. GLP-1 receptor agonist treatment of type 2 diabetes and obesity. Drugs Future 2008;33:13-20. 128. Russell-Jones D. Molecular, pharmacological and clinical aspects of liraglutide, a once-daily human GLP-1 analogue. [Review]. Mol Cell Endocrinol 2009;297:137-140. 129. Vilsbøll T, Zdravkovic M, Le-Thi T, et al. Liraglutide, a long-acting human glucagon-like peptide 1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type-2 diabetes. Diabetes Care 2007;30:1608-1610.
50
ment in glycemia with once-daily liraglutide without hypoglycemia or weight gain: A double-blind, randomized, controlled trial in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 2008;81:161-168.
130. Feinglos MN, Saad MF, Pi-Sunyer FX, et al. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on glycaemic control and body weight in subjects with type 2 diabetes. Diabet Med 2005; 22:1016–1023. 131. Seino Y, Rasmussen MF, Zdravkovic M, Kaku K. Dose-dependent improve-
140. Vilsbøll T. Liraglutide: a new treatment for type 2 diabetes. [Review]. Drugs Today (Barc) 2009;45:101-113. 141. McGill JB. Insights from the Liraglutide Clinical Development Program--the Liraglutide Effect and Action in Diabetes (LEAD) studies. [Review]. Postgrad Med 2009;121:16-25. 142. Jacobsen LV, Hindsberger C, Robsen R, Zdravkovic M. Pharmacokinetics of the long-acting human GLP-1 analogue liraglutide in subjects with renal impairment. [Abstract]. Diabetes 2007;56(Suppl.1):A137. 143. Seino Y. Relevance of incretins in the treatment of Asian patients with Type 2 diabetes [Abstract]. Diabetes Res Clin Pract 2008;79 (Suppl.1): S4. 144. Food and Drug Administration. http://fda.gov./ohrms/dockets/ac/09/ briefing/2009-4422b2-01-NovoNordisk.pdf; accessed July 2009) 145. Food and Drug Administration. http://fda.gov./ohrms/dockets/ac/09/ briefing/2009-4422b2-02-NovoNordisk.pdf; accessed July 2009) 146. Damholt B, Golor G, Wierich W, Pedersen P, Ekblom M, Zdravkovic M. An open-label, parallel group study investigating the effects of age and gender on the pharmacokinetics of the once-daily glucagon-like peptide-1 analogue liraglutide. J Clin Pharmacol 2006;46:635-641. 147. Matthews JE, Stewart MW, De Boever EH, et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagonlike peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab 2008;93:4810-4817. 148. Bush MA, Matthews JE, De Boever EH., et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab 2009;11:498-505. 149. Nathan DM, Buse JB, Davidson MB., et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for Study of Diabetes. Diabetes Care 2006;29:1963-1972. 150. Nathan DM, Buse JB, Davidson MB, et al. American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care 2009;32:193–203. 2009a 151. Avogaro A. Glucagon-like peptide-1: pleiotropic effects on the cardiovascu-
lar system. [Review]. [Italian]. G Ital Cardiol 2008;9:753-758. 152. Abu-Hamdah R, Rabiee A, Meneilly GS, Shannon RP, Anderson DK, Elahi D. Clinical review: The extrapancreatic effects of glucagon-like peptide-1 and related peptides. [Review]. J Clin Endocrinol Metab 2009;94:1843-1852. 153. Mudaliar S, Henry RH. Incretin therapies: effects beyond glycemic control. Am J Med 2009;122(Suppl.6A) S25–S36. 154. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824-830. 155. Cabou C, Campistron G, Marsollier N et al. Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity. Diabetes 2008;57:2577-2587. 156. Vilsbøll T, Brock B, Perrild H, et al. Liraglutide, a once-daily human GLP1analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus. Diabet Med 2008; 25:152–156. 157. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999;48:2270-2276. 158. Brubaker PL, Drucker DJ Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. [Review]. Endocrinology 2004;145: 2653-2659. 159. Mafong DD, Henry RR. The role of incretins in cardiovascular control. Curr Hypertens Rept 2009;11:18-22. 160. Bhushan R, Elkind-Hirsch KE, Bhushan M, Butler WJ, Duncan K, Marrioneaux O. Exenatide use in the management of metabolic syndrome: a retrospective database study.Endocr Pract 2008;14:993-999. 161. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006;43:173-181. 162. Tushuizen ME, Bunck MC, Pouwels PJ, van Waesberghe JH, Diamant M, Heine RJ. Incretin mimetics as a novel therapeutic option for hepatic steatosis. Liver Int 2006;26:1015-1017. 163. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005;54:146-151.
Diabetes Internacional. Volumen I. Nº 2. Año 2009 174. http://www.denvernaturopathic.com/news/incretin.html - _ednref8Perry TA, Greig NH. A new Alzheimer’s disease interventive strategy: GLP-1. Curr Drug Targets 2004;5:565-571. 175. Li L. Is Glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer’s disease?. [Review]. Neurosci Bull 2007;23:58-65. 176. Perez-Tilve D, Gonzalez-Matias L, Alvarez-Crespo M, et al. Exendin-4 potently decreases ghrelin levels in fasting rats. Diabetes 2007;56:143-151. 177. Martin B, Golden E, Carlson OD, et al. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes 2009;58:318-328. 178. Mentlein R. Dipeptidyl-peptidase IV (CD26): role in the inactivation of regulatory peptides. Regul Pept 1999;85:9-24. 179. Mentlein R. Cell surface peptidases. Int Rev Cytol 2004;235:165-213. 180. Mannucci E, Pala L, Ciani S, et al. Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus. Diabetologia 2005; 48: 1168–1172. 181. Campbell RK. Rationale for dipeptidyl peptidase 4 inhibitors: A new class of oral agents for the treatment of type 2 diabetes mellitus. Ann Pharmacother 2007;41:51-60. 182. Herman GA, Stevens C, Van Dyck K, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005;78:675–688. 183. Ristic S, Byiers S, Foley J, Holmes D. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: vildagliptin (LAF237) dose response. Diabetes Obes Metab. 2005;7:692-698. 184. Herman GA, Bergman A, Stevens C, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91:4612-4619. 185. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE; Sitagliptin Study 021 Group. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2006; 29: 2632-2637. 186. Miller S, St Onge EL. Sitagliptin: a dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Ann Pharmacother 2006;40:1336-1343.
164. Sonne DP, Engstrom T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 2008;146:243-249.
187. Balas B, Baig MR, Watson C, et al. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single dose administration in type 2 diabetic patients. J Clin Endocrinol Metab. 2007;92:1249-1255.
165. Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009;53:501-510.
188. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care 2007;30:890-895.
166. Fields AV, Patterson B, Karnik AA, Shannon RP. Glucagon-like peptide-1 and myocardial protection: More than glycemic control. Clin Cardiol 2009;32:236-243.
189. Drucker D, Easley C, Kirkpatrick P. Sitagliptin. Nature Rev Drug Discover 2007;6:109-110.
168. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117: 2340–2350. 169. Zhang Y. Wang Q. Zhang J. Lei X. Xu GT. Ye W. Protection of exendin-4 analogue in early experimental diabetic retinopathy..Graefes Arch Clin Exp Ophthalmol 2009; 247:699-706. 170. Shin YK, Martin B, Golden E, et al. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem 2008;106:455-463. 171. Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res 2008;86:326-338.
190. Gallwitz B. Sitagliptin: profile of a novel DPP-4 inhibitor for the treatment of type 2 diabetes (update). [Review]. Drugs Today (Barc) 2007;43:801-814. 191. Hanefeld M, Herman GA, Wu M, Mickel C, Sanchez M. Once-daily sitagliptin, a dipeptidyl peptidase-4 inhibitor, for the treatment of patients with type 2 diabetes. Curr Med Res Opin 2007;23:1329-1339. 192. Herman GA, Stein PP, Thornberry NA, Wagner JA. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: focus on sitagliptin. [Review]. Clin Pharmacol Therap 2007; 81:761-767.
Diabetes
167. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. GlucagonLike Peptide-1 Infusion Improves Left Ventricular Ejection Fraction and Functional Status in Patients With Chronic Heart Failure. J Cardiac Fail 2006;12:694-699.
Internacional
www.diabetesinternacional.com
193. Ahren B, Foley JE. The islet enhancer vildagliptin: mechanisms of improved glucose metabolism. [Review]. Int J Clin Pract 2008;159(Suppl):8-14. 194. Croxtall JD, Keam SJ. Vildagliptin: A review of its use in the management of type 2 diabetes mellitus. [Review]. Drugs 2008;68:2387-2409.
195. Karasik A, Aschner P, Katzeff H, Davies MJ, Stein PP. Sitagliptin, a DPP-4 inhibitor for the treatment of patients with type 2 diabetes: A review of recent clinical trials. Curr Med Res Opin 2008;24:489-496. 196. Pham DQ, Nogid A, Plakogiannis R.Sitagliptin: A novel agent for the management of type 2 diabetes mellitus. Am J Health Syst Pharm 2008;65:521-531.
172. Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflamm 2008; 5, article number: 19.
197. Rosenstock J, Foley JE, Rendell M, et al. Effects of the dipeptidyl peptidaseIV inhibitor vildagliptin on incretin hormones, islet function, and postprandial glycemia in subjects with impaired glucose tolerance. Diabetes Care 2008;31:30-35.
173. Perry TA, Lahiri DK, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 2003;72:603-612.
199. Man CD, Bock G, Giesler PD, et al. Dipeptidyl peptidase-4 inhibition by
198. D’Alessio DA, Denney AM, Hermiller LM, et al. Treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin improves fasting islet-cell function in subjects with type 2 diabetes. J Clin Endocrinol Metab 2009;94:81-88.
51
vildagliptin and the effect on insulin secretion and action in response to meal ingestion in type 2 diabetes. Diabetes Care 2009;32;14-18. 200. Scott R, Wu M, Sanchez M, Stein P. Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 diabetes. Int J Clin Pract 2007; 61: 171-180. 201. Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes. Diabetes Res Clin Pract 2007;76:132-138.
221. Herman GA, Bergman A, Yi B, Kipnes M. Tolerability and pharmacokinetics of metformin and the dipeptidyl peptidase-4 inhibitor sitagliptin when co-administered in patients with type 2 diabetes. Curr Med Res Opin 2006;22:1939-1947.
202. Dejager S, Razac S, Foley JE, Schweizer A. Vildagliptin in drug-naive patients with type 2 diabetes: a 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Horm Metab Res. 2007;39:218-223.
222. Williams-Herman D, Round E, Swern AS., et al. Safety and tolerability of sitagliptin in patients with type 2 diabetes: A pooled analysis. BMC Endocrine Disorders 2008;8 Article Number: 14.
203. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006;49:2564-2571.
223. Bergman AJ, Cote J, Yi B, et al. Effect of renal insufficiency on the pharmacokinetics of sitagliptin, a dipeptidyl peptidase-4 inhibitor. Diabetes Care 2007;30:1862-1864.
204. Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl) butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005;48:141-151.
224. Chan JC, Scott R, Arjona Ferreira JC, et al. Safety and efficacy of sitagliptin in patients with type 2 diabetes and chronic renal insufficiency. Diabetes Obes Metab 2008;10:545-555.
205. Nonaka K, Tsubouchi H, Okuyama K, et al. Effect of once-daily sitagliptin on 24-h glucose control following 4-weeks of treatment in Japanese patients with type 2 diabetes mellitus. Horm Metab Res 2009;41:232-237. 206. He YL, Sabo R, Campestrini J, et al. The effect of age, gender, and body mass index on the pharmacokinetics and pharmacodynamics of vildagliptin in healthy volunteers. Br J Clin Pharmacol 2008;65: 338-346. 207. Thomas L, Tadayyon M, Mark M. Chronic treatment with the dipeptidyl peptidase-4 inhibitor BI 1356 [(R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione] increases basal glucagon-like peptide-1 and improves glycemic control in diabetic rodent models. J Pharmacol Exp Ther 2009;328:556-563.
225. Seino Y. Relevance of incretins in the treatment of Asian patients with Type 2 diabetes [Abstract]. Diabetes Res Clin Pract 2008;79 (Suppl.1): S4. 226. Bergman AJ, Mistry GC, Luo W-L, et al., Dose-proportionality of a final market image sitagliptin formulation, an oral dipeptidyl peptidase-4 inhibitor, in healthy volunteers. Biopharmaceutics Drug Dispos 2007;28:307-313. 227. Vincent SH, Reed JR, Bergman AJ, et al. Metabolism and excretion of the DPP-4 inhibitor [14C]sitagliptin in humans. Drug Metab Dispos. 2007;67:587-597. 228. Herman GA, Bergman A, Liu F, et al. Pharmacokinetics and pharmacodynamic effects of the oral DPP-4 inhibitor sitagliptin in middle-aged obese subjects. J Clin Pharmacol 2006;46:876-886.
208. Taldone T, Zito SW, Talele TT. Inhibition of dipeptidyl peptidase-IV (DPP-IV) by atorvastatin. Bioorg Med Chem Lett 2008;18:479-484.
229. Migoya EM, Stevens CH, Bergman AJ, et al. Effect of moderate hepatic insufficiency on the pharmacokinetics of sitagliptin. Can J Clin pharmacol 2009;16:e165-e170.
209. Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005;54:2988-2994.
230. Mistry GC, Bergman AJ, Zheng W, et al. Sitagliptin, an dipeptidyl peptidase-4 inhibitor, does not alter the pharmacokinetics of the sulphonylurea, glyburide, in healthy subjects. Br J Clin Pharmacol 2008;66:36-42.
210. Yilmaz Y, Atug O, Yonal O, et al. Dipeptidyl peptidase IV inhibitors: therapeutic potential in nonalcoholic fatty liver disease. Med Sci Monit 2009;15:HY1-HY5.
231. Mistry GC, Bergman AJ, Luo W-L, et al. Multiple-dose administration of sitagliptin, a dipeptidyl peptidase-4 inhibitor, does not alter the single-dose pharmacokinetics of rosiglitazone in healthy subjects. J Clin Pharmacol 2007;47:159-164.
211. Charbonnel B, Karasik A, Jiu J, Wu M, Meininger G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care 2006;29:2638-2643. 212. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P; for the Sitagliptin Study 019 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2006;28:1556-1568. 213. Scott R, Loeys T, Davies MJ, Engel SS, Sitagliptin Study 801 Group. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab 2008;10:959-969. 214. Brazg R, Xu L, Dalla MC, Cobelli C, Thomas K, Stein PP. Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-h glycaemic control and beta-cell function in patients with type 2 diabetes. Diabetes Obes Metab 2007;9:186-193. 215. Nauck MA, Meininger G, Sheng D, et al. Sitagliptin Study 024 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 2007;9:194-205. 216. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007;30:1979-1987.
52
ment of type 2 diabetes. Drugs Today (Barc) 2007;43:681-689. 220. Mikhail N. Combination therapy with DPP-4 inhibitors and pioglitazone in type 2 diabetes: theoretical consideration and therapeutic potential. [Review]. Vasc Health Risk Manag 2008;4:1221-1227.
232. Bergman AJ, Cote J, Maes A, et al. Effect of sitagliptin on the pharmacokinetics of simvastatin. J Clin Pharmacol 2009:49:483-488. 233. He YL, Serra D, Wang Y, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in patients with type 2 diabetes mellitus. Clin Pharmacokinet 2007;46:577–788. 234. Kikuchi M, Abe N, Kato M, Terao S, Mimori N, Tachibana H. Vildagliptin dose-dependently improves glycemic control in Japanese patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2009;83:233-240. 235. Pan C, Yang W, Barbona JP, et al. Comparison of vildagliptin and acarbose monotherapy in patients with Type 2 diabetes: a 24-week, double-blind, randomized trial. Diabet Med 2008;10:435–441. 236. Schweizer A, Couturier A, Foley JE, Dejager S. Comparison between vildagliptin and metformin to sustain reductions in HbA(1c) over 1 year in drugnaive patients with Type 2 diabetes. Diabet Med 2007;24:955-961. 237. Rosenstock J, Niggli M, Maldonado-Lutomirsky M. Long-term 2-year safety and efficacy of vildagliptin compared with rosiglitazone in drug-naive patients with type 2 diabetes mellitus. Diabetes Obes Metab 2009;11:571-578. 238. Scherbaum WA, Schweizer A, Mari A, et al. Efficacy and tolerability of vildagliptin in drug-naive patients with type 2 diabetes and mild hyperglycaemia. Diabetes Obes Metab 2008;10:675-682. 239. Ahren B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care. 2004;27:2874-2880.
217. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab 2007;9:733-745.
240. Rosenstock J, Baron MA, Camisasca RP, Cressier F, Couturier A, Dejager S. Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component monotherapy in patients with type 2 diabetes. Diabetes Obes Metab 2007;9:175-185.
218. Mohan V, Yang W, Son HY et al. Efficacy and safety of sitagliptin in the treatment of patients with type 2 diabetes in China, India, and Korea. Diabetes Res Clin Pract 2009;83:106-116.
241. Garber AJ, Schweizer A, Baron MA, Rochotte E, Dejager S. Vildagliptin in combination with pioglitazone improves glycaemic control in patients with type 2 diabetes failing thiazolidinedione monotherapy: a randomized, placebo-controlled study, Diabetes Obes Metab 2007;9:166–174.
219. Gallwitz B. Sitagliptin with metformin: profile of a combination for the treat-
242. Garber AJ, Foley JE, M.A. Banerji MA, et al. Effects of vildagliptin on glucose
Diabetes Internacional. Volumen I. Nº 2. Año 2009
control in patients with type 2 diabetes inadequately controlled with a sulphonylurea. Diabetes Obes Metab 2008;10:1047-1056.
vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos 2009;37:536-544.
243. Fonseca V, Schweizer A, Albrecht D, Baron MA, Chang I, Dejager S, Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia 2007;50:1148–1155.
266. Hu P, Yin Q, Deckert F, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in healthy Chinese volunteers. J Clin Pharmacol 2009;49: 39 - 49.
244. Bosi E, Dotta F, Jia Y, Goodman M. Vildagliptin plus metformin combination therapy provides superior glycaemic control to individual monotherapy in treatment-naive patients with type 2 diabetes mellitus. Diabetes Obes Metab 2009;11:506-515. 245. Rosenstock J, Baron MA, Dejager S, Mills D, Schweizer A. Comparison of vildagliptin and rosiglitazone monotherapy in patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabetes Care 2007;30:217-223.
267. He Y-L, Sabo R, Campestrini J, et al. The effect of age, gender, and body mass index on the pharmacokinetics and pharmacodynamics of vildagliptin in healthy volunteers. Br J Clin Pharmacol 2008;65:338-346. 268. Sunkara G, Sabo R, Wang Y, et al. Dose proportionality and the effect of food on vildagliptin, a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers. J Clin Pharmacol 2007;47:1152-1158. 269. He YL, Sabo R, Campestrini J, et al. The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin. Eur J Clin Pharmacol 2007;63:677-686.
246. Bolli G, Dotta F, Rochotte E, Cohen SE. Efficacy and tolerability of vildagliptin vs. pioglitazone when added to metformin: a 24-week, randomized, double-blind study. Diabetes Obes Metab 2008;9:82–90.
270. He YL, Sabo R, Sunkara G et al. Evaluation of pharmacokinetic interactions between vildagliptin and digoxin in healthy volunteers. J Clin Pharmacol 2007;47:998-1004.
247. Goke B, Hershon K, Kerr D, et al. Efficacy and safety of vildagliptin monotherapy during 2-year treatment of drug-naive patients with type 2 diabetes: comparison with metformin.Horm Metab Res 2008;40:892-895.
271. He YL, Ligueros-Saylan M, Sunkara G, et al. Vildagliptin, a novel dipeptidyl peptidase IV inhibitor, has no pharmacokinetic interactions with the antihypertensive agents amlodipine, valsartan, and ramipril in healthy subjects. J Clin Pharmacol 2008;48:85-95 .
249. Serra D, He YL, Bullock J, et al. Evaluation of pharmacokinetic and pharmacodynamic interaction between the dipeptidyl peptidase IV inhibitor vildagliptin, glyburide and pioglitazone in patients with Type 2 diabetes. Int J Clin Pharmacol Ther 2008;46:349-364. 250. Ahren B, Pacini G, Foley JE, et al. Improved meal-related β-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care. 2005;28:1936-1940. 251. He YL, Wang Y, Bullock JM, et al. Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. J Clin Pharmacol 2007;47: 633–641. 252. Scheen AJ, Paquqt N. Vildagliptin (galvus) and fixed combination vildagliptine-metformin (eucreas) in the treatment of type 2 diabetes. Rev Med Liege 2009;64:161-167. 253. Halimi S, Schweizer A, Minic B, Foley J, Dejager S. Combination treatment in the management of type 2 diabetes: Focus on vildagliptin and metformin as a single tablet. Vasc Health Risk Manage 2008;4:481-492. 254. Bailey CJ, Day C. Fixed-dose single tablet antidiabetic combinations. Diabetes Obes Metab 2009;11:527-533. 255. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005;90:4888-4894. 256. He Y-L, Serra D, Wang Y, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in patients with type 2 diabetes mellitus. Clin Pharmacokinet 2007;46:577-588. 257. Mari A, Scherbaum WA, Nilsson PM, et al. Characterization of the influence of vildagliptin on model-assessed beta-cell function in patients with type 2 diabetes and mild hyperglycemia, J Clin Endocrinol Metab 2008;93:103–109. 258. Pratley RE, Schweizer A, Rosenstock J, et al. Robust improvements in fasting and prandial measures of beta-cell function with vildagliptin in drug-naive patients: analysis of pooled vildagliptin monotherapy database. Diabetes Obes Metab 2008;10:931-938. 259. Rhee MK, Umpierrez GE. Improving insulin sensitivity: A review of new therapies. Clin Cornerstone 2008;9(Suppl. 2):S28-S38. 260. Ahren B, Schweizer A, Dejager S, et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab 2009;94:1236-1243. 261. D’Alessio DA, Denney AM, Hermiller LM, et al. Treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin improves fasting islet-cell function in subjects with type 2 diabetes. J Clin Endocrinol Metab 2009;94:81-88. 262. Mathieu C. The scientific evidence: Vildagliptin and the benefits of islet enhancement. Diabetes Obes Metab 2009;11(Suppl. 2):9-17. 263. McGill JB. Impact of incretin therapy on islet dysfunction: an underlying defect in the pathophysiology of type 2 diabetes. Postgrad Med. 2009;121:46-58. 264. Scherbaum WA. Islet enhancer vildagliptin: A powerful partner with metformin for the treatment of patients with type 2 diabetes. Diabetes Obes Metab 2009;11(Suppl. 2):1-2. 265. He H, Tran P, Yin H, et al. Absorption, metabolism, and excretion of [14C]
272. Ayalasomayajula SP, Dole K, He YL, et al. Evaluation of the potential for steady-state pharmacokinetic interaction between vildagliptin and simvastatin in healthy subjects. Curr Med Res Opin 2007;23:2913-2920. 273. He YL, Sabo R, Riviere GJ, et al. Effect of the novel oral dipeptidyl peptidase IV inhibitor vildagliptin on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Curr Med Res Opin 2007;23:1131-1138. 274. Wang Y, Serradell N, Rosa E, Bolos J. Alogliptin benzoate. Dipeptidylpeptidase IV (DPP IV) inhibitor treatment of type 2 diabetes. Drugs Future 2008;33:7-12. 275. Ahren B Emerging dipeptidyl peptidase-4 inhibitors for the treatment of diabetes. Expert Opin Emerging Drugs 2008;13:593-607. 276. Feng J, Zhang Z, Wallace MB, et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem 2007;50:2297–2300. 277. Pratley RE. Alogliptin: a new, highly selective dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. [Review]. Expert Opin Pharmacother 2009;10:503-512. 278. Cole P, Serradell N, Bolos J, Castaner R. Saxagliptin. Dipeptidyl peptidase IV inhibitor: Antidiabetic agent. Drugs Future 2008;33:577-586 279. Gallwitz B. Saxagliptin, a dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. [Review]. Idrugs 2008;11:906-917. 280. DeFronzo RA, Fleck RR, Wilson CA, Mekki Q, and on behalf of the Alogliptin Study 010 Group. Efficacy and safety of the dipeptidyl oeptidase-4 inhibitor Alogliptin in patients with type 2 diabetes and inadequate glycemic control: A randomized, double-blind, placebo-controlled study. Diabetes Care 2008;31:2315-2317. 281. Nauck MA. Ellis GC. Fleck PR, Wilson C.A., Mekki Q. Alogliptin Study 008 Group. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract 2009;63:46-55.
Diabetes
248. Ferrannini E, Fonseca V, Zinman B, et al. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab 2009;11:157-166.
Internacional
www.diabetesinternacional.com
282. Covington P. Christopher R. Davenport M. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther 2008;30:499-512. 283. Moritoh Y, Takeuchi K, Asakawa T, Kataoka T, Odaka H. The dipetidyl peptidase-4 inhibitor alogliptin in combination with pioglitazone improves glycemic control, lipid profiles, and increases pancreatic insulin content in ob/ ob mice. Eur J Pharmacol 2009;602:448-454. 284. Pratley R.E., Kipnes M.S., Fleck P.R., et al.Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy. Diabetes Obes Metab 2009;11:167-176.
285. Christopher R, Covington P, Davenport M, et al. Pharmacokinetics, pharmacodynamics, and tolerability of single increasing doses of the dipeptidyl peptidase-4 inhibitor alogliptin in healthy male subjects. Clin Ther 2008;30:513-527.
286. Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab 2008;10:376-386.
53
Diabetes Internacional. Volumen I. Nº 2. Año 2009
www.diabetesinternacional.com
La alimentación
en la genealogía de la diabetes Food genealogy in diabetes
Maryluz Núñez Pacheco1, Ángel Alberto Oroño García1, Rafael Lopez Sanz2, Abdón Toledo3, Maricarmen Chacín3, Edgardo Mengual3, Roberto Áñez3, Valmore Bermúdez Pirela3 y Manuel Velasco4 1 Universidad Bolivariana de Venezuela Sede Zulia. 2 Universidad de Los Andes. 3 Universidad del Zulia. Facultad de Medicina. Centro de Investigaciones Endocrino-Metabólicas “Dr. Félix Gómez”. 4 Unidad de Farmacología Clínica, Escuela de Medicina José María Vargas. Universidad Central de Venezuela, Caracas, Venezuela Dirección de correspondencia: Dra. Maryluz Núñez Pacheco, Universidad Bolivariana Sede Zulia. e-mail: maryluznp@hotmail.com
Aceptado: 25/05/2009
Abstract
Con este artículo se reflexiona sobre la relación entre las ciencias antropológicas y médicas para el estudio del binomio salud-enfermedad y su conexión con los patrones de alimentación de la sociedad humana. Se aborda la Diabetes Mellitus y su relación con la alimentación, tomando en consideración que este último es un factor de riesgo ambiental para el desarrollo de la misma y se ponen de manifiesto elementos genéticos heredables como condicionantes de este mal y la alimentación como un elemento cultural, que pueda ser trasmitida de una generación a otra, en particular, al estar compendiada el mundo complejo de parentesco/genealogía y clase/color. En este sentido, buscamos entre las interpretaciones de los recursos bibliográficos y algunos datos emitidos por nuestros colaboradores, aquellos elementos que pueden ser comunes entre los que padecen la enfermedad y sus patrones de cocina y consumo de alimentos en cada grupo humano afectado. Esto nos brinda la posibilidad de proponer una forma distinta de abordar la enfermedad que nos ocupa, y trabajar desde la perspectiva alimentaria local y regional para el proceso terapéutico, tanto de los diabéticos como de su grupo familiar.
This text begins with reflections about relationships between medical and anthropological sciences with regard to health/sick binomial and its correlation with norms and patrons of the human society. It is approached herewith Diabetes mellitus and its relation with feeding patterns, taking in account environmental risk to develop diabetes Mellitus as a ‘culture’ trait also transmitted through generations as valuable part of kinship/genealogy and class/color complex world. To this, we looked into bibliographical interpretations, data from our informers and colleagues, to obtain shared elements by those who suffer diabetes with their patrons of cook and feeding. Thus, we built a new way to approaching this sickness in order to see it from local-regional ‘culture’, especially its feeding habits, within the therapeutically process which necessarily involves the diabetic persons and the kinship/ genealogical group as well.
Palabras claves: antropología, medicina, diabetes, alimentación, parentesco/genealogía.
Diabetes
Resumen
Internacional
Recibido: 12/04/2009
Key words: anthropology, medicine, diabetes, food, parentless/genealogy.
54
Introducción La propuesta que se plantea a continuación pretende iniciar el debate en torno a la relación -hasta ahora poco observada- entre la antropología y la necesidad de las ciencias médicas por describir de forma más amplia los elementos que llevan al desarrollo de las enfermedades. En el tema que nos ocupa, la Diabetes Mellitus, existen grandes adelantos científicos, pues se han descubierto algunos determinantes de índole genético (Polimorfismos de un solo nucleótido), que a su vez convergen con factores ambientales que propician estados metabólicos de resistencia a la insulina y disfunción de la célula beta que en conjunto están estrechamente implicados en la fisiopatología de esta enfermedad. Pero en el espectro de todos los fenómenos involucrados en el desarrollo de la Diabetes Mellitus no puede olvidarse que la presencia de factores ambientales vinculados a la alimentación y al sedentarismo son fuertemente partícipes en las transformaciones metabólicas que dan lugar a enfermedad1. Importantes investigaciones indican que una alimentación rica en carbohidratos (especialmente aquellos refinados) puede inducir precozmente el inicio de la enfermedad, más en aquellas personas marcadas con un antecedente familiar de diabetes2 y apuntan que ya el mismo antecedente familiar de diabetes, la obesidad u otra enfermedad metabólica, en conjunción con un nivel de glucosa en ayuno entre 100 y 125,99 mg dL son indicadores de una condición conocida como pre-diabetes3. Sin embargo, es pertinente señalar que no todos los sujetos con factores de riesgo como la obesidad y hábitos de alimentación ¨no saludables¨ desarrollan la enfermedad. Numerosos estudios han concluido en que alrededor de un 20-25% de los individuos obesos son metabólicamente sanos, exhibiendo niveles de lípidos normales e incluso, una sensibilidad a la insulina igualmente en rangos normales, lo que sugiere un posible trasfondo genético protector o tal vez un entorno nutricional menos desfavorable tal como se ha comprobado para aquellas comunidades que consumen una dieta rica en ácidos grasos monoinsaturados (dieta mediterránea, por ejemplo).
55
A partir de la convergencia entre los estudios sobre la vida social, familiar y clase/color del antropólogo López-Sanz y nuestra experiencia médica en la investigación y tratamiento de la diabetes, hemos vislumbrado otro modo de enfocar este tema. Según autores como Contreras o Fischler, la alimentación es parte vital de un proceso social y cultural marcado por formas específicas de representaciones y prácticas, por lo que a nuestro entender debería explorarse mas seriamente cómo la alimentación es influenciada por la cultura y el ambiente, particularmente en cuanto a las formas de cocina y patrones de consumo que de forma inevitable se trasmiten de una generación a otra, de una manera semejante a como se transmite y
se comparte el sistema de parentesco/genealogía y clase/ color que caracteriza a las sociedades humanas, y en este caso, la venezolana. Aun cuando los funcionalistas insisten marcadamente en el acto mismo de la alimentación y su destino alimentario de “necesidad básica”, ella es en sí todo un proceso complejo tanto metabólico como cultural, así como de “símbolos y significados en contexto”4. Este proceso es de por sí biunívoco y unitario y puede ser representado eficazmente mediante el manejo diestro de la paradoja ‘natura/cultura’, tal y como lo propone la perspectiva teórica y práctica que caracteriza a las ideas de este investigador sobre “parentesco, clase y etnia en Iberoamérica y el Caribe”. No se trata pues del tema de la alimentación vista tradicionalmente atada a una antropología y sociología hijas de la modernidad que no se libera del concepto insulso enmarcado por el término “socio-cultural”, sino que por el contrario, el llamado “hecho culinario” es materia, proceso, símbolo y significado de un factum sapiens-sapiens que es tanto estructura como historia, natura y cultura, por lo que sería un rasgo más complejo que el simple término cocina. Por supuesto, dejar de pensar en la alimentación desde las ciencias médicas, como un simple hecho ambiental; ésta es dueña de una complejidad que como todo arte y ciencia, es actora y creadora de tradición, historia y contemporaneidad. Por lo tanto, insistimos que es importante pensar que desde el punto de vista genético no sólo se pueden trasmitir polimorfismos, sino también las prácticas, costumbres y representaciones de una alimentación con condición y cualidad culinaria particular que podría dar paso a un estado metabólico que puede predisponer a la diabetes3. Como se destaca aquí, se trata de un acercamiento distinto y pertinente a los intentos que algunos profesionales de la medicina procuramos seguir hoy, en la pretensión de concebir una mejor relación con nuestros pacientes, esta vez, con la oportuna ayuda de una antropología actual y crítica con una etnografía para cada situación y contexto de vida humana en la cual “…el trabajo de campo cumple el rol y el despliegue de retórica, disciplina e imaginación necesarios para su avance en el proceso de la obtención de conocimiento coherente y suficiente”5. Consideramos este trabajo, la presentación preliminar de una propuesta de investigación que involucra al campo del parentesco y la genealogía con otro de contexto básico: la vida cotidiana, las creencias y costumbres, los aspectos culturales ligados a los alimentos y su relación con la Diabetes Mellitus y las nacientes disciplinas de la nutrigenómica y la nutrigenética, que sin duda son campos poco atendidos entre nosotros los venezolanos aun cuando se espera iniciar estudios más complejos e interdisciplinarios que bien podrían ser de gran utilidad para una ciencia más cercana a la sociedad con la cual se pretende servir y mejorar.
A través del desarrollo de esta enfermedad, cada uno de los sistemas, aparatos y tejidos comprometidos con los procesos de conducción nerviosa y circulación sanguínea, expresan serio compromiso en su fisiología. Es conocido que sistemas y tejidos como el nervioso periférico, cardiovascular, renal y oftalmológico consiguen en el desarrollo crónico de la enfermedad anomalías serias como el mal funcionamiento metabólico, alteración de su morfología, envejecimiento precoz y hasta de su destrucción. Existe evidencia suficiente que este proceso puede evitarse e incluso, revertirse, con una terapéutica adecuada que incluya un incremento en la actividad física, maniobras nutricionales que disminuyan el consumo de carbohidratos y harinas y tratamiento farmacológico, bien sea con drogas hipoglicemiantes orales y/o insulina. En este sentido, no puede despreciarse el sitial que ocupan los hábitos de alimentación, las preferencias y las costumbres dentro del complejo ambiente que implica el manejo exitoso de la diabetes, tanto en sus aspectos preventivos como curativos. El desarrollo biológico/social de este proceso, conocido como ¨historia natural de la diabetes¨ se inicia alrededor de 10 años antes que la primera manifestación clínica sea evidente o por lo menos perceptible en el paciente o por el médico. La naturaleza aparentemente benigna del inicio y desarrollo de la enfermedad, en especial durante los primero años, pone de manifiesto la poca significación que los afectados le dan a la misma una vez que se reconoce, posiblemente porque al igual que otras enfermedades crónico-degenerativas, como la hipertensión arterial, son asintomáticas o sub-clínicas y obvian tal vez, la principal manifestación clínica de la medicina: el dolor. Sin embargo, cuando la enfermedad se hace consciente, quienes la padecen experimentan cambios físicos que hasta ese momento no se habían reconocido, pero que en muchas ocasiones llevan a la discapacidad física del paciente. Cuando esto último es ya un hecho evaluado médicamente, la discapacidad implica la imposibilidad de desarrollar las actividades personales y sociales diarias, trayendo así secuelas psicológicas profundas en el individuo afectado. Por supuesto, este tipo de patrón es relevantemente característico en la Diabetes mellitus tipo 2 (DM2), de habitual desarrollo en la edad adulta, más no en la diabetes mellitus tipo 1 (DM1), de inicio a tempranas edades de la vida. Pero, precisamente, ambos
tipos de diabetes muestran en común otro hecho más que significativo: la aptitud y la actitud que los grupos de parentesco/genealogía y clase/color muestran en sus hábitos, costumbres y representaciones relativas a la dieta, el cuidado del cuerpo, la salud y estima de la persona. Y es este el dominio que debe ser estudiado o al menos explorado, justamente porque para nosotros, todo desnivel acusado en la compenetración holística en estos sistemas de vida, tendrá sus efectos correspondientes en la bioquímica de la persona, su grupo de pertenencia y su entorno de vida y muerte. Una conciencia más positiva acerca de esta interconexión sistémica podría muy bien ser parte biunívoca de una ingeniería genética posible, que sea capaz, por ejemplo, de colocar un gen humano determinado capaz de mejorar la sensibilidad a la insulina en el hígado o en el tejido muscular, pero también esta conciencia debería llevarnos a aceptar, tal como se tratará adelante, que nuestra genómica a través de miles de años de evolución con nuestro ambiente nos ha programado a ser entidades preparadas a una interacción casi perfecta con una naturaleza que ha sido alterada por nosotros mismos a un punto que los alimentos que comemos (bien en cantidad o en calidad) causan efectos deletéreos en nuestro organismo, y que pueden conducir a enfermedad. Incluso, ya casi se da por supuesto que las personas que siguen un patrón de vida atropellada, agobiante, afectada por la angustia y el stress, es decir, aquellos que siguen un ¨sistema de vida moderno¨ caracterizada por la aceleración, la escasa reflexión y complementado por una alimentación rica en carbohidratos y sedentarismo desarrollarán en algún momento este tipo de procesos morbosos. Por el contrario, hay toda una población que, aún teniendo una carga genética prosiguen una forma de vida plena de actividad física, alimentación alta en fibra y baja en carbohidratos, pero no desarrollan ni ésta y ni otras enfermedades relacionadas de forma temprana. Pues bien, el estudio holístico, médico y antropológico, bien podría iluminar cómo las personas y sus grupos de pertenencia e historia persisten o no en una estrategia de ‘natura’ /´cultura´ de alta pertinencia para la ciencia actual y para una real política de salud personal y pública. En todo caso, se trata de una perspectiva de investigación y creación que demostraría la falsa división entre ciencia, vida y humanidad. Otro ejemplo ayuda a nuestro objetivo principal: Es un hecho que la obesidad constituye un factor de riesgo estrechamente relacionado al desarrollo de la diabetes, y que se hace innegable que genéticamente se han identificado elementos que marcan la transmisión de este tipo de afecciones y que en consecuencia es posible seguir con relativa cercanía cómo se realiza esta transmisión de una generación a otra mediante el estudio de la dinámica propia que rige a los grupos humanos de parentesco/ genealogía. Uno de los motivos por los que se desarrolla este tipo de estudios es el ayudar a precisar cómo la relación parentesco/genealogía de un grupo sostiene relación significativa con su cocina y alimentación distintiva, por
Internacional
De la Diabetes Mellitus y su genealogía La Diabetes mellitus (DM) es una enfermedad metabólica muy prevalente que se caracteriza por niveles elevados de glucosa en sangre, bien sea por una falta absoluta en la producción de insulina (Tal como ocurre en la diabetes tipo 1) o por una combinación de resistencia a su acción en conjunción con un trastorno en la secreción de la misma debido a disfunción de la célula beta (tal como se observa en la diabetes tipo 2) que sin el tratamiento adecuado interfiere con el funcionamiento normal de muchos órganos vitales, causando su deterioro3.
Diabetes Internacional. Volumen I. Nº 2. Año 2009
Diabetes
www.diabetesinternacional.com
56
lo que sus dominios atienden en mayor o menor grado de éxito y fracaso a la aparición y el desarrollo de ciertas enfermedades, sean éstas de registro reciente o milenario4. Genes y ambiente, ¿Hacia una definición ecológica de la diabetes mellitus tipo 2? El estudio de la interacción entre genes y el ambiente, en particular, nuestra relación con ciertos tipos de nutrientes se ha incrementado exponencialmente en los últimos 10 años y amenaza con cambiar de forma radical la forma de cómo vemos a los alimentos. La nutrigenómica es la disciplina que estudia la regulación de los genes por la dieta. Desde hace tiempo se conoce como ciertos tipos de compuestos, como los derivados de la Vitamina D y los ácidos grasos poli-insaturados interactúan con los elementos de respuestas a hormonas alterando la tasa de expresión de los genes blanco, regulando así el metabolismo de los carbohidratos, lípidos y proteínas. Más recientemente se ha investigado el uso de isómeros del ácido linoléico con enlaces conjugados dienóicos, que ha demostrado al menos en animales de experimentación su potencial en la reducción de peso y en cambio en la composición corporal6, aunque los resultados en humanos no son del todo claros7-10,11-14.
57
Más allá de la inducción y represión, la expresión genética puede también modificarse por medio de los llamados cambios epigenéticos, fundamentalmente a través de procesos como la metilación del ADN y la acetilación y metilación de histonas. Así por ejemplo, la inactivación de uno de los cromosomas X en las células somáticas femeninas y el silenciamiento alélico que determina que en ciertos genes que su expresión dependa de si son heredados del padre o la madre, constituyen ejemplos bien conocidos de mecanismos epigenéticos. Por otro lado, muchos estudios epidemiológicos15,16 y en vivo en animales experimentales han demostrado que la malnutrición materna durante la gestación desencadena una serie de adaptaciones metabólicas fetales conocidas como el fenotipo horrador17 que en la edad adulta aumentan el riesgo de desarrollar enfermedades cardiopatía isquémica18-21, HTA22, obesidad23, hiperinsulinemia e hiperleptinemia24 y DM225-27, especialmente en condiciones de sobreoferta de nutrientes28. En este contexto, es interesante la idea de la posibilidad que las interacciones de tipo epigenéticas derivadas de cambios en el patrón de alimentación originen cambios permanentes (programación o imprinting nutricional)29,30, de forma que nuestros actos alimentarios generan cambios genómicos que se expresará a la larga como cambios en el fenotipo tales como el mismo envejecimiento o incremento en la susceptibilidad a padecer neoplasias31 y peor aún, nada garantiza que estas modificaciones en la regulación epigenética puedan sean heredados de generación en generacion29-36, pudiendo explicar el aumento de la prevalencia de las enfermedades crónico degenerativas observadas en el último siglo.
Las modificaciones en la expresión génica que se producen en adipocitos, en el tejido muscular y en hígado implican alteraciones en las diversas rutas metabólicas, en la secreción de adipoquinas y en la capacidad de hiper plasia ocasionada por un sobre-aporte de nutrientes, la hiperglicemia crónica y un incremento en la concentración plasmática de ácidos grasos, en especial, ácido palmítico, sobre lo cual varios autores como Randle y Shulman han establecido las bases moleculares de la resistencia a la insulina y la forma de cómo ciertos metabolitos como las ceramidas pueden conducir a apoptosis de las células beta. Más recientemente, se ha reconocido que la obesidad, el síndrome metabólico y la diabetes mellitus tipo 2 conforman un “cluster” de alteraciones que tienen en común un estado de adiposopatía post-prandial derivada de una capacidad anómala en el almacenamiento de ácidos grasos (disminución de la adipogénesis; incremento de la apoptosis) y un incremento en la síntesis de productos pro-inflamatorios37, que conducen a acumulación ectópica de grasa y modificaciones endocrinas características de los tres estados, es decir, insulinorresistencia e hiperinsulinemia compensadora2,40 y un estado inflamatorio de bajo grado41. En la búsqueda de la curación La realidad y la vida de los afectados por la diabetes es compleja. Por lo general, una vez que reconocen la enfermedad no sólo padecen un estado de mala salud orgánica, sino también acusan el desequilibrio personal y social en el que se perciben involucrados. Es esta situación compleja de vida la que puede interferir su manejo, condicionando muchas veces el desarrollo de esta enfermedad crónica. Y justamente, es esta una situaciónlímite en la que los médicos y las políticas de salud pública deben considerar que la falta de incorporación de los “familiares” o parientes más cercanos y allegados a los procesos de rehabilitación del afectado no hace sino aumentar la brecha, la escisión, entre la terapéutica y la enfermedad misma. Los pasos para el diagnóstico de la enfermedad y su terapéutica incluyen una serie de consideraciones sistematizadas de eventos, en la mayoría de las veces totalmente aisladas a la conciencia social y humana. Vistos como procesos estos pasos casi no se pueden sentir ni ver, sólo se enfocan y producen internamente, en una dirección más fisiológica. Se hacen evidentes una vez que la enfermedad se manifiesta en los cambios físicos que se observan en el paciente, e incluso, en muchas ocasiones, es sólo el médico responsable quien detecte estos cambios y sus correlaciones. Una vez diagnosticada la persona como Diabética, el proceso para su recuperación incluye desde una evaluación psicológica para que el afectado pueda trasformar concientemente su forma de vida, así como su inclusión en un sistema terapéutico que involucra al nutricionista, para adecuar su alimentación a una que disminuya los riesgos de complicaciones metabólicas y las interaccio-
La alimentación como proceso social terapéutico A pesar, que los avances científicos le confieren un gran protagonismo a las características genéticas humanas en el desarrollo de las enfermedades, “la alimentación contemporánea no está sincronizada con nuestros requerimientos genéticos”42. Sin duda, la alimentación humana incluye una dimensión imaginaria, simbólica y social, que otorga un importante valor a los procesos biológicos y sociales de autonomía personal y social43. En la actualidad, los estudios sobre alimentación humana proponen un punto de encuentro entre las teorías nutricionales alimentarias y los marcos de vida y sociedad en los cuales se desarrollan. Es así como nos encontramos frente a la idea de que “ser lo que comemos refleja, la naturaleza compleja y contradictoria del orden social dominante”44, la alimentación como “hecho total”45 participa en gran medida en el desarrollo de algunas enfermedades. Ciertas formas de vida, pueden llevarnos a seguir y concebir variadas formas de alimentación. Por ejemplo, condiciones tecnológicas particulares al momento de procesar los alimentos, hábitos alimentarios descontrolados o frecuentemente intervenidos por complejos esquemas sociales, condicionan un clima propicio para que toda persona, con cierto antecedente genético, desarrolle el desequilibrio metabólico que posteriormente podría llevarlo a padecer la enfermedad de la diabetes, como por ejemplo lo resaltan Vélez y otros46. En un arduo afán por asumir “qué es lo que se debe comer” y “qué es lo que no se debe comer” cuando se padece esta enfermedad, aunado a la necesidad de combinar de forma adecuada los carbohidratos, lípidos y proteínas, para mantener normales los niveles de glucosa en la sangre y detener el daño que produce la DM, muchos profesionales de la medicina excluyen de este proceso consideraciones particulares que el paciente podría aportar a los cambios en su nueva forma de alimentarse, y entonces, como una consecuencia de esto, la alimentación como proceso necesariamente terapéutico no es concebida adecuadamente por el afectado, y la recuperación, en la mayoría de los casos se ve atropellada por las urgencias de medidas médicas como el uso de medicamentos para disminuir los niveles de glicemia. En este sentido, los afectados se vuelven dependientes del uso de los medicamentos y las modificaciones en sus esquema alimenticios no logran los efectos que deberían obtener.
A este descontrol se suma la falta de incorporación los familiares y las personas cercanas a los afectados en el proceso terapéutico, y particularmente a los cambios de hábitos en la alimentación. En este caso de ser un proceso social y vinculante, la alimentación pasa a ser un elemento perturbador y excluyente. Este último efecto contribuye a que los afectados adquieran una cronicidad peculiar que deteriora “su estar” y cambia “su sentir”, hasta el punto de apartarse ellos mismos de lo social y adoptar una nueva conducta ante el final de la vida -como lo diría el poeta y amigo José Javier León-, “no nos preparamos para vivir los instantes que anteceden a la muerte”. En este sentido, es necesario tomar en cuenta -en cualquier esquema terapéutico- que la alimentación es un proceso social, de ‘transcultura’ y que todas las transformaciones que se hagan en función a cambiar los aspectos que pueden agravar la enfermedad del afectado, incluyen los espacios y los valores donde se mueve él y sus “allegados”. Al buen estilo de Kottak, es necesario tomar en consideración que los seres humanos son adaptativos por una condición biológica natural que les permite transformar sus entornos y formas de subsistencia desde procesos netamente biológicos. Participa en un movimiento continuo de relaciones sociales, conductas, acciones que contribuyen a la transformación del propio entorno biológico47. Lo que permite considerar a la antropología como una disciplina de carácter biopsicosocial unidas por una condición común “la cultura”. “La trama de significados” como lo describe Geertz48, permite ver en “la cultura” formas de interpretar el hacer, vivir y convivir de grupos de seres humanos en un mismo territorio, con códigos y tendencias particulares, similares y/o comunes; reflexiones diversas en entornos sociales comunes o acciones comunes en entornos diversos. Estos fenómenos incluyen las artes, la lengua, la economía, las ciencias, la educación y nuestras formas de alimentarnos no están exentas de las formas como se representan las sociedades. No está alejado de la realidad Contreras Hernández, al afirmar que existe una distancia muy estrecha entre la naturaleza y la cultura, en especial cuando hablamos de cómo nos alimentamos44. La selección de los alimentos y las preferencias de gustos y sabores tiene una condición social que interfiere en la funcionalidad del cuerpo humano. Sin embargo, las limitaciones conceptuales hacia las actitudes, las percepciones o las sensaciones, ponen a la biología en un plano casi imperceptible ante el hecho cultural. Nuestra convivencia en el mundo incide sobre nuestros sentidos, a través de los símbolos que nos agrupan. La cocina y el gusto es también historia, como lo diría Le Breton, es la relación entre individuos, es el intercambio de significados, el gusto por los alimentos “es al mismo tiempo conocimiento y afectividad”49.
Internacional
nes deletéreas entre algunos nutrientes y el genoma ya antes descrito, a un profesional de la Psicología, capaz de ayudar en la transición difícil que supone aceptar una condición que probablemente le acompañe de por vida, y en general, un equipo médico conformado por especialistas que puedan poner en evidencia condiciones que al ser atacadas precozmente limiten el daño que puedan producir y en consecuencia hagan más fácil y llevadera la rehabilitación.
Diabetes Internacional. Volumen I. Nº 2. Año 2009
Diabetes
www.diabetesinternacional.com
58
Así, el carácter simbólico del hacer en la lengua o la vida cotidiana, tiene sus coincidencias en la memoria, pues a partir de imágenes, olores, sabores, sonidos; se añora, se cuenta, se expresan los recuerdos y estos representan el hacer y sentir de los individuos, las cosas aprehendidas, las no olvidadas aún cuando no sean de la cotidianidad, aún cuando se traigan de la escuela, “cuanto más numerosos son los ritos, las creencias, más determinado es el campo de evocación, más se restringe el abanico de las evocaciones posibles y más son inducidos todos los miembros de una misma cultura a evocaciones semejantes”50. La alimentación puede formar parte de esta palabra aprehendida, evocada que se reproduce en cada nueva generación. La expresión de “somos lo que comemos”51 nos invita a interpretar el comportamiento de los seres humanos a partir de las maneras de combinar sabores y olores, la conducta y la socialización de las personas en el recolección, procesamiento, intercambio y consumo de alimentos. La alimentación es así, un conjunto de relaciones, representaciones, tradiciones y costumbres, símbolos y significados, que se aprehenden entre la cotidianidad de la familia y la comunidad, que pueden ser trasmitidas de una generación a otra entre creencias y prácticas compartidas. La clave de una buena descripción de elementos relacionados con la alimentación en una sociedad determinada, está en reconocer cómo los miembros de un grupo cultural construyen sus tradiciones y expresan sus hábitos de consumo, hasta la sublime condición de formar parte de su identidad. Así, encontramos una gran variedad de combinaciones y secretos que expresan la forma de saborear al mundo, entre especias y mezclas de dulces y salados, agrios y ácidos, que dan a los productos de la naturaleza, animal o vegetal, la sazón y el gusto por combinaciones particulares que nos representan. Algo de esto puede captarse en Fischler, cuando propone que en lugar de preguntamos por qué comemos ciertos alimentos más que otros, deberíamos plantearnos la pregunta de por qué no comemos ciertas sustancias, por qué no consumimos todo lo que es biológicamente comestible. Más en la vía del etnólogo, acota: “El ser humano actúa no sólo atendiendo a los dictámenes de su organismo, sino también de su pensamiento y de sus representaciones”43.
59
Entonces, dado que la alimentación es parte de eso que llamamos cultura, podemos pensar que las prácticas culinarias pertenecen a eventos que se pueden trasmitir de una a otra generación; pensar que más que una simple predisposición genética marcada por algún elemento que pocos podemos reconocer en nuestras representaciones, los alimentos y las formas de consumirlos pueden identificarnos con rasgos o características observables en cualquier otro personaje de nuestras familias; y que además establecen los pasos previos para
el inicio de una enfermedad -silenciosa para nuestros oídos- acostumbrados a ruidos, estridencias y música ajenos totalmente a los ritmos y armonías del cuerpo de especie homo sapiens sapiens. Identificar estas fortalezas en los grupos humanos (familias) y transformarlas en un hacer común que permita la contraloría de nuestras propias maneras de cocinar e intercambio de conocimientos culinarios, podrían ser el principio del camino por donde andar en la búsqueda de una franca y asertiva incorporación de las multidisciplinas de la promoción de salud y la salud colectiva en el hacer de nuestro mundo contrariado por el estigma de las sociedades de consumo.
Referencias 1.
Randle, P.J., Garland, P.B., Hales, C.N., and Newsholme, E.A. 1963. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. i:785–789.
2.
Shulman G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106(2): 171-176 (2000).
3.
American Diabetes Asociation. The prevention or Delay of type 2 Diabetes. Diabetes care 2002, 25 (4): 742-749.
4.
López-Sanz R. Estudios de parentesco y Genealogía. Guía de Análisis. Maracaibo: La Universidad del Zulia-Facultad Experimental de Ciencias 2004 (s/p).
5.
López-Sanz R. Perla y Huracán. Parentesco y clase/color en Iberoamérica y el Caribe. Caracas: Ministerio de Ciencia y Tecnología. Editorial Altolitho 2006.
6.
Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001;40(4):283-98.
7.
House RL, Cassady JP, Eisen EJ, et al. Conjugated linoleic acid evokes de-lipidation through the regulation of genes controlling lipid metabolism in adipose and liver tissue. Obes Rev. 2005;6(3):247-58.
8.
Tricon S, Burdge GC, Kew S, et al. Opposing effects of cis9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr. 2004;80(3):614-20.
9.
Tricon S, Burdge GC, Jones EL, et al. Effects of dairy products naturally enriched with cis-9,trans‑11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. Am J Clin Nutr. 2006;83(4):744-53.
10. Terpstra AH. Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. Am J Clin Nutr. 2004;79(3):352-61. 11. Choi Y, Kim YC, Han YB, et al. The trans-10,cis‑12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. J Nutr. 2000;130(8):1920-4. 12. Park Y, Storkson JM, Ntambi JM, et al. Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives. Biochim Biophys Acta 2000;1486(23):285-92.
Diabetes Internacional. Volumen I. Nº 2. Año 2009
13. Park Y, Storkson JM, Albright KJ, et al. Evidence that the trans10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids. 1999 Mar;34(3):235-41.
33. Constancia M, Hemberger M, Hughes J, et al. Placental-specific IGFII is a major modulator of placental and fetal growth. Nature. 2002; 417: 945–8.
14. Brown JM, Boysen MS, Chung S, et al. Conjugated linoleic acid (CLA) induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem. 2004; 279: 26735–47.
34. Kaiser J. Developmental biology. Endocrine disrupters trigger fertility problems in multiple generations. Science. 2005; 308:1391–2.
16. Barker DJ. Fetal growth and adult disease. Br J Obstet Gynaecol. 1992;99:275–6. 17. Hales CN, Barker DJ.The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20. 18. Barker DJ. The fetal origins of diseases of old age. Eur J Clin Nutr. 1992;46(suppl):S3–9. 19. Osmond C, Barker DJ, Winter PD, et al. Early growth and death from cardiovascular disease in women. BMJ. 1993;307:1519–24. 20. Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993;306:422–6. 21. Rich-Edwards J, Stampfer M, Manson J, et al. Birthweight, breastfeeding, and the risk of coronary heart disease in the Nurses’ Health Study. Am J Epidemiol. 1995;141:S78. 22. Leon DA, Koupilova I, Lithell HO, et al. Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. BMJ. 1996;312:401–6. 23. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53. 24. Gluckman PD, Hanson MA.Living with the past: evolution, development and patterns of disease. Science. 2004; 305:1773–1776. 25. Hales CN, Barker DJ, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22. 26. Phipps K, Barker DJ, Hales CN, et al. Fetal growth and impaired glucose tolerance in men and women. Diabetologia. 1993;36:225–8. 27. Phillips DI, Barker DJ, Hales CN, et al. Thinness at birth and insulin resistance in adult life. Diabetologia. 1994;37:150–4. 28. Vickers MH, Breier BH, Cutfield WS, et al. Fetal origins of hyperphagia, obesity and hypertension and its postnatal amplification by hypercaloric nutrition. Am J Physiol. 2000; 279:E83–E87. 29. Kaati G, Bygren LO, Edvinssons S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet. 2002; 10:682-8. 30. Pietiläinen K, Rissanen A, Laamanen M, et al. Growth Patterns in Young Adult Monozygotic Twin Pairs Discordant and Concordant for Obesity. Twin Res. 2005; 7 (5): 421-429. 31. Feil R. Environmental and nutritional effects on the epigenetic regulation of genes Mutat Res. 2006; 600: 46–57. 32. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulinlike growth factors in embryonic and postnatal growth. Cell. 1993; 75:73–82.
36. Yu YH, Zhu H. Chronological changes in metabolism and functions of cultured adipocytes: a hypothesis for cell aging in mature adipocytes. AJPEndo 2004; 286:402-10. 37. Silveira MB, Carraro R, Gómez-Pan A. El aparato digestivo como órgano endocrino: nuevas perspectivas en el tratamiento de la obesidad. Med Clín (Barc). 2006; 127: 300-5. 38. Slawik M, Vidal-Puig AJ. Lipotoxicity, overnutrition and energy metabolism in aging. Aging Res Rev. 2006; 5: 144-164. 39. Unger RH, Orci L. Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta. 2002;1585: 202–212. 40. Randle, PJ, Garland, PB, Newsholme, EA, Hales, CN. The glucose fatty-acid cycle in obesity and maturity onset diabetes mellitus. Ann NY Acad Sci 1965. 131:324-333. 41. Recasens M, Ricart W, Fernandez-Real JM. Obesidad e inflamación. Rev Med Univ Navarra 2004;48(2):49-54. 42. Campillo-Alvarez, J.E. El mono obeso: la evolución humana y las enfermedades de la opulencia: diabetes, hipertensión, arteriosclerosis. Editorial Crítica 2007. Barcelona España. 43. Fischler, C. El (h)omnivoro. Editorial Anagrama 1995. Barcelona. 44. Contreras, J.; Gracia, M.. Alimentación y cultura. Editorial Ariel, 1a. Edición 2005; p.104-150. 45. Mauss M. Introducción a la Etnografía. Ediciones Istmo 1967. España. 46. Vélez, H.; Rojas, W.; Borrero, J.; Restrepo, J. Fundamentos de Medicina, Endocrinología. Corporación para Investigaciones Biológicas, Colombia. 5ta Edición 2002; p. 230-275. 47. Kottak, C. Antropología cultural, Mc Graw Hill ediciones 2006, Madrid; p. 8. 48. Geertz, C. La interpretación de la cultura. Gedisa Editores 1973, Barcelona; p. 36. 49. Le Bretón, D. El Sabor del Mundo, una antropología de los sentidos. Nueva Visión Ediciones 2007. Argentina; p. 49. 50. Sperber, D. El simbolismo en general. 1988; p. 167.
Diabetes
15. L.H. Lumey, Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol. 1992; 6: 240–53.
35. Pembrey ME. Time to take epigenetic inheritance seriously. Eur J Hum Genet. 2002; 10:669–7 1.
Internacional
www.diabetesinternacional.com
51. Gracia Arnaiz, M. Somos lo que comemos. Editorial Ariel 2002. España; p. 73.
60