Inequalities for Integer and Fractional Parts

Page 1

Inequalities for Integer and Fractional Parts Mihály Bencze Department of Mathematics, Áprily Lajos College, Brasov, Romania Florentin Smarandache Chair of Math & Science Dept., University of New Mexico, Gallup, NM 87301, USA

Abstract: In this paper we present some new inequalities relative to integer and functional parts. [x] {x} 4 + ≥ , where [] ⋅ and {} ⋅ 3x + {x} 3x + [x] 15 denote the integer part, and respectively the fractional part. b c 3 a Proof. In inequality + + ≥ , we take a + 2b + 2c 2a + b + 2c 2a + 2b + c 5 a = x, b = [x], c = {x} . Theorem 1.

If x > 0 , then

Theorem 2. If a, b, c, x > 0 , then b c 3 a + + ≥ . [x]b + {x}c [x]c + {x}a [x]a + {x}b x b c 3 a Proof. In inequality + + ≥ , we take u = [x] and ub + vc uc + va ua + vb u + v v = {x} . Theorem 3. If x > 0 and a ≥ 1 , then [x] 2a + 1 [x] + ≤ . (a + 1)[x] + 2{x} (a + 1){x} + 2[x] (a + 1)(a + 2) Proof. In inequality

y z 3 x + + ≤ , we take ax + y + z x + ay + z x + y + az a + 2

y = [x] and z = {x} . Theorem 4. If x > 0 , then

1


⎛ ⎞ ⎛ ⎞ 1 1 1 1 [ x] ⎜ + + ⎟ + {x} ⎜ ⎟ ≤1. ⎝ x[ x] + x + 1 [ x]{x} + [ x] + 1 ⎠ ⎝ x[ x] + x + 1 x{x} + {x} + 1 ⎠ y z x Proof. In inequality + + ≤ 1 , we take y = [x] xy + x + 1 yz + y + 1 zx + z + 1 and z = {x} . Theorem 5. If x > 0 , then x[x]2 x{x}2 3 x3 + + ≥ 2 2 2 2 2 2 2 [x] + 3[x]{x} + 3{x} [x] 3[x] + 3[x]{x} + {x} {x} [x] + [x]{x} + {x}

(

)

Proof. In inequality

(

∑ y (x

2

)

3 x2 ≥ , we take y = [x] and 2 x+ y+z + xy + y

)

z = {x} . 1 1 1 + ≥ . [x] + 2{x} 2[x] + {x} x a 2 + bc Proof. In inequality ∑ ≥ a + b + c , we take a = x, b = [x], c = {x} . b+c Theorem 6. If x > 0 ,

Theorem 7. If x > 0 ,

(

)

x 3[x]2 − {x}2 {x} 3 [x]3 + ≥ [x]2 + [x]{x} + {x}2 3{x}2 + 3[x]{x} + [x]2 3 3[x]2 + 3[x]{x} + {x}2

(

Proof. In inequality

c = {x} .

∑a

)

a a+b+c ≥ , we take a = x, b = [x] , 2 3 + ab + b 3

2

Theorem 8. If x > 0 , then 1 1 + 3 + 3 2 2 3 2 2[x] + 4[x] {x} + 4[x]{x} + {x} [x] + [x] {x} + [x]{x}2 + {x} 3 1 1 + 3 ≤ . 2 2 3 [x] + 4[x] {x} + 4[x]{x} + 2{x} x[x]{x} 1 1 Proof. In inequality ∑ 3 ≤ , we take a = x, b = [x], c = {x} . 3 a + b + abc abc

⎛ [x]3 {x} 3 ⎞ ≥ [x]2 + [x]{x} + {x}2 . + Theorem 9. If x > 1 , then 4 ⎜ ⎟ ⎝ {x} [x] ⎠ 1 3 Proof. In inequality ∑ (−a + b + c ) ≥ a 2 + b 2 + c 2 , we take a = x, b = [x], a c = {x} .

2


Theorem 10. If x > 0 , then

(

)

x [x]3 + {x} 3 3 x4 + ≥ x 2 + [x]{x} 2 2 2 2 2 [x] − [x]{x} + {x} [x] + [x]{x} + {x}

Proof. In inequality

c = {x} .

3∑ ab a3 ∑ b2 − bc + c2 ≥ a , we take ∑

a−b

∑a+b

In

{x} > 1. x + [x]

[x] + x + {x}

x > 2 , we take y = [x], z = {x} . y+z

Theorem 13. If x > 1 , then 3 + Proof.

a = x, b = [x],

< 1 we take a = x, b = [x], c = {x} .

Theorem 12. If x > 0 , then Proof. In inequality

)

[x]{x} ([x] − {x} ) < 1. x (x + [x])(x + {x} )

Theorem 11. If x > 0 , then Proof. In inequality

(

{x} [x] + ≥3 [x] {x}

3

(x + [x])(x + {x}) . [x]{x}

⎛ ⎛ 1⎞ ≥ 3 a ∑ ⎜⎝ ∑ a ⎟⎠ ⎜⎜ 1 + ⎝

( )

inequality

3

∏ (a + b ) ⎞⎟ , ⎟⎠

abc

we

a = x, b = [x], c = {x} . 4

⎞ ⎛ [x]{x} Theorem 14. If x > 0 , then ⎜ [x] + + {x} ⎟ ≥ 32[x]{x} . x ⎠ ⎝

Proof. In inequality

xy ≥ 2

4

xyz ∑ x , we take y = [x], z = {x} .

(

Theorem 15. If x > 0 , then x 2 + [x]{x} Proof. In inequality

) ≥ 6x [x]{x} . 2

2

(∑ xy) ≥ 3xyz∑ x , we take y = [x], 2

Theorem 16. If x > 0 , then x 2 − x [x]{x} + [x]{x} ≥ [x] {x} + {x} [x]

(

Proof. In inequality

∑ xy ≥ ∑ x

Theorem 17. If x > 0 , then

z = {x} .

) x.

yz , we take y = [x], z = {x} .

(

)

[x](x + {x} ) + {x} (x + [x]) ≤ 2 2 − 1 x .

3

take


Proof. In inequality

∑ x (y + z ) ≤

2 ∑ x , we take y = [x], z = {x} .

[x] {x} 1 + ≥ . x + {x} x + [x] 2 a 3 Proof. In inequality ∑ ≥ , we take a = x, b = [x], c = {x} . b+c 2 Theorem 18. If x > 0 , then

Theorem 19. If x > 0 , then (x + [x]) + (x + {x} ) ≥ 21x[x]{x} + [x]3 + {x} 3 . 3

Proof. In inequality

∑ (x + y )

3

Theorem 20. If x > 1 , then Proof. In inequality

x+y + x+z

3

≥ 21xyz + ∑ x 3 , we take y = [x], z = {x} .

x + [x] + x + {x}

x + {x} [x] {x} ≤ + . x + [x] {x} [x]

x+z y+z , we take y = [x], z = {x} . ≤ x+y yz

x x 5 + ≥ . x + [x] x + {x} 2 1 9 , we take y = [x], z = {x} . Proof. In inequality 2∑ ≥ x + y ∑x Theorem 21. If x > 0 , then

2

2

{x} ⎛ {x} ⎞ ⎛ [x] ⎞ {x}2 ⎛ 1 1 ⎞ Theorem 22. If x > 1 , then +⎜ +⎜ + 2 ≥⎜ + [x] . ⎟ ⎟ ⎝ x {x} ⎟⎠ [x] ⎝ [x] ⎠ ⎝ {x} ⎠ x x2 x Proof. In inequality ∑ 2 ≥ ∑ , we take y = [x], z = {x} . y z

Theorem 23. If x > 0 , then 3 2 [ x]2 − [ x]{x} + {x}2 ≥ max [ x]2 ; ([ x] − {x}) ;{x}2 . 4 3 2 2 2 Proof. In inequality ∑ x 2 − ∑ xy ≥ max ( x − y ) ; ( y − z ) ; ( z − x ) , we take 4 y = [x], z = {x} .

{

}

{

}

Theorem 24. If x > 0 , then e{ x} + e[ x ] ≥ 2 + x . Proof. In inequality e y + e z ≥ 2 + y + z , we take y = [x], z = {x} . Theorem 25. If x ∈R , then sin[x] + sin{x} + cos x ≥ 1 . Proof. In inequality sin a + sin b + cos(a + b) ≥ 1 we take a = x, b = {x} .

4


Theorem 26. If x > 0 , then ( 3[ x]2 + 3[ x]{x} + {x}2 ) ⋅ ([ x]2 + [ x]{x} + {x}2 ) ⋅

(

) (

)

3

⋅ 3{ x}2 + 3{ x}[ x ] + [ x ]2 ≥ x 2 + [ x ]{ x} .

Proof. In inequality 3 a 2 + ab + b 2 ⋅ b 2 + bc + c 2 ⋅ c 2 + ca + a 2 ≥ (ab + bc + ca ) , we take

(

)(

)(

)

a = x, b = [x], c = {x} . Theorem 27. If x > 0 , then [ x] {x} 11 . + ≥ ( 3[ x] + 2{x})([ x] + 2{x}) ( 3{x} + 2[ x])({x} + 2[ x]) 48 x Proof. In inequality ( ∑ x ) ∑ ( 2 x + y +xz )( y + z ) ≥ 98 , y = [x], z = {x} . Theorem 28. If x > 0 , then Proof. In inequality

(

take

)

x 2x 2 + 3[x]{x} [x]2 {x}2 + ≥ . x + [x] x + {x} (x + [x])(x + {x} )

x2 3 ∑ (x + y )(x + z ) ≥ 4 , we take y = [x], z = {x} .

Theorem 29. If x > 1 , then ⎛ 2{x} 2[x] [x] 1+ + 1+ ≥ 1+ 2⎜ + [x] {x} ⎝ x + {x}

Proof. In inequality

we

{x} ⎞ . x + [x] ⎟⎠

y+z x ≤ 2∑ we take y = [x], z = {x} . x y+z

⎛ [x] {x} [x] {x} ⎞ + ≥ 1+ 2⎜ + . ⎝ x + {x} x + [x] ⎟⎠ [x] {x} y+z x ≥ 4∑ , we take y = [x], z = {x} . Proof. In inequality ∑ x y+z

Theorem 30. If x > 1 , then

Theorem 31. If x > 0 , then 1). min 2). Proof. In c = {x} , etc.

(

{(

)

2 +1

)

2 +1

x + {x };

(

)

2 +1

}

x + x + [ x] ≥ 5 ([ x] + 2{x})

x + x + {x } ≥ 5 ({x} + 2[ x]) .

a + b + c + b + c + c ≥ a + 4b + 9c , we take

5

a = x, b = [x],


Theorem 32. If x ∈R , then 1). sin x ≤ sin[x] + sin{x} 2). cos x ≤ cos[x] + cos{x} Proof.

In

sin (a + b ) ≤ sin a + sin b

inequalities

and

cos (a + b ) ≤ cos a + cosb , we take a = x, b = [x] . 3

{x} [x] ⎛ x [x] 3 {x} ⎞ Theorem 33. If x > 1 , then 6 + + ≥⎜3 +3 + . [x] {x} ⎝ [x] {x} x ⎟⎠

Proof.

In inequality 3

(∑ a )⎛⎜⎝ ∑ 1a ⎞⎟⎠ ≥ ⎜⎝ ∑

3

a⎞ , we take a = x, b = [x], b ⎟⎠

c = {x} . Theorem 34. If x > 0 , then Proof. In inequality

[x]

(x + {x})

2

a

∑ (b + c )

2

9

+

4∑ a

{x}

(x + [x])

2

1 . 8x

, we take a = x, b = [x], c = {x} .

Theorem 35. If x > 0 , then { x } (x + { x } ) x[ x ] [ x ] + 5{ x} . + ≥ 12 x (x + {x})(2 x + [ x ]) (x + [ x ])(2 x + {x}) 3 a(a + b) Proof. In inequality ∑ ≥ , we take a = x, b = [x], (b + c )(2a + b + c ) 4 c = {x} . [ x] { x} 3[ x ]2 + 4[ x ]{ x} + 3{ x}2 + ≤ . 2 x + { x} 2 x + [ x ] 6x ab 1 Proof. In inequality ∑ ≤ ∑ a , we take a = x, b = [x], c = {x} . a + b + 2c 4

Theorem 36. If x > 0 , then

Theorem 37. If x > 0 , then ([ x]5 − [ x]2 + 3)({x}5 − {x}2 + 3) ≥ Proof.

In

inequality

∏(a

5

− a 2 + 3) ≥ ( ∑ a ) ,

8 x3 . x5 − x 2 + 3

3

we

a = x, b = [x], c = {x} . Theorem 38. If x > 0 , then

(2x + [x])2 + (2x + {x})2 2 2 2[x]2 + (x + {x} ) 2{x}2 + (x + [x])

6

≤5.

take


( 2a + b + c ) ∑ 2a 2 + b + c 2 ≤ 8 , we take ( ) 2

Proof. In inequality

Theorem 39. If x > 0 , then

( 2). ([ x] + 3). ({x} +

)

a = x, b = [x], c = {x} .

1). x + x[ x] + 3 x[ x]{x} ≤ 9 x 2 ( x + [ x]) 3

)

3

[ x]{x} + 3 x[ x]{x} ≤ 9 x 2 [ x]

)

x{x} + 3 x[ x]{x} ≤ 9 x 2 ( x + {x}) .

Proof. In inequality

3

a + ab + 3 abx ⎛ a + b⎞ ⎛ a + b + c⎞ ≤ 3 a⎜ ⎟⎠ , we take ⎝ 2 ⎟⎠ ⎜⎝ b 2

a = x, b = [x], c = {x} , etc.

(

)

Theorem 40. If x > 0 , then 7 (x + [x]) + 7 (x + {x} ) ≥ 3x 4 + 4 [x]4 + {x} 4 . 4

Proof. In inequality

∑ (a + b )

4

4 ∑ a 4 , we take a = x, b = [x], c = {x} . 7 {x}2

Theorem 41. If x > 0 , then Proof. In inequality

2

2

2

2[x] 2x + + x x + [x]

2a

1

3 . 20

b = [x], c = {x} .

5 x 2 − 4[ x ]{ x} + ≥ . (x + {x})2 + {x}2 4 x 2 x 2 + [ x ]{x} 1

(x + [ x ])2

2

2{x} ≤ 3. x + {x}

∑ a + b ≤ 3 , we take a = x,

Theorem 43. If x > 0 , then Proof. In inequality

[x]2

+

(x + {x}) + [x] (x + [x]) + {x} (b + c − a )2 ≥ 3 , we take a = x, b = [x], c = {x} . ∑ (b + c )2 + a 2 5

Theorem 42. If x > 0 , then Proof. In inequality

4

(

(∑ xy )⎜⎝ ∑ (x +1 y ) ⎟⎠ ≥ 94 , we take y = [x] , z = {x} . 2

REFERENCES: [1] [2]

Mihály Bencze, Inequalities (manuscript), 1982. Collection of “Octogon” Mathematical Magazine (1993-2006).

7

)


[Published in OCTOGON Mathematical Magazine, Vol. 14, No. 1, pp. 206211, 2006.]

8


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.