See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341820247
Plithogenic Soft Set
Article · June 2020 DOI: 10.5281/zenodo.3783023 CITATIONS 0 READS 49 1 author:
Shawkat Alkhazaleh Jadara University 31 PUBLICATIONS 620 CITATIONS SEE PROFILE
Some of the authors of this publication are also working on these related projects:
Wrapping distribution View project Fuzzy sets View project
All content following this page was uploaded by Shawkat Alkhazaleh on 02 June 2020. The user has requested enhancement of the downloaded file.
NeutrosophicSetsandSystems,Vol.33,2020
UniversityofNewMexico
PlithogenicSoftSet
ShawkatAlkhazaleh DepartmentofMathematics,FacultyofScienceandInformationTechnology,JadaraUniversity,Irbid,Jordan shmk79@gmail.com
Abstract In1995,Smarandacheinitiatedthetheoryofneutrosophicsetasnewmathematicaltoolforhandling problemsinvolvingimprecise,indeterminacy,andinconsistentdata.Molodtsovinitiatedthetheoryofsoft setasanewmathematicaltoolfordealingwithuncertainties,whichtraditionalmathematicaltoolscannot handle.Hehasshowedseveralapplicationsofthistheoryforsolvingmanypracticalproblemsineconomics, engineering,socialscience,medicalscience,etc.In2017SmarandacheinitiatedthetheoryofPlithogenicSet andtheirproperties.Healsogeneralizedthesoftsettothehypersoftsetbytransformingthefunction F into amulti-attributefunctionandintroducedthehybridsofCrisp,Fuzzy,IntuitionisticFuzzy,Neutrosophic,and PlithogenicHypersoftSet.Inthisresearch,forthefirsttimewedefinetheconceptofPlithogenicsoftset, andgiveitsomegeneralizationsandstudysomeofitsoperations.Furthermore,Wegiveexamplesforthese conceptsandoperations.Finally,thesimilaritiesbetweentwoPlithogenicsoftsetsarealsogiven.
Keywords: Softset;Neutrosophicset;Neutrosophicsoftset;Plithogenicset;Plithogenicsoftset.
1. Introduction
Inourlifenoteverythingnonvagueorcertainwheremanythingsaroundusaresurrounded byuncertaintyandvagueness,Zadeh[13]wassuccessfullyfulfilledtheneedtorepresentuncertaindatabyintroducingtheconceptoffuzzysets.AlsoAtanassov[4]extendZadehsnotion offuzzysettoIntuitionisticfuzzysetswhichprovedtobeabettermodelofuncertainty.The wordsneutrosophyandneutrosophicwereintroducedforthefirsttimebySmarandache[9,10] asamoregeneralplatform,whichextendstheconceptsofthefuzzysetandintuitionisticfuzzy set.In1999Molodtsov[8]proposedaparameterisedfamilyofsetsnamed”softset”,todeal withuncertaintyinaparametricmanner.Smarandachedefinedaconceptofplithogenicset, whereaplithogenicset P isasetwhoseelementsarecharacterizedbyoneormoreattributes, andeachattributemayhavemanyvalues.Eachattribute’svalue v hasacorrespondingdegree ofappurtenance d(x,v)oftheelement x,totheset P ,withrespecttosomegivencriteria. Inordertoobtainbetteraccuracyfortheplithogenicaggregationoperators,acontradiction
NeutrosophicSetsandSystems,Vol.33,2020257of274 (dissimilarity)degreeisdefinedbetweeneachattributevalueandthedominant(mostimportant)attributevalue.However,therearecaseswhensuchdominantattributevaluemaynot betakingintoconsiderationormaynotexist[thereforeitisconsideredzerobydefault],or theremaybemanydominantattributevalues.Insuchcases,eitherthecontradictiondegree functionissuppressed,oranotherrelationshipfunctionbetweenattributevaluesshouldbe established.Theplithogenicaggregationoperators(intersection,union,complement,inclusionandequality)arebasedoncontradictiondegreesbetweenattributesvaluesandthefirst twoarelinearcombinationsofthefuzzyoperatorst-normandt-conorm.Plithogenicsetisa generalizationofthecrispset,fuzzyset,intuitionisticfuzzyset,andneutrosophicset,since thesefourtypesofsetsarecharacterizedbyasingleattributevalue(appurtenance):which hasonevalue(membership)forthecrispsetandfuzzyset,twovalues(membership,andnonmembership)forintuitionisticfuzzyset,orthreevalues(membership,non-membership,and indeterminacy)forneutrosophicset.Aplithogenicset,ingeneral,mayhaveelementscharacterizedbyattributeswithfourormoreattributes.In2019Abdel-Bassetetal.[1]suggestedan approachconstructedontheconnotationofplithogenictheorytechniquetocomeupwitha methodicalproceduretoassesstheinfirmaryservingunderaframeworkofplithogenictheory. Inthisresearch,theygavesomedefinitionsoftheplithogenicenvironment,whichismoregeneralandcomprehensivethanfuzzy,intuitionisticfuzzyandneutrosophicones.Abdel-Basset etal.[3]proposedmethodtoincreasetheaccuracyoftheevaluation.Thismethodisacombinationofqualityfunctiondeploymentwithplithogenicaggregationoperations.Theyapplied theaggregationoperationtoaggregatethedecisionmakersopinionsofrequirementsthatare neededtoevaluatethesupplychainsustainabilityandtheevaluationmetricsbasedonthe requirements.Alsotheyappliedtheaggregationoperationtoaggregatetheevaluationofinformationgatheringdifficulty.In2020Abdel-BassetandRehab[2]proposedamethodology asacombinationofplithogenicmulti-criteriadecision-makingapproachbasedontheTechniqueinOrderofPreferencebySimilaritytoIdealSolutionandCriteriaImportanceThrough Inter-criteriaCorrelationmethodstoestimationofsustainablesupplychainriskmanagement.
2. Preliminary
Remark2.2. Inamoregeneralway,thesummationcanbelessthan1(forincomplete neutrosophicinformation),equalto1(forcompleteneutrosophicinformation),orgreater than1(forparaconsistent/conflictingneutrosophicinformation).
Molodtsovdefinedsoftsetinthefollowingway.Let U beauniverseand E beasetof parameters.Let P (U )denotethepowersetof U and A ⊆ E.
Definition2.3. [8]Apair(F,A)iscalleda softset over U, where F isamapping
F : A → P (U ) .
Inotherwords,asoftsetover U isaparameterizedfamilyofsubsetsoftheuniverse U. For ε ∈ A,F (ε)maybeconsideredasthesetof ε-approximateelementsofthesoftset(F,A).
Definition2.4. [6]Let P (U )denotesthesetofallfuzzysetsof U .Let Ai ⊆ E .A pair(Fi,Ai)iscalledafuzzysoftsetover U ,where Fi isamappinggivenby Fi : Ai −→ P (U )
Definition2.5. [7]Let U beaninitialuniversalsetandlet E besetofparameters.Let P (U ) denotesthesetofallintuitionisticfuzzysetsof U .Apair(F,A)iscalledanintuitionistic fuzzysoftsetover U if F isamappinggivenby F : A −→ P (U ).WewriteanIntuitionistic fuzzysoftsetshortlyasIFsoftset
Definition2.6. [5]Let U beaninitialuniversesetand E beasetofparameters.Consider A ⊂ E.Let P (U )denotesthesetofallneutrosophicsetsof U .Thecollection(F,A)istermed tobetheneutrosophicsoftsetover U ,where F isamappinggivenby F : A → P (U ).
3. FormalDefinitionofSingle(Uni-Dimensional)AttributePlithogenicSet
InthissectionwerecallthedefinitionofplithogenicsetgivenbySmarandache[11,12]and somedefinitionsrelatedtothisconceptasfollows: Let U beauniverseofdiscourse,and P anon-emptysetofelements, P ⊆ U
3.1.
AttributeValueSpectrum
Definition3.1. Let A beanon-emptysetofuni-dimensionalattributes A = {α1,α2,...,αm}, m ≥ 1;and αi ∈ A beagivenattributewhosespectrumofallpossiblevalues(orstates)isthe non-emptyset S,where S canbeafinitediscreteset, S = {s1,s2,...,sl},1 ≤ l ≤∞,orinfinitely countableset S = {s1,s2,...,s∞},orinfinitelyuncountable(continuum)set S =]a,b[,a<b, where]...[isanyopen,semi-open,orclosedintervalfromthesetofrealnumbersorfromother generalset.
ShawkatAlkhazaleh,PlithogenicSoftSet
3.2. AttributeValueRange
Definition3.2. Let V beanon-emptysubsetof S,where V istherangeofallattribute’s valuesneededbytheexpertsfortheirapplication.Eachelement x ∈ P ischaracterizedbyall attribute’svaluesin V = {v1,v2,...,vn},for n ≥ 1.
3.3. DominantAttributeValue
Definition3.3. Intotheattributesvalueset V ,ingeneral,thereisadominantattribute value,whichisdeterminedbytheexpertsupontheirapplication.Dominantattributevalue isdefinedasthemostimportantattributevaluethattheexpertsareinterestedin. Remark3.4. Therearecaseswhensuchdominantattributevaluemaynotbetakinginto considerationornotexist,ortheremaybemanydominant(important)attributevalueswhendifferentapproachshouldbeemployed.
3.4. AttributeValueTruth-ValueDegreeFunction
Definition3.5. Theattributevaluetruth-valuedegreefunctionis: ∀P ∈ U,d : U × V −→ ℘([0, 1]z ),so d(P,v)isasubsetof[0, 1]z ,where ℘([0, 1]z )isthepowersetofthe[0, 1]z such that z = F (forfuzzydegreeoftruth-value), z = IF (forintuitionisticfuzzydegreeoftruth-value),or z = N (forneutrosophicdegreedetruth-value).
3.5. AttributeValueContradictionDegreeFunction
Definition3.6. Theattributevaluecontradictiondegreefunctionbetweenanytwoattribute values v1 and v2,denotedby c(v1,v2)isafunctiondefineby c : V × V −→ [0, 1]suchthatthe cardinal |V |≥ 1andsatisfyingthefollowingaxioms:
(1) c(v1,v1)=0,thecontradictiondegreebetweenthesameattributevaluesiszero; (2) c(v1,v2)= c(v2,v1),commutativity.
3.6. plithogenicset
Definition3.7. Let U beauniverseofdiscourse,and P anon-emptysetofelements, P ⊆ U . a isa(multi-dimensionalingeneral)attribute, V istherangeoftheattributesvalues, d isthe degreeofappurtenanceofeachelement xsattributevaluetotheset P withrespecttosome givencriteria(x ∈ P ),and c standsforthedegreeofcontradictionbetweenattributevalues. Then(P,a,V,d,c)iscalledaplithogenicset.
ShawkatAlkhazaleh,PlithogenicSoftSet
Remark3.8. (1) d maystandfor dF , dIF or dN ,whendealingwithfuzzydegreeof appurtenance,intuitionisticfuzzydegreeofappurtenance,orneutrosophicdegreeof appurtenancerespectivelyofanelement x totheplithogenicset P ;
(2) c maystandfor cF , cIF or cN ,whendealingwithfuzzydegreeofcontradiction, intuitionisticfuzzydegreeofcontradiction,orneutrosophicdegreeofcontradiction betweenattributevaluesrespectively;
(3) Thefunctions d(.,.)and c(.,.)aredefinedinaccordancewiththeapplicationsthe expertsneedtosolve;
(4) Oneusesthenotation: x(d(x,V )),where d(x,v)= {d(x,v)∀v ∈ V }, ∀x ∈ P ;
Theplithogenicsetisanextensionofall:crispset,fuzzyset,intuitionisticfuzzyset,and neutrosophicset.InthisPaperwewillstudytheplithogenicsetasanextensionoffuzzyset, intuitionisticfuzzyset,andneutrosophicset.
In Single-ValuedFuzzySet(SVFS),theattributeis α =”appurtenance”;thesetof attributevalues V = {T },whosecardinal |V | =1;thedominantattributevalue= T ;theattributevalue appurtenancedegreefunction: d : P × V −→ [0, 1], d(x,T ) ∈ [0, 1] andtheattributevaluecontradictiondegreefunction: c : V × V −→ [0, 1], c(T,T )=0,
In Single-Valuedintuitionisticfuzzyset(SVIFS),theattributeis α =”appurtenance”; thesetofattributevalues V = {T,F },whosecardinal |V | =2; thedominantattributevalue= T ;theattributevalueappurtenancedegreefunction: d : P × V −→ [0, 1], d(x,T ) ∈ [0, 1], d(x,F ) ∈ [0, 1]with0 ≤ d(x,T )+ d(x,F ) ≤ 1;and theattributevaluecontradictiondegreefunction: c : V × V −→ [0, 1], c(T,T )= c(F,F )=0, c(T,F )=1.
In Single-ValuedNeutrosophicSet(SVNS),theattributeis α =”appurtenance”;the setofattributevalues V = {T,I,F },whosecardinal |V | =3;thedominantattributevalue= T ;theattributevalue appurtenancedegreefunction: d : P × V −→ [0, 1], d(x,T ) ∈ [0, 1], d(x,I) ∈ [0, 1], d(x,F ) ∈ [0, 1], with0 ≤ d(x,T )+ d(x,I)+ d(x,F ) ≤ 3; andtheattributevaluecontradictiondegreefunction: c : V × V −→ [0, 1], c(T,T )= c(I,I)= c(F,F )=0, c(T,F )=1, c(T,I)= c(F,I)=0 5. ShawkatAlkhazaleh,PlithogenicSoftSet
4. PlithogenicIntersection
Inthissectionwerecallthedefinitionofplithogenicintersectionoverthreecases:fuzzy, intuitionisticfuzzyandneutrosophicsetwhicharedefinedforthefirsttimebySmarandache in2017and2018[11,12].
4.1. PlithogenicFuzzyIntersection
Definition4.1. Let U = {u1,u2,...,un} A = u1 µ(u1 ) , u2 µ(u2 ) ,..., un µ(un) ,and B = u1 ν(u1 ) , u2 ν(u2 ) ,..., un ν(un) beanytwoplithogenicfuzzysetsover U .Thentheplithogenicfuzzy intersectionbetween A and B defineasfollows: A ∧FP B
4.2. PlithogenicIntuitionisticFuzzyIntersection
Definition4.2. Let U = {u1,u2,...,un}.Suppose A = u1 (µT (u1 ),µF (u1 )) , u2 (µT (u2 ),µF (u2 )) ,..., un (µT (un),µF (un)) ,and B = u1 (νT (u1 ),νF (u1 )) , u2 (νT (u2 ),νF (u2 )) ,..., un (νT (un),νF (un)) beanytwoplithogenicintuitionisticfuzzysetsover U .Thentheplithogenicintuitionistic fuzzyintersectionbetween A and B isdefinedasfollows: A ∧IP B = ui ((1 cv)(µ(ui)∧F ν(ui))+(cv)(µ(ui)∨F νF (ui)),(cv)(µ(ui)∨F ν(ui))+(1 cv)(µ(ui)∧F νF (ui))) , ∀i =1, 2,...,n Where ∧F and ∨F representfuzzyt-normandfuzzyt-conorm(s-norm)respectivelyand cv representthedegreesofcontradictions.
4.3. PlithogenicNeutrosophicIntersection
Definition4.3.
beanytwoplithogenicneutrosophicsetover U .Thentheplithogenicneutrosophicintersection between A and B isdefinedasfollows:
∀i =1, 2,...,n,where
F and
F representfuzzyt-normandfuzzyt-conorm(s-norm)respectivelyand cv representthedegreesofcontradictions.
ShawkatAlkhazaleh,PlithogenicSoftSet
5. PlithogenicUnion
Inthissectionwerecallthedefinitionofplithogenicunionoverthreecases:fuzzy,intuitionisticfuzzyandneutrosophicsetwhicharedefinedforthefirsttimebySmarandachein2017 and2018[11,12].
5.1. PlithogenicFuzzyUnion
Definition5.1. Let U , A and B asdefinedin4.1.Thentheplithogenicfuzzyunionbetween A and B isdefinedasfollows: A ∨FP B = ui (1 cv )(µ(ui)∨F ν(ui))+(cv )(µ(ui)∧F νF (ui)) , ∀i =1, 2,...,n Where ∧F and ∨F representfuzzyt-normandfuzzyt-conorm(s-norm)respectivelyand cv representthedegreesofcontradictions.
5.2. PlithogenicIntuitionisticFuzzyUnion
Definition5.2. Let U , A and B asdefinedin4.2.Thentheplithogenicintuitionisticfuzzy unionbetween A and B isdefinedasfollows: A ∨IP B = ui ((1 cv)(µ(ui)∨F ν(ui))+(cv)(µ(ui)∧F νF (ui)),(cv)(µ(ui)∧F ν(ui))+(1 cv)(µ(ui)∨F νF (ui))) , ∀i =1, 2,...,n Where ∧F and ∨F representfuzzyt-normandfuzzyt-conorm(s-norm)respectivelyand cv representthedegreesofcontradictions.
5.3. PlithogenicNeutrosophicUnion
Definition5.3. Let U , A and B asdefinedin4.3.Thentheplithogenicneutrosophicintersectionbetween A and B isdefinedasfollows: A ∨NP B = ui (1 cv)(µ(ui)∨F ν(ui))+(cv)(µ(ui)∧F νF (ui)), 1 2 [(µI (u1 )∧F νT (u1 ))+(µI (u1 )∨F νT (u1 ))],(cv)(µ(ui)∧F ν(ui))+(1 cv)(µ(ui)∨F νF (ui)) , ∀i =1, 2,...,n,where ∧F and ∨F representfuzzyt-normandfuzzyt-conorm(s-norm)respectivelyand cv representthedegreesofcontradictions.
5.4. Hypersoftset
Definition5.4. [11]Let U beauniverseofdiscourse, ℘(U )thepowersetof U .Let a1,a2, ,an,for n ≥ 1,be n distinctattributes,whosecorrespondingattributevaluesare respectivelythesets A1,A2, ··· ,An,with Ai ∩ Aj = ∅,for j = i,and i,j ∈{1, 2, ··· ,n.} Thenthepair (F,A1 × A2 ×···× An) ShawkatAlkhazaleh,PlithogenicSoftSet
where: F : A1 × A2 ×···× An −→ ℘(U ) iscalledaHypersoftSetover U .
6. PlithogenicSoftSet
Inthissectionwedefinetheconceptofplithogenicsoftset(InGeneral)asageneralization ofsoftset.Wealso,defineitsbasicoperationsnamely,unionandintersectionandstudytheir properties.
Definition6.1. Let U beauniverseofdiscourse,(U )z the z powersetof U suchthat z = C (Powersetof U ), z = F (Thesetofallfuzzysetof U ), z = IF (Thesetofallintuitionisticfuzzysetof U ),or z = N (Thesetofallneutrosophicsetof U ).Let a1,a2, ··· ,an,for n ≥ 1,be n distinct attributes,whosecorrespondingattributevaluesarerespectivelythesets V1,V2, ,Vn,with Vi ∩ Vj = ∅,for j = i,and i,j ∈{1, 2, ··· ,n.}.Suppose Vi = {vi1,vi2, ··· ,vimi } andlet Υ= V1 × V2 ×···× Vn.Let D =(D1,D2, Dn)thedominantattributeelementof Ai ∀i and c (Di,vij ) ,i ∈{1, 2, n} ,j ∈{1, 2, mi} theattributevaluecontradictiondegreefunction suchthat ci : Vi × Vi −→ [0, 1],Thenthepair(F z P , Υ),where: F z P :Υ −→ [0, 1]D × (U )z iscalledaPlithogenicSoftSet(P-SSInshort)over U .
Toillustratetheabovedefinitionwegivethefollowingexamplesforallcases:crisp,fuzzy, intuitionisticandneutrosophic: 6.1.
PlithogenicCrispSoftSet
Example6.2. Let U = {c1,c2,c3,c4}.Here U representsthesetofcars.Let a1 = speed,a2 = color,a3 = model,a4 = manufacturingyear.Supposetheirattributesvaluesrespectively: Speed ≡ A1 = {slow,fast,veryfast}, Color ≡ A2 = {white,yellow,red,black}, Model ≡ A3 = {model1,model2,model3,model4}, manufacturingyear ≡ A4 = {2015 andbefor, 2016, 2017, 2018, 2019}
Wherethedominantattribute’svalue D =(slow,red,model3, 2019).Let H ⊆ Υsuchthat H = { 1 =(slow,white,model1, 2015 andbefor) , 2 =(slow,yellow,model3, 2017) , 3 =(fast,red,model4, 2018)}.Defineafunction F z P : H −→ [0, 1]D × (U )C asfollows: ShawkatAlkhazaleh,PlithogenicSoftSet
F C P ( 1)= (c1 ,(0,0 4,1,1)D ) (1,1,1,1) , (c4 ,(0,0 4,1,1)D ) (1,1,1,1) ,
F C P ( 2)= (c2 ,(0,0 5,0,1)D ) (1,1,1,1) ,
F C P ( 3)= (c3 ,(0 5,0,1,1)D ) (1,1,1,1) , Thenwecanfindtheplithogeniccrispsoftset(P-CSS) F C P ,H asconsistingofthefollowing collectionofapproximations:
F C P ,H = 1, (c1 ,(0,0 4,1,1)D) (1,1,1,1) , (c4 ,(0,0 4,1,1)D) (1,1,1,1) , 2, (c2 ,(0,0 5,0,1)D) (1,1,1,1) , 3, (c3 ,(0 5,0,1,1)D) (1,1,1,1)
6.2. PlithogenicFuzzySoftSet
Example6.3. ConsiderExample6.2andsupposethatthe
F F P ( 1)= (c1 ,(0,0.4,1,1)D ) (0 6,0 7,1,1) , (c2 ,(0,0.4,1,1)D ) (0 7,0 3,0,0) , (c3 ,(0,0.4,1,1)D ) (0 1,0 3,0,0) , (c4 ,(0,0.4,1,1)D ) (0 7,0 6,1,1) ,
F F P ( 2)= (c1 ,(0,0 5,0,1)D ) (0 6,0 2,0,0) , (c2 ,(0,0 5,0,1)D ) (0 5,0 7,1,1) , (c3 ,(0,0 5,0,1)D ) (0 1,0 1,0,0) , (c4 ,(0,0 5,0,1)D ) (0 7,0 4,0,0) ,
F F P ( 3)= (c1 ,(0 5,0,1,1)D ) (0 1,0 2,0,0) , (c2 ,(0 5,0,1,1)D ) (0 1,0 3,0,0) , (c3 ,(0 5,0,1,1)D ) (0 8,0 7,1,1) , (c4 ,(0 5,0,1,1)D ) (0 1,0 1,0,0) ,
Thenwecanfindtheplithogenicfuzzysoftset(P-FSS) F F P ,H asconsistingofthefollowing collectionofapproximations:
F F P ,H = 1, (c1, (0, 0 4, 1, 1)D) (0 6, 0 7, 1, 1) , (c2, (0, 0 4, 1, 1)D) (0 7, 0 3, 0, 0) , (c3, (0, 0 4, 1, 1)D) (0 1, 0 3, 0, 0) , (c4, (0, 0 4, 1, 1)D) (0 7, 0 6, 1, 1) , 2, (c1, (0, 0 5, 0, 1)D) (0 6, 0 2, 0, 0) , (c2, (0, 0 5, 0, 1)D) (0 5, 0 7, 1, 1) , (c3, (0, 0 5, 0, 1)D) (0 1, 0 1, 0, 0) , (c4, (0, 0 5, 0, 1)D) (0 7, 0 4, 0, 0) , 3, (c1, (0 5, 0, 1, 1)D) (0 1, 0 2, 0, 0) , (c2, (0 5, 0, 1, 1)D) (0 1, 0 3, 0, 0) , (c3, (0 5, 0, 1, 1)D) (0 8, 0 7, 1, 1) , (c4, (0 5, 0, 1, 1)D) (0 1, 0 1, 0, 0) .
F IF P ( 1)= (c1 ,(0,0 4,1,1)D) ((0 6,0 2),(0 7,0 1),(1,0),(1,0)) , (c2 ,(0,0 4,1,1)D) ((0 7,0 1),(0 3,0 5),(0,1),(0,1)) , (c3 ,(0,0 4,1,1)D) ((0 1,0 8),(0 3,0 5),(0,1),(0,1)) , (c4 ,(0,0 4,1,1)D) ((0 7,0 2),(0 6,0 3),(1,0),(1,0)) ,
F IF P ( 2)= (c1 ,(0,0 5,0,1)D) ((0 6,0 3),(0 2,0 6),(0,1),(0,1)) ,
(c2 ,(0,0 5,0,1)D) ((0 5,0 4),(0 7,0 2),(1,0),(1,0)) ,
F IF P ( 3)= (c1 ,(0 5,0,1,1)D) ((0 1,0 7),(0 2,0 7),(0,1),(0,1)) , (c2 ,(0 5,0,1,1)D) ((0 1,0 8),(0 3,0 5),(0,1),(0,1)) ,
ShawkatAlkhazaleh,PlithogenicSoftSet
(c3 ,(0,0 5,0,1)D) ((0 1,0 7),(0 1,0 8),(0,1),(0,1)) ,
(c4 ,(0,0 5,0,1)D) ((0 7,0 2),(0 4,0 4),(0,1),(0,1)) ,
(c3 ,(0 5,0,1,1)D) ((0 8,0 1),(0 7,0 2),(1,0),(1,0)) , (c4 ,(0 5,0,1,1)D) ((0 1,0 8),(0 1,0 7),(0,1),(0,1)) ,
Thenwecanfindtheplithogenicintuitionisticfuzzysoftset(P-IFSS) F IF P ,H asconsisting ofthefollowingcollectionofapproximations:
F IF P ,H = 1, (c1,(0,0 4,1,1)D) ((0 6,0 2),(0 7,0 1),(1,0),(1,0)),
2, (c1,(0,0 5,0,1)D) ((0 6,0 3),(0 2,0 6),(0,1),(0,1)),
3, (c1,(0 5,0,1,1)D) ((0 1,0 7),(0 2,0 7),(0,1),(0,1)),
6.4.
(c2,(0,0 4,1,1)D) ((0 7,0 1),(0 3,0 5),(0,1),(0,1)), (c3,(0,0 4,1,1)D) ((0 1,0 8),(0 3,0 5),(0,1),(0,1)), (c4,(0,0 4,1,1)D) ((0 7,0 2),(0 6,0 3),(1,0),(1,0)) ,
(c2,(0,0 5,0,1)D) ((0 5,0 4),(0 7,0 2),(1,0),(1,0)),
(c2,(0 5,0,1,1)D) ((0 1,0 8),(0 3,0 5),(0,1),(0,1)),
PlithogenicNeutrosophicSoftSet
(c3,(0,0 5,0,1)D) ((0 1,0 7),(0 1,0 8),(0,1),(0,1)), (c4,(0,0 5,0,1)D) ((0 7,0 2),(0 4,0 4),(0,1),(0,1)) ,
(c3,(0 5,0,1,1)D) ((0 8,0 1),(0 7,0 2),(1,0),(1,0)), (c4,(0 5,0,1,1)D) ((0 1,0 8),(0 1,0 7),(0,1),(0,1))
Example6.5. ConsiderExample6.2and U = {c1,c2,c3
F N P ( 1)= (c1 ,(0,0 4,1,1)D) ((0 6,0 3,0 1),(0 7,0 2,0 1),(1,0,0),(1,0,0)) ,
F N P ( 2)= (c1 ,(0,0 5,0,1)D) ((0 6,0 3,0 1),(0 2,0 6,0 2),(0,0,1),(0,0,1)) ,
},supposethatthe
(c2 ,(0,0 4,1,1)D) ((0 7,0 1,0 2),(0 3,0 5,0 2),(0,0,1),(0,0,1)) , (c3 ,(0,0 4,1,1)D) ((0 1,0 1,0 8),(0 3,0 6,0 1),(0,0,1),(0,0,1)) ,
(c2 ,(0,0 5,0,1)D) ((0 5,0 2,0 3),(0 7,0 2,0 1),(1,0,0),(1,0,0)) ,
(c3 ,(0,0 5,0,1)D) ((0 1,0 2,0 7),(0 1,0 1,0 8),(0,0,1),(0,0,1)) ,
F N P ( 3)= (c1 ,(0 5,0,1,1)D) ((0 1,0 2,0 7),(0 2,0 1,0 7),(0,0,1),(0,0,1)) , (c2 ,(0 5,0,1,1)D) ((0 1,0 1,0 8),(0 3,0 2,0 5),(0,0,1),(0,0,1)) , (c3 ,(0 5,0,1,1)D) ((0 8,0 1,0 1),(0 7,0 1,0 2),(1,0,0),(1,0,0)) ,
Thenwecanfindtheplithogenicneutrosophicsoftset(P-NSS) F N P ,H asconsistingofthe followingcollectionofapproximations:
F N P ,H = 1, (c1,(0,0 4,1,1)D) ((0 6,0 3,0 1),(0 7,0 2,0 1),(1,0,0),(1,0,0)), (c2,(0,0 4,1,1)D) ((0 7,0 1,0 2),(0 3,0 5,0 2),(0,0,1),(0,0,1)), (c3,(0,0 4,1,1)D) ((0 1,0 1,0 8),(0 3,0 6,0 1),(0,0,1),(0,0,1)) ,
2, (c1,(0,0 5,0,1)D) ((0 6,0 3,0 1),(0 2,0 6,0 2),(0,0,1),(0,0,1)),
(c2,(0,0 5,0,1)D) ((0 5,0 2,0 3),(0 7,0 2,0 1),(1,0,0),(1,0,0)), (c3,(0,0 5,0,1)D) ((0 1,0 2,0 7),(0 1,0 1,0 8),(0,0,1),(0,0,1)) ,
3, (c1,(0 5,0,1,1)D) ((0 1,0 2,0 7),(0 2,0 1,0 7),(0,0,1),(0,0,1)), (c2,(0 5,0,1,1)D) ((0 1,0 1,0 8),(0 3,0 2,0 5),(0,0,1),(0,0,1)), (c3,(0 5,0,1,1)D) ((0 8,0 1,0 1),(0 7,0 1,0 2),(1,0,0),(1,0,0))
7. UnionandIntersection
Inthissection,weintroducethedefinitionsofunionandintersectionofplithogenicsoftsets, derivetheirproperties,andgivesomeexamples.
Definition7.1. The union oftwoplithogenicsoftsets(F z P ,A)and(Gz P ,B)over U ,denoted by (F z P ,A) z P (Gz P ,B),istheplithogenicsoftset(H z P , Ω)whereΩ=
where ∨z P isaz-plithogenicunion.
Definition7.2. The intersection oftwoplithogenicsoftsets(F z P ,A)and(Gz P ,B)over U , denotedby ShawkatAlkhazaleh,PlithogenicSoftSet
F z P (ε) , if ε ∈ A B
(F z P ,A) z P (Gz P ,B),istheplithogenicsoftset(H z P , Ω)whereΩ= A ∪ B, and ∀ ε ∈ Ω, H z P (ε)=
Gz P (ε) , if ε ∈ B A
F z P (ε) ∧z P Gz P (ε) , if ε ∈ A ∩ B
where ∧z P isaz-plithogenicintersection.
7.1. PlithogenicFuzzySoftUnion
Example7.3. ConsiderExample6.2Let
A = a1 =(slow,white,model1, 2015 andbefor) ,a2 =(slow,yellow,model3, 2017) , a3 =(fast,red,model4, 2018) and B = b1 =(slow,white,model1, 2015 andbefor) ,b2 =(slow,yellow,model3, 2017) , b3 =(fast,red,model4, 2018) ,b4 =(slow,red,model1, 2019)
Suppose F F P ,A and GF P ,A aretwoplithogenicfuzzysoftsetsover U suchthat F F P ,A = a1, (c1, (0, 0.4, 1, 1)D) (0 6, 0 7, 1, 1) , (c2, (0, 0.4, 1, 1)D) (0 7, 0 3, 0, 0) , (c3, (0, 0.4, 1, 1)D) (0 1, 0 3, 0, 0) , (c4, (0, 0.4, 1, 1)D) (0 7, 0 6, 1, 1) , a2, (c1, (0, 0.5, 0, 1)D) (0 6, 0 2, 0, 0) , (c2, (0, 0.5, 0, 1)D) (0 5, 0 7, 1, 1) , (c3, (0, 0.5, 0, 1)D) (0 1, 0 1, 0, 0) , (c4, (0, 0.5, 0, 1)D) (0 7, 0 4, 0, 0) , a3, (c1, (0.5, 0, 1, 1)D) (0.1, 0.2, 0, 0) , (c2, (0.5, 0, 1, 1)D) (0.1, 0.3, 0, 0) , (c3, (0.5, 0, 1, 1)D) (0.8, 0.7, 1, 1) , (c4, (0.5, 0, 1, 1)D) (0.1, 0.1, 0, 0)
GF P ,B = b1, (c1, (0, 0 4, 1, 1)D) (0 5, 0 6, 1, 1) , (c2, (0, 0 4, 1, 1)D) (0 8, 0 4, 0, 0) , (c3, (0, 0 4, 1, 1)D) (0 2, 0 2, 0, 0) , (c4, (0, 0 4, 1, 1)D) (0 7, 0 5, 1, 1) , b2, (c1, (0, 0 5, 0, 1)D) (0.5, 0.3, 0, 0) , (c2, (0, 0 5, 0, 1)D) (0.7, 0.7, 1, 1) , (c3, (0, 0 5, 0, 1)D) (0.3, 0.2, 0, 0) , (c4, (0, 0 5, 0, 1)D) (0.8, 0.5, 0, 0) , b3, (c1, (0 5, 0, 1, 1)D) (0.5, 0.6, 0, 0) , (c2, (0 5, 0, 1, 1)D) (0.8, 0.3, 0, 0) , (c3, (0 5, 0, 1, 1)D) (0.2, 0.7, 1, 1) , (c4, (0 5, 0, 1, 1)D) (0.6, 0.3, 0, 0) , b4, (c1, (0, 0, 1, 1)D) (0.2, 0.3, 1, 0) , (c2, (0, 0, 1, 1)D) (0.1, 0.3, 0, 0) , (c3, (0, 0, 1, 1)D) (0.8, 0.7, 1, 1) , (c4, (0, 0, 1, 1)D) (0.1, 0.1, 1, 0) .
Byusingbasicfuzzyunion(maximum)andbasicfuzzyintersection(minimum)wehave: ShawkatAlkhazaleh,PlithogenicSoftSet
F F P ,A F P GF P ,B = H F P ,K where
H F P ,K = k1, (c1, (0, 0 4, 1, 1)D) (0 6, 0 66, 1, 1) , (c2, (0, 0 4, 1, 1)D) (0 8, 0 36, 0, 0) , (c3, (0, 0 4, 1, 1)D) (0 2, 0 26, 0, 0) , (c4, (0, 0 4, 1, 1)D) (0 7, 0 56, 1, 1) ,
k2, (c1, (0, 0 5, 0, 1)D) (0.6, 0.25, 0, 0) , (c2, (0, 0 5, 0, 1)D) (0.7, 0.7, 1, 1) , (c3, (0, 0 5, 0, 1)D) (0.3, 0.15, 0, 0) , (c4, (0, 0 5, 0, 1)D) (0.8, 0.45, 0, 0) , k3, (c1, (0.5, 0, 1, 1)D) (0 3, 0 6, 0, 0) , (c2, (0.5, 0, 1, 1)D) (0 45, 0 3, 0, 0) , (c3, (0.5, 0, 1, 1)D) (0 5, 0 7, 1, 1) , (c4, (0.6, 0, 1, 1)D) (0 35, 0 3, 0, 0) ,
k4, (c1, (0, 0, 1, 1)D) (0 2, 0 3, 1, 0) , (c2, (0, 0, 1, 1)D) (0 1, 0 3, 0, 0) , (c3, (0, 0, 1, 1)D) (0 8, 0 7, 1, 1) , (c4, (0, 0, 1, 1)D) (0 1, 0 1, 1, 0) .
TodescribetheresultinExampleabovelet’scompute (c1 ,(0,0 4,1,1)D ) (0 6,0 7,1,1) ∨F P (c1 ,(0,0 4,1,1)D ) (0 5,0 6,1,1) as follows: (1 0)∗max(0.6, 0.5)+0∗min(0.6, 0.5)=0.6,(1 0.4)∗max(0.7, 0.6)+0.4∗min(0.7, 0.6)=0.66, (1 1) ∗ max(1, 1)+1 ∗ min(1, 1)=1and(1 1) ∗ max(1, 1)+1 ∗ min(1, 1)=1
7.2. PlithogenicFuzzySoftIntersection
Example7.4. ConsiderExample7.3Byusingbasicfuzzyunion(maximum)andbasicfuzzy intersection(minimum)wehave: F F P ,A F P GF P ,B = H F P ,K where H F P ,K = k1, (c1, (0, 0 4, 1, 1)D) (0 5, 0 64, 1, 1) , (c2, (0, 0 4, 1, 1)D) (0 7, 0 34, 0, 0) , (c3, (0, 0 4, 1, 1)D) (0 1, 0 18, 0, 0) , (c4, (0, 0 4, 1, 1)D) (0 7, 0 52, 1, 1) , k2, (c1, (0, 0.5, 0, 1)D) (0.5, 0.25, 0, 0) , (c2, (0, 0.5, 0, 1)D) (0.5, 0.7, 1, 1) , (c3, (0, 0.5, 0, 1)D) (0.1, 0.15, 0, 0) , (c4, (0, 0.5, 0, 1)D) (0.7, 0.45, 0, 0) , k3, (c1, (0.5, 0, 1, 1)D) (0 3, 0 2, 0, 0) , (c2, (0.5, 0, 1, 1)D) (0 45, 0 3, 0, 0) , (c3, (0.5, 0, 1, 1)D) (0 5, 0 7, 1, 1) , (c4, (0.5, 0, 1, 1)D) (0 35, 0 1, 0, 0) , k4, (c1, (0, 0, 1, 1)D) (0 2, 0 3, 1, 0) , (c2, (0, 0, 1, 1)D) (0 1, 0 3, 0, 0) , (c3, (0, 0, 1, 1)D) (0 8, 0 7, 1, 1) , (c4, (0, 0, 1, 1)D) (0 1, 0 1, 1, 0) .
TodescribetheresultinExampleabovelet’scompute (c1 ,(0,0 4,1,1)D ) (0 6,0 7,1,1) ∧F P (c1 ,(0,0 4,1,1)D ) (0 5,0 6,1,1) as follows: (1 0)∗min(0.6, 0.5)+0∗max(0.6, 0.5)=0.5,(1 0.4)∗min(0.7, 0.6)+0.4∗max(0.7, 0.6)=0.64, (1 1) ∗ min(1, 1)+1 ∗ max(1, 1)=1and(1 1) ∗ min(1, 1)+1 ∗ max(1, 1)=1 7.3.
1),
,1))
,0
,1,1)D) ((0 1,0 8),(0 3,0 5),(0,1),(0,1))
,1,1)D) ((0 7,0 2),(0 6,0 2),(1,0),(1,0)) , a
((0 6,0 3),(0 2,0 7),(0,1),(0,1)) , (c2,(0,0 5,0,1)D) ((0 5,0 4),(0 7,0 3),(1,0),(1,0)) , (c3,(0,0 5,0,1)D) ((0 1,0 8),(0 1,0 9),(0,1),(0,1)) , (c4,(0,0 5,0,1)D) ((0 7,0 3),(0 4,0 5),(0,1),(0,1)) ,
a3, (c1,(0 5,0,1,1)D) ((0 1,0 8),(0 2,0 8),(0,1),(0,1)) , (c2,(0 5,0,1,1)D) ((0 1,0 9),(0 3,0 7),(0,1),(0,1)) , (c3,(0 5,0,1,1)D) ((0 8,0 1),(0 7,0 2),(1,0),(1,0)) , (c4,(0 5,0,1,1)D) ((0 1,0 8),(0 1,0 9),(0,1),(0,1))
GIF P ,B = b1, (c1,(0,0 4,1,1)D) ((0 5,0 4),(0 6,0 3),(1,0),(1,0)) , (c2,(0,0 4,1,1)D) ((0 8,0 2),(0 4,0 6),(0,1),(0,1)) ,
b2, (c1,(0,0 5,0,1)D) ((0 5,0 5),(0 3,0 7),(0,1),(0,1)) ,
b3, (c1,(0 5,0,1,1)D) ((0 5,0 4),(0 6,0 4),(0,1),(0,1)) ,
b4, (c1,(0,0,1,1)D) ((0 2,0 8),(0 3,0 6),(0,1),(0,1)) ,
(c2,(0,0 5,0,1)D) ((0 7,0 2),(0 7,0 2),(1,0),(1,0)) ,
(c2,(0 5,0,1,1)D) ((0 8,0 1),(0 3,0 7),(0,1),(0,1)) ,
(c2,(0,0,1,1)D) ((0 1,0 9),(0 3,0 7),(0,1),(0,1)) ,
(c3,(0,0 4,1,1)D) ((0 2,0 7),(0 2,0 8),(0,1),(0,1)) , (c4,(0,0 4,1,1)D) ((0 7,0 2),(0 5,0 4),(1,0),(1,0)) ,
(c3,(0,0 5,0,1)D) ((0 3,0 6),(0 2,0 8),(0,1),(0,1)) , (c4,(0,0 5,0,1)D) ((0 8,0 1),(0 5,0 5),(0,1),(0,1)) ,
(c3,(0 5,0,1,1)D) ((0 2,0 7),(0 7,0 2),(1,0),(1,0)) , (c4,(0 5,0,1,1)D) ((0 6,0 3),(0 3,0 7),(0,1),(0,1))
(c3,(0,0,1,1)D) ((0 8,0 2),(0 7,0 3),(1,0),(1,0)) , (c4,(0,0,1,1)D) ((0 1,0 9),(0 1,0 8),(0,1),(0,1))
Byusingbasicfuzzyunion(maximum)andbasicfuzzyintersection(minimum)wehave:
F IF P ,A IF P GIF P ,B = H IF P ,K where
HIF P ,K = k1, (c1,(0,0 4,1,1)D) ((0 6,0 3),(0 66,0 3),(1,0),(1,0)) , (c2,(0,0 4,1,1)D) ((0 8,0 2),(0 4,0 54),(0,1),(0,1)) , (c3,(0,0 4,1,1)D) ((0 2,0 7),(0 26,0 63),(0,1),(0,1)) , (c4,(0,0 4,1,1)D) ((0 7,0 2),(0 56,0 26),(1,0),(1,0)) ,
k2, (c1,(0,0 5,0,1)D) ((0 6,0 3),(0 25,0 7),(0,1),(0,1)) , (c2,(0,0 5,0,1)D) ((0 7,0 2),(0 7,0 25),(1,0),(1,0)) , (c3,(0,0 5,0,1)D) ((0 3,0 6),(0 15,0 85),(0,1),(0,1)) , (c4,(0,0 5,0,1)D) ((0 8,0 1),(0 45,0 5),(0,1),(0,1)) ,
k3, (c1,(0 5,0,1,1)D) ((0 3,0 6),(0 6,0 4),(0,1),(0,1)) , (c2,(0 5,0,1,1)D) ((0 45,0 5),(0 3,0 7),(0,1),(0,1)) , (c3,(0 5,0,1,1)D) ((0 5,0 4),(0 7,0 2),(1,0),(1,0)) , (c4,(0 5,0,1,1)D) ((0 35,0 55),(0 3,0 7),(0,1),(0,1))
k4, (c1,(0,0,1,1)D) ((0 2,0 8),(0 3,0 6),(0,1),(0,1)) , (c2,(0,0,1,1)D) ((0 1,0 9),(0 3,0 7),(0,1),(0,1)) , (c3,(0,0,1,1)D) ((0 8,0 2),(0 7,0 3),(1,0),(1,0)) , (c4,(0,0,1,1)D) ((0 1,0 9),(0 1,0 8),(0,1),(0,1))
7.4. PlithogenicIntuitionisticFuzzySoftIntersection
Example7.6. ConsiderExample7.5Byusingbasicfuzzyunion(maximum)andbasicfuzzy intersection(minimum)wehave:
F IF P ,A IF P GIF P ,B = H IF P ,K where
HIF P ,K = k1, (c1,(0,0 4,1,1)D) ((0 6,0 4),(0 64,0 3),(1,0),(1,0)) ,
(c2,(0,0 4,1,1)D) ((0 7,0 2),(0 34,0 56),(0,1),(0,1)) , (c3,(0,0 4,1,1)D) ((0 1,0 8),(0 24,0 68),(0,1),(0,1)) , (c4,(0,0 4,1,1)D) ((0 7,0 2),(0 54,0 32),(1,0),(1,0)) ,
k2, (c1,(0,0 5,0,1)D) ((0 5,0 4),(0 25,0 7),(0,1),(0,1)) , (c2,(0,0 5,0,1)D) ((0 5,0 4),(0 7,0 25),(1,0),(1,0)) ,
(c3,(0,0 5,0,1)D) ((0 1,0 8),(0 15,0 85),(0,1),(0,1)) , (c4,(0,0 5,0,1)D) ((0 7,0 3),(0 45,0 5),(0,1),(0,1)) ,
k3, (c1,(0 5,0,1,1)D) ((0 3,0 6),(0 2,0 8),(0,1),(0,1)) , (c2,(0 5,0,1,1)D) ((0 45,0 5),(0 3,0 7),(0,1),(0,1)) , (c3,(0 5,0,1,1)D) ((0 5,0 4),(0 7,0 2),(1,0),(1,0)) , (c4,(0 5,0,1,1)D) ((0 35,0 55),(0 1,0 8),(0,1),(0,1))
k4, (c1,(0,0,1,1)D) ((0 2,0 8),(0 3,0 6),(0,1),(0,1)) , (c2,(0,0,1,1)D) ((0 1,0 9),(0 3,0 7),(0,1),(0,1)) , (c3,(0,0,1,1)D) ((0 8,0 2),(0 7,0 3),(1,0),(1,0)) , (c4,(0,0,1,1)D) ((0 1,0 9),(0 1,0 8),(0,1),(0,1)) 7.5. PlithogenicNeutrosophicSoftUnion
A = a1 =(slow,white,model1, 2015 andbefor) ,a2 =(slow,yellow,model3, 2017) , a3 =(fast,red,model4, 2018) and B = b1 =(slow,white,model1, 2015 andbefor) ,b2 =(slow,yellow,model3, 2017) , b3 =(fast,red,model4, 2018)
ShawkatAlkhazaleh,PlithogenicSoftSet
Suppose F N P ,A and GN P ,B aretwoplithogenicneutrosophicsoftsetsover U suchthat
F N P ,A = a1, (c1 ,(0,0 4,1,1)D) ((0 6,0 3,0 1),(0 7,0 2,0 1),(1,0,0),(1,0,0)) ,
a2, (c1 ,(0,0 5,0,1)D)
((0 6,0 3,0 1),(0 2,0 6,0 2),(0,0,1),(0,0,1)) ,
a3, (c1 ,(0 5,0,1,1)D) ((0 1,0 2,0 7),(0 2,0 1,0 7),(0,0,1),(0,0,1)) ,
GN P ,B = b1, (c1 ,(0,0 4,1,1)D) ((0 5,0 2,0 3),(0 6,0 3,0 1),(1,0,0),(1,0,0)) ,
(c2 ,(0,0 4,1,1)D) ((0 7,0 1,0 2),(0 3,0 5,0 2),(0,0,1),(0,0,1)) ,
(c2 ,(0,0 5,0,1)D) ((0 5,0 2,0 3),(0 7,0 2,0 1),(1,0,0),(1,0,0)) ,
(c2 ,(0 5,0,1,1)D) ((0 1,0 1,0 8),(0 3,0 2,0 5),(0,0,1),(0,0,1)) ,
(c3 ,(0,0 4,1,1)D) ((0 1,0 1,0 8),(0 3,0 6,0 1),(0,0,1),(0,0,1)) ,
(c3 ,(0,0 5,0,1)D) ((0 1,0 2,0 7),(0 1,0 1,0 8),(0,0,1),(0,0,1)) ,
(c3 ,(0 5,0,1,1)D) ((0 8,0 1,0 1),(0 7,0 1,0 2),(1,0,0),(1,0,0))
(c2 ,(0,0 4,1,1)D) ((0 8,0 1,0 1),(0 2,0 3,0 5),(0,0,1),(0,0,1)) ,
b3, (c1 ,(0 5,0,1,1)D) ((0 3,0 2,0 5),(0 3,0 2,0 5),(0,0,1),(0,0,1)) ,
(c3 ,(0,0 5,0,1)D) ((0 1,0 1,0 8),(0 2,0 2,0 6),(0,0,1),(0,0,1)) ,
(c3 ,(0,0 4,1,1)D) ((0 3,0 1,0 6),(0 3,0 4,0 3),(0,0,1),(0,0,1)) , b2, (c1 ,(0,0 5,0,1)D) ((0 5,0 3,0 2),(0 4,0 4,0 2),(0,0,1),(0,0,1)) , (c2 ,(0,0 5,0,1)D) ((0 4,0 3,0 3),(0 8,0 1,0 1),(1,0,0),(1,0,0)) ,
(c2 ,(0 5,0,1,1)D) ((0 1,0 1,0 8),(0 5,0 1,0 4),(0,0,1),(0,0,1)) , (c3 ,(0 5,0,1,1)D) ((0 6,0 2,0 2),(0 6,0 2,0 2),(1,0,0),(1,0,0))
Byusingbasicfuzzyunion(maximum)andbasicfuzzyintersection(minimum)wehave:
F N P ,A N P GN P ,B = H N P ,K where
HN P ,K = k1, (c1,(0,0 4,1,1)D) ((0 6,0 25,0 1),(0 66,0 25,0 1),(1,0,0),(1,0,0)) , (c2,(0,0 4,1,1)D) ((0 8,0 1,0 1),(0 26,0 4,0 32),(0,0,1),(0,0,1)) , (c3,(0,0 4,1,1)D) ((0 3,0 1,0 6),(0 3,0 5,0 18),(0,0,1),(0,0,1)) , k2, (c1,(0,0 5,0,1)D) ((0 6,0 3,0 1),(0 3,0 5,0 2),(0,0,1),(0,0,1)) , (c2,(0,0 5,0,1)D) ((0 5,0 25,0 3),(0 75,0 15,0 1),(1,0,0),(1,0,0)) , (c3,(0,0 5,0,1)D) ((0 1,0 15,0 7),(0 15,0 15,0 7),(0,0,1),(0,0,1)) , k3, (c1,(0 5,0,1,1)D) ((0 2,0 2,0 6),(0 3,0 15,0 5),(0,0,1),(0,0,1)) , (c2,(0 5,0,1,1)D) ((0 1,0 1,0 8),(0 5,0 15,0 4),(0,0,1),(0,0,1)) , (c3,(0 5,0,1,1)D) ((0 7,0 15,0 15),(0 7,0 15,0 2),(1,0,0),(1,0,0))
7.6. PlithogenicNeutrosophicSoftIntersection
Example7.8. ConsiderExample7.7Byusingbasicfuzzyunion(maximum)andbasicfuzzy intersection(minimum)wehave:
F N P ,A N P GN P ,B = H N P ,K where
HN P ,K = k1, (c1,(0,0 4,1,1)D) ((0 5,0 25,0 3),(0 64,0 25,0 1),(1,0,0),(1,0,0)) ,
(c3,(0,0 4,1,1)D) ((0 1,0 1,0 8),(0 3,0 5,0 22),(0,0,1),(0,0,1)) , k2, (c1,(0,0 5,0,1)D) ((0 5,0 3,0 2),(0 3,0 5,0 2),(0,0,1),(0,0,1)) , (c2,(0,0 5,0,1)D) ((0 4,0 25,0 3),(0 75,0 15,0 1),(1,0,0),(1,0,0)) , (c3,(0,0 5,0,1)D) ((0 1,0 15,0 8),(0 15,0 15,0 7),(0,0,1),(0,0,1)) , k3, (c1,(0 5,0,1,1)D) ((0 2,0 2,0 6),(0 2,0 15,0 7),(0,0,1),(0,0,1)) , (c2,(0 5,0,1,1)D) ((0 1,0 1,0 8),(0 3,0 15,0 5),(0,0,1),(0,0,1)) , (c3,(0 5,0,1,1)D) ((0 7,0 15,0 15),(0 6,0 15,0 2),(1,0,0),(1,0,0))
(c2,(0,0 4,1,1)D) ((0 7,0 1,0 2),(0 24,0 4,0 38),(0,0,1),(0,0,1)) ,
Proposition7.9. Let F z P , Gz P and H z P beanythreePSSsover U .Thenthefollowingresults hold:
proof Fromunionandintersectiondefinitionsandthefactthatfuzzyset,intuitionistic fuzzyandneutrosophicsetarecommutativeandassociative,wecangettheproof.
Proposition7.10. Let (F z P ,E), (Gz P ,E) and (H z P ,E) beanythreePSSsover U .Thenthe followingresultshold: ShawkatAlkhazaleh,PlithogenicSoftSet
(1) F z P z P (Gz P z P H z P )=(F z P z P Gz P ) z P (F z P z P H z P ) , (2) F z P z P (Gz P z P H z P )=(F z P z P Gz P ) z P (F z P z P H z P ) proof. Let z ≡ Fuzzy, ∀x ∈ E,andwithoutlossofgeneralitysuppose c =0 (1) λF F P (x) F P (GF P (x) F P H F P (x)) (x)= s λF F P (x) (x) ,λ(GF P (x) F P H F P (x)) (x) = s λF F P (x) (x) ,t λGF P (x) (x) ,λH F P (x) (x) = t{s λF F P (x) (x) ,λGF P (x) (x) ,s λF F P (x) (x) ,λH F P (x) (x) } = t λ(F F P (x) F P GF P (x)) (x) ,λ(F F P (x) F P H F P (x)) (x) = λ(F F P (x) F P GF P (x)) F P (F F P (x) F P H F P (x)) (x) For z ≡ IF and z ≡ N usethesamemethod.
(2) Wecanusethesamemethodin(a).
8. PlithogenicSoftSimilarity
InthissectionweintroduceameasureofsimilaritybetweentwoP-FSSs(z ≡ F )andwe leavetheothersimilaritywhen(z ≡ IFandN )forfutureresearch.Thesettheoreticapproach hasbeentakeninthisregardbecauseitispopularandveryeasyforcalculation.
Definition8.1. Let F F P ,E and GF P ,E betwoP-FSSsover(U,E)asinDefinition6.1. Similarity between F F P ,E and GF P ,E ,denotedby S F F P ,GF P ,isdefinedasfollows: S F F P ,GF P = 1 |E| |E| k=1 Mk where Mk =1
|e| i=1 |Fj (eik) Gj (eik)| |U | j=1
|U | j=1
|e| i=1 |Fj (eik)+ Gj (eik)| Where e ∈ E.
Definition8.2. Let F F P ,E , GF P ,E and H F P ,E betwoP-FSSsover(U,E).Wesaythat F F P ,E and GF P ,E are significantlysimilar if S F F P ,GF P 1 2 .
Proposition8.3. Let F F P ,E and GF P ,E beanytwoP-FSSsover (U,E) suchthat F F P or GF P anon-zeroP-FSS.Thenthefollowingholds:
(1) S F F P ,GF P = S GF P ,F F P , (2) 0 S F F P ,GF P 1, (3) F F P = GF P ⇒ S F F P ,GF P =1, (4) F F P ⊆ GF P ⊆ H F P ⇒ S F F P ,H F P S GF P ,H F P , ShawkatAlkhazaleh,PlithogenicSoftSet
(5) If F F P ,A F P GF P ,B = ∅⇒ S F F P ,GF P =0
proof. Proofs(a)-(d)followsfromDefinition8.1,Wewillgivetheproofof(e). Forthelefthandsidewehave F F P ,A F P GF P ,B = ∅,then
t F F P (eik),GF P (eik) =0, ∀i,k.Now, byusingDefinition8.1wehave Mk =1
|e| i=1 |Fj (eik) Gj (eik)| |U | j=1
|U | j=1
|e| i=1 |Fj (eik)+ Gj (eik)| .
Since t F F P (eik),GF P (eik) =0,then Fj (eik) Gj (eik)= Fj (eik)+ Gj (eik)andthisgives |U | j=1
|e| i=1 |Fj (eik) Gj (eik)| |U | j=1
|e| i=1 |Fj (eik) Gj (eik)| =1.Then
Mk =1 1=0.
Example8.4. Let U = {c1,c2,c3,c4} and a1 =speed, a2 =color, a3 =model, a4 =manufacturingyear.Supposetheirattributesvaluesrespectively:
Speed ≡ A1 = {slow,fast,veryfast}, Color ≡ A2 = {white,yellow,red,black},
Model ≡ A3 = {model1,model2,model3,model4}, manufacturingyear ≡ A4 = {2015 andbefor, 2016, 2017, 2018, 2019}.Suppose
E = e1 =(slow,white,model1, 2015 andbefor) ,e2 =(slow,yellow,model3, 2017) , e3 =(fast,red,model4, 2018)
Suppose F F P ,E and GF P ,E aretwoplithogenicfuzzysoftsetsover U suchthat F F P ,E = e1, (c1, (0, 0 4, 1, 1)D) (0 6, 0 7, 1, 1) , (c2, (0, 0 4, 1, 1)D) (0 7, 0 3, 0, 0) , (c3, (0, 0 4, 1, 1)D) (0 1, 0 3, 0, 0) , (c4, (0, 0 4, 1, 1)D) (0 7, 0 6, 1, 1) , e2, (c1, (0, 0 5, 0, 1)D) (0 6, 0 2, 0, 0) , (c2, (0, 0 5, 0, 1)D) (0 5, 0 7, 1, 1) , (c3, (0, 0 5, 0, 1)D) (0 1, 0 1, 0, 0) , (c4, (0, 0 5, 0, 1)D) (0 7, 0 4, 0, 0) , e3, (c1, (0 5, 0, 1, 1)D) (0 1, 0 2, 0, 0) , (c2, (0 5, 0, 1, 1)D) (0 1, 0 3, 0, 0) , (c3, (0 5, 0, 1, 1)D) (0 8, 0 7, 1, 1) , (c4, (0 5, 0, 1, 1)D) (0 1, 0 1, 0, 0)
ShawkatAlkhazaleh,PlithogenicSoftSet
GF P ,E = e1, (c1, (0, 0.4, 1, 1)D) (0.5, 0.6, 1, 1) , (c2, (0, 0.4, 1, 1)D) (0.8, 0.4, 0, 0) , (c3, (0, 0.4, 1, 1)D) (0.2, 0.2, 0, 0) , (c4, (0, 0.4, 1, 1)D) (0.7, 0.5, 1, 1) , e2, (c1, (0, 0.5, 0, 1)D) (0.5, 0.3, 0, 0) , (c2, (0, 0.5, 0, 1)D) (0.7, 0.7, 1, 1) , (c3, (0, 0.5, 0, 1)D) (0.3, 0.2, 0, 0) , (c4, (0, 0.5, 0, 1)D) (0.8, 0.5, 0, 0) , e3, (c1, (0.5, 0, 1, 1)D) (0.5, 0.6, 0, 0) , (c2, (0.5, 0, 1, 1)D) (0.8, 0.3, 0, 0) , (c3, (0.5, 0, 1, 1)D) (0.2, 0.7, 1, 1) , (c4, (0.5, 0, 1, 1)D) (0.6, 0.3, 0, 0)
Thenwecanfindthesimilaritybetween F F P and GF P asfollows: M1 =1
4 i=1 |Fj (ei1) Gj (ei1)| 4 j=1
4 j=1
4 i=1 |Fj (ei1)+ Gj (ei1)| Now,for j =1wehave 4 i=1 |F1(ei1) G1(ei1)| = |(0 6 0 5)| + |(0 7 0 6)| + |(1 1)| + |(1 1)| =0 2 and 4 i=1 |F1(ei1)+ G1(ei1)| = |(0.6+0.5)| + |(0.7+0.6)| + |(1+1)| + |(1+1)| =6.4 For j =2wehave 4 i=1 |F2(ei1) G2(ei1)| = |(0.7 0.8)| + |(0.3 0.4)| + |(0 0)| + |(0 0)| =0.2 and 4 i=1 |F2(ei1)+ G2(ei1)| = |(0.7+0.8)| + |(0.3+0.4)| + |(0+0)| + |(0+0)| =2.2. For j =3wehave 4 i=1 |F3(ei1) G3(ei1)| = |(0 1 0 2)| + |(0 3 0 2)| + |(0 0)| + |(0 0)| =0 2 and 4 i=1 |F3(ei1)+ G3(ei1)| = |(0 1+0 2)| + |(0 3+0 2)| + |(0+0)| + |(0+0)| =0 8 For j =4wehave ShawkatAlkhazaleh,PlithogenicSoftSet
4 i=1 |F4(ei1) G4(ei1)| = |(0.7 0.7)| + |(0.6 0.5)| + |(1 1)| + |(1 1)| =0.1 and 4 i=1 |F4(ei1)+ G4(ei1)| = |(0.7+0.7)| + |(0.6+0.5)| + |(1+1)| + |(1+1)| =6.5. Then M1 =1
4 i=1 |Fj (ei1) Gj (ei1)| 4 j=1
4 j=1
4 i=1 |Fj (ei1)+ Gj (ei1)| =1 [0 2+0 2+0 2+0 1] [6.4+2.2+0.8+6.5] =0 96 Similarlyweget M2 =0 92and M3 =0 78.ThenthesimilaritybetweenthetwoP-FSSs F F P and GF P isgivenby S F F P ,F F P = 1 3
3 k=1 Mk = 0 96+0 92+0 78 3 ∼ = 0 89
9. Conclusionsandfutureresearch
InthispaperwehavedefinedtheconceptofPlithogenicsoftset,andgavesomegeneralizationsofthisconcept.Wealsogaveexamplesfortheseconcepts.Westudiedthebasic propertiesoftheseoperations.Animportantresultofsuchapaperisthatnewquestionscan beusedasanideaforfurtherresearch,assucharesearchalwaysunearthsfurtherquestions. Theworkpresentedinthispaperposesinterestingnewquestionstoresearchersandprovides thetheoreticalframeworkforfurtherstudyonplithogenicsoftsets.Basedontheprevious resultswemaysuggestproblemsinrelationtoourresearchthatweanticipatetoventure elsewhereinthecasesofoperationsinplithogenicsoftsets,similarityinplithogenicsoftsets andapplicationsonplithogenicsoftsets.Wecaninvestigatethefollowingtopicsforfurther works:
(1) Todefineandstudythe”AND”and”OR”operationsofplithogenicsoftset.
(2) TodefineandstudytheapplicationofsimilaritymeasureofplithogenicsoftsetonDM andMD.
(3) TodefineandstudytheapplicationofplithogenicsoftsetoperationsonDMandMD.
(4) Togeneralizedplithogenicsoftsetstoplithogenicsoftmultisets,expertset,possibility setandetc.
Acknowledgements
ThisresearchwassupportedbytheDeanshipofScientificResearch,JadaraUniversity. ShawkatAlkhazaleh,PlithogenicSoftSet
References
1. MohamedAbdel-Basset,MohamedEl-hoseny,AbduallahGamal,andFlorentinSmarandache.Anovel modelforevaluationhospitalmedicalcaresystemsbasedonplithogenicsets. ArtificialIntelligencein Medicine,100:101710,2019.
2. MohamedAbdel-BassetandRehabMohamed.Anovelplithogenictopsis-criticmodelforsustainablesupply chainriskmanagement. JournalofCleanerProduction,247:119586,2020.
3. MohamedAbdel-Basset,RehabMohamed,AbdEl-NasserH.Zaied,andFlorentinSmarandache.Ahybrid plithogenicdecision-makingapproachwithqualityfunctiondeploymentforselectingsupplychainsustainabilitymetrics. Symmetry,11(7):903,2019.
4. KrassimirT.Atanassov.Intuitionisticfuzzysets. FuzzySetsandSystems,20(1):87–96,1986.
5. P.K.Maji.Neutrosophicsoftset. AnnalsofFuzzyMathematicsandInformatics,5(1):157–168,2013.
6. P.K.Maji,R.Biswas,andA.R.Roy.Fuzzysoftset. JournalofFuzzyMathematics,9(3):589–602,2001.
7. P.K.Maji,R.Biswas,andA.R.Roy.Intutionisticfuzzysoftsets. JournalofFuzzyMathematics,9(3):677–693,2001.
8. D.Molodtsov.Softsettheory-firstresults. ComputersandMathematicswithApplications,37(2):19–31, 1999.
9. F.Smarandache. AUnifyingFieldinLogics.Neutrosophy:NeutrosophicProbability,SetandLogic.AmericanResearchPress,Rehoboth,USA,1998.
10. F.Smarandache.Neutrosophicset,ageneralisationoftheintuitionisticfuzzysets. InternationalJournalof PureandAppliedMathematics,24(3):287–297,2005.
11. F.Smarandache. Plithogeny,PlithogenicSet,Logic,Probability,andStatistics.PonsEditions,Brussels, Belgium,2017.
12. F.Smarandache.Plithogenicset,anextensionofcrisp,fuzzy,intuitionisticfuzzy,andneutrosophicsets revisited. NeutrosophicSetsandSystems,21:153–166,2018.
13. L.A.Zadeh.Fuzzysets.8:338–353,1965.
Received:6,December,2019/Accepted:3,March,2020