Study On Single-Valued Neutrosophic Graph with Application In Shortest Path Problem

Page 1

CAAITransactionsonIntelligenceTechnology

Studyonsingle-valuedneutrosophicgraph withapplicationinshortestpathproblem

RuxiangLiu ✉

ISSN2468-2322

Receivedon3rdJune2020 Revisedon25thJune2020 Acceptedon14thJuly2020 doi:10.1049/trit.2020.0111 www.ietdl.org

DepartmentofElectronicandInformationEngineering,BozhouUniversity,Bozhou,Anhui236800,People’sRepublicofChina ✉ E-mail:kelton_bzsz@sina.cn

Abstract: Fuzzysetandneutrosophicsetaretwoefficienttoolstohandletheuncertaintiesandvaguenessofanyrealworldproblems.Neutrosophicsetismoreusefulthanfuzzyset(intuitionisticfuzzysets)tomanagetheuncertaintiesof areal-lifeproblem.Thisstudyintroducessomenewconc eptsofsingle-valuedneutrosophicgraph(SVNG).The authorshavediscussedthedefinitionofregularSVNG, completeSVNGandstrongSVNG.Theshortestpathproblem isawell-knowncombinatorialoptimisationproblemint hefieldofgraphtheoryduet oitsvariousapplications. Uncertaintyispresentinalmosteveryapplicationofsho rtestpathproblemwhichmakesitveryhardtodecidethe edgeweightproperly.Themainobjectivebehindtheworki nthisstudyistodetermineanalgorithmictechniquefor shortestpathproblemwhichwillbeveryeasyandefficientf oruseinreal-lifescenarios.Inthisstudy,theauthors considerneutrosophicnumbertodescribetheedgeweightsofaneutrosophicgraphforneutrosophicshortestpath problem.Analgorithmisintroducedtosolvethisproblem.TheuncertaintiesareincorporatedinBellman – Ford algorithmforshortestpathproblemusingneutrosophicnumberasarclength.Theyuseonenumericalexampleto illustratetheeffectivenessoftheproposedalgorithm.

1Introduction

In1965,Prof.Zadeh[1]describedtheideaoffuzzysettheorywhich hasbeenexpeditiouslyutilisedtomodeltheseveraldecision-making problemsinwhichuncertaintiesmayexist.Fuzzysetisamodified versionofsimpleset,wherealltheelementsofthefuzzyset havechangingdegreesofmembershipvalues.Thesimpleset (crispset)alwayshavetwotruthvalues,either0(indicatefalse)or 1(indicatetrue).Crispsetisunabletohandletheuncertaintiesof theproblems.However,thefuzzysetallowsforitsobjectstohave themembershipdegreewithin1and0whichprovidesmore beneficialresults,ratherthanconsideringonlysinglevalueof either1or0.Themembershipdegreeofafuzzysetisaspecific singlevaluewithin0and1.Expertsarenotabletohandlewith theuncertaintyofanydecision-makingproblemproperlyusing fuzzyset.Atanassov[2]hasintroducedtheideaofintuitionistic fuzzyset(IFS)[3, 4]byincludinganon-membershipgradeanda hesitancygradeofalltheelementsofthefuzzyset.IFSispresent todescribetheelements/objectsofthefuzzysetfromthree differentaspectsofinferiority,superiorityandhesitation,which aregenerallymodelledbytheintuitionisticfuzzynumbers(IFNs). Tohandlemoreusefulinformationofreal-lifeproblemunder imprecise,vagueanduncertainenvironment,Smarandache[5–7] haspresentedthenovelideaofneutrosophicset,bygeneralising theideaofIFS.Theneutrosophicsetcanbeusedtocapturethe uncertaintiesduetoinconsistent,vaguenessandindeterminatedata ofanyproblem.Itisnothingbutanextendededitionofsimple classicalset,fuzzysetandIFS.Inneutrosophicset,eachobject hasthreedifferenttypesofmembershipgrade:truth,falseand indeterminate.Thosethreemembershipgradesofneutrosophicset arenotdependentoneachotherandalwayswithin]0,1[.

Graphisanefficienttooltomodelthereal-lifeproblems. Bymodellingthegraph,theobjectsandtheirrelationsare symbolisedbynodesandarcs.Thereexistsmanydifferenttypes ofinformationinreal-lifeproblemsandweneedseveraltypesof graphstomodelthoseproblemssuchasfuzzygraph,intuitionistic fuzzygraphsandneutrosophicgraphtheory[8–15].Shannonand Atanassov[16]presentedtheconceptofrelationshipbetweenIFS. Thentheyhaveintroducedtheconceptofintuitionisticfuzzy

graphsandpresentedmanytheoremsin[16].Parvathi etal. [17–19]proposedsomeoperationsbetweentwointuitionisticfuzzy graphs.In[20],Rashmanlou etal. proposedmanyproducts operationssuchaslexicographic,directproduct,strongproduct, semi-strongproductonintuitionisticfuzzygraphs.Theyhave describedtheCartesianproduction,join,compositionandunion onintuitionisticfuzzygraphsintheirpaper.Forfurtherstudyon intuitionisticfuzzygraphs,pleasereferto[21–27].Akram etal. [28–32]haveintroducedtheideaofpythagoreanfuzzygraph. Theyhavedescribedtheseveralapplicationsofpythagoreanfuzzy graphintheirpaper.Neutrosophicgraph[33]isusedtomodel manyreal-worldproblemswhichconsistofinconsistent information.Recently,manyscientistshaveresearchedongraphin neutrosophicenvironment[34–41],forinstance,Yang etal. [9], Arkam[12, 14],Ye[8],Naz etal. [10],DasandEdalatpanah [42],Dey etal. [43–47]andBroumi[48–51].In2020,Prof. Smarandacheintroducedtheideaof n-superhyper-graph[52]with super-nodesandhyper-arcsforneutrosophicgraph.

Theshortestpathproblem(SPP)isawell-knownnetworkoptimisationproblemintheareaofoperationresearch.Inthisproblem,decisionmakerfocusesondeterminingashortestpathbetweena specifiedstartingnodeandothernodes.TheSPPhasbeenconsidered tomodelinmanyreal-lifeproblems,e.g.economics,telecommunications,transportation,scheduling,routingandsupplychainmanagement.ManyresearchershavestudiedintensivelyontheSPPswith deterministicedgecosts.TheseSPPsarereferredtoasstandard SPPs.DecisionmakercansolvethestandardSPPsefficientlyusing severalwell-knownalgorithmsintroducedbysomeexcellentresearchers.AlthoughinstandardSPP,thecostsofthearcsareconsideredreal numbers([ R),mostreal-lifescenarios,however,havemanyparametersthatmaynotbealwaysprecise(i.e.travellingdemands,travellingcosts,travellingcapacities,travellingtimeetc.).Severaltypesof uncertaintyaregenerallyencounteredinpracticalapplicationsofSPP duetoimperfectdata,maintenance,failureorotherreasons.Insuch scenarios,thearccostsarenon-deterministicinnature.Someresearchers[53]usetype-1fuzzynumbersforhandlingtheuncertaintiesin standardSPPandthistypeofSPPisdefinedasfuzzySPP(FSPP). TheFSPPcannotmanagetheseveraltypesofuncertaintiesbecause themembershipdegreeoftype1fuzzynumbersissimplyreal

CAAITrans.Intell.Technol.,2020,Vol.5,Iss.4,pp.308–313 308ThisisanopenaccessarticlepublishedbytheIET,ChineseAssociationforArtificialIntelligenceand ChongqingUniversityofTechnologyundertheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense(http:// creativecommons.org/licenses/by-nc-nd/3.0/)

ResearchArticle

number.Tosolvethisproblem,fewresearchersworkedonintuitionisticFSPP.InintuitionisticFSPP,thearclengthsareconsideredas IFNs.Itcanworkwithuncertaininformationaboutthearclength whichconsistsofmembershipgradeandnon-membershipgradesimultaneously.ThemaindisadvantageofintuitionisticFSPPisthatit cannothandletheuncertaininformationofarclengthifthesumof non-membershipandmembershipisbiggerthan1.Insuchreal-life scenarios,anappropriatemodellingtechniquemayjustifiably employtheneutrosophicset,andsodoesthenameneutrosophic SPP[48–51]appearsintheareaofgraphtheory.Theneutrosophic SPP,involvingadditionoperationandcomparisonoperationofneutrosophicset,isdifferentfromthestandardSPP(FSPP),whichonly usescrispnumbers(fuzzynumber).InaneutrosophicSPP,thearc lengthbeingneutrosophicnumbers,themainobjectiveofdetermining apathbetweentwonodesbeingsmallerthanalltheotherpathsisnot easy,astherankingofneutrosophicsetasacomparisonoperationcan bedescribedinseveralways.TheBellman–Fordalgorithmisa commonandefficientalgorithmtosolvethestandardSPP.TheclassicalBellman–FordalgorithmiseasytoimplementforstandardSPP. Inthismanuscript,anextendedBellman–Fordalgorithmisdesigned tosolvetheneutrosophicSPP.Inthisalgorithm,weneedtoaddress twokeyissuesto findthesolutionofSPPwithneutrosophicparameters.The firstissueishowto findthesummingoperationoftwo edges,i.e.neutrosophicnumbers.Itisneededtocalculatethepath length.Thesecondoneisthathowtocomparethetwodifferentneutrosophicpathswiththeirarccostsdescribedbyneutrosophic numbers.Tosolvetheseproblems,therankingmethodofneutrosophicsetisadoptedtoextendtheclassicalBellman–Fordalgorithm. Thisresearchpaperintroducessomenewconceptsof single-valuedneutrosophicgraph(SVNG).Wehavediscussedthe definitionofregularSVNG,completeSVNGandstrongSVNG. Inthismanuscript,weconsiderneutrosophicnumbertodescribe theedgeweightsofaneutrosophicgraphforneutrosophicSPP. Analgorithmisintroducedtosolvethisproblem.The uncertaintiesareincorporatedinBellman–FordalgorithmforSPP usingneutrosophicnumberasarclength.Weuseonenumerical exampletoillustratetheeffectivenessoftheproposedalgorithm.

2Preliminary

Inthissection,wedefineneutrosophicgraphandintroducedifferent typesofregularneutrosophicgraph,strongneutrosophicgraph, completeneutrosophicgraphandcomplementneutrosophicgraph.

Definition1: Let U beaclassicaluniversalset.Aneutrosophicset [54] D onthe U isdescribedbythreeindependentmembership functions:truemembershipfunction TD (x),indeterminate membershipfunction ID (x)andfalsemembershipfunction FD (x) 0 ≤ sup TD (x) + sup ID (x) + sup FD (x) ≤ 3+ (1)

Definition2: Let U beauniversalset.Thesingle-valued neutrosophicset[55] D ontheuniversal U isdenotedasfollows: A = {kx:TD (x), ID (x), FD (x)|x [ U l}(2)

Thefunctions TD (x) [ [0,1], IA (x) [ [0,1]and FA (x) [ [0,1]are namedasdegreeoftruth,indeterminacyandfalsitymembershipof x in A,satisfythefollowingcondition: 0 ≤ sup TD (x) + sup ID (x) + sup FD (x) ≤ 3+ (3)

Definition3: Let A = (TD , ID , FD )beasingle-valuedneutrosophic set.Ascorefunction S [34]isdefinedasfollows: S (D) = (1 + (TD 2ID FD )(2 TD FD )) 2 (4)

Definition4::Let G∗ =V , E () beasimplegraph.Apair G=C , D () isaneutrosophicgraphon G∗ where C= TC , IC , FC isapicture

fuzzyseton j and D= TD , ID , FD isapicturefuzzyseton

# V×V suchthatforeacharc ij [ E

TD i, j ≤ min TC i (), TC j , ID i, j ≤ min IC i (), IC j , FD i, j ≥ max FC i (), FC j (5)

Definition5: Aneutrosophicgraph G=C , D () issaidtoberegular neutrosophicgraphif

TD i, j = constant, i i=j

i i=j

ID i, j = constant, i i=j

FD i, j = constant, ∀i, j [ E

(6)

Definition6: Aneutrosophicgraph G=C , D () isdefinedasstrong neutrosophicgraphif

TD i, j = TC i () ^ TC j , ID i, j = IC i () ^ IC j ,

FD i, j = FC i () _ FC j ∀i, j [ E (7)

Definition7: Aneutrosophicgraph G=C , D () isdefinedas completeneutrosophicgraphif

TD i, j = TC i () ^ TC j , ID i, j = IC i () ^ IC j , FD i, j = FC i () _ FC j ∀i, j [ V (8)

Definition8: Apath p inaneutrosophicgraph G=C , D () isa sequenceofdifferentvertices p0 , p1 , p2 , , pk suchthat TD pi 1 pi ID pi 1 pi FD pi 1 pi . 0, i = 1,2, , k (9)

Here, k representsthelengthofpath.

Definition9: Let G=C , D () beaneutrosophicgraph.Then, G issaid tobeconnectedneutrosophicgraphifforeveryvertices i, j [ V , T 1 B (i, j ) . 0or I 1 B (i, j ) . 0or F 1 B (i, j ) , 1.

Definition10: Thecomplementofaneutrosophicgraph G=C , D () isaneutrosophicgraph G′ =C ′ , D′ ifandonlyiffollowsthe followingequation:

(10)

Definition11: Aneutrosophicgraph G issaidtobe

(i)The G isself-complementaryneutrosophicgraphthen G= G ′ . (ii)The G isself-weakcomplementneutrosophicgraphthen G is weakisomorphicto G′

CAAITrans.Intell.Technol.,2020,Vol.5,Iss.4,pp.308–313 309 ThisisanopenaccessarticlepublishedbytheIET,ChineseAssociationforArtificialIntelligenceand ChongqingUniversityofTechnologyundertheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense(http:// creativecommons.org/licenses/by-nc-nd/3.0/)

E
(T ′ C , I ′ C , F ′ C ) = (TC , IC , FC ) T ′ D i, j = TC i () ^ TC j TB i, j , I ′ D i, j = IC i () ^ IC j IB i, j , F ′ D i, j = FC i () _ FC j FB i, j ∀i, j [ V

3Operationsonneutrosophicgraph

Inthissection,weintroducesixoperationsonneutrosophicgraph, viz.,Cartesianproduct,composition,join,directproduct, lexicographicandstrongproduct.

Definition12: Let G1 =C 1 , D1 and G2 =C 2 , D2 aretwo neutrosophicgraphsof G∗ 1 =V 1 , E 1 and G∗ 2 =V 2 , E 2 , respectively.TheCartesianproduct G1 ×G2 ofneutrosophic graph G1 and G2 isdefinedby C , D (),where C= TC , IC , FC and D= TD , ID , FD aretwoneutrosophicsetson V=V 1 ×V 2 , and E= { i, i2 , i, j2 |i [ V 1 , i2 j2 [ E 2 }< { i1 , k , j1 , k |k [ V 2 , i1 j1 [ E 1 },respectively,whichsatisfiesthefollowing:

(i) ∀(i1 , i2 ) [ V 1 ×V 2 ,

(a) TC ((i1 , i2 )) = TC 1 (i1 ) ^ TC 2 (i2 ) (b) IC ((i1 , i2 )) = IC 1 (i1 ) ^ IC 2 (i2 ) (c) FC ((i1 , i2 )) = FC 1 (i1 ) _ FC 2 (i2 )

(ii) ∀i [ V 1 and ∀(i2 , j2 ) [ E 2 ,

(a) TD ((i, i2 )(i, j2 )) = TC 1 (i1 ) ^ TD2 (i2 j2 ) (b) ID ((i, i2 )(i, j2 )) = IC 1 (i1 ) ^ ID2 (i2 j2 ) (c) FD ((i, i2 )(i, j2 )) = FC 1 (i1 ) _ FD2 (i2 j2 )

(iii) ∀k [ V 2 and ∀(i1 , i2 ) [ E 1 ,

(a) TD ((i1 , k )(j1 , k )) = TD1 (i1 j1 ) ^ TC 2 (k ) (b) ID ((i1 , k )(j1 , k ) = ID1 (i1 j1 ) ^ IC 2 (k ) (c) FD ((i1 , k )(j1 , k )) = FD1 (i1 j1 ) _ FC 2 (k )

Definition13: Thecomposition G1 G2 oftwoneutrosophicgraphs G1 =C 1 , D1 and G2 =C 2 , D2 definedasapair C , D (),where C= TC , IC , FC and D= TD , ID , FD aretwoneutrosophicsets on V=V 1 ×V 2 ,and E= { i, i2 , i, j2 |i [ V 1 , i2 j2 [ E 2 }< { i1 , k , j1 , k |k [ V 2 , i1 j1 [ E 1 } < { i1 , i2 , j1 , j2 |i2 j2 [ V 2 = j2 , i1 j1 [ E 1 },respectively,whichsatisfiesthefollowing:

(i) ∀(i1 , i2 ) [ V 1 ×V 2 ,

(a) TC ((i1 , i2 )) = TC 1 (i1 ) ^ TC 2 (i2 ) (b) IC ((i1 , i2 )) = IC 1 (i1 ) ^ IC 2 (i2 ) (c) FC ((i1 , i2 )) = FC 1 (i1 ) _ FC 2 (i2 )

(ii) ∀i [ V 1 and ∀(i2 , j2 ) [ E 2 ,

(a) TD ((i, i2 )(i, j2 )) = TC 1 (i1 ) ^ TD2 (i2 j2 ) (b) ID ((i, i2 )(i, j2 )) = IC 1 (i1 ) ^ ID2 (i2 j2 ) (c) FD ((i, i2 )(i, j2 )) = FC 1 (i1 ) _ FD2 (i2 j2 )

(iii) ∀k [ V 2 and ∀(i1 , i2 ) [ E 1 ,

(a) TD ((i1 , k )(j1 , k )) = TD1 (i1 j1 ) ^ TC 2 (k ) (b) ID ((i1 , k )(j1 , k ) = ID1 (i1 j1 ) ^ IC 2 (k ) (c) FD ((i1 , k )(j1 , k )) = FD1 (i1 j1 ) _ FC 2 (k )

(iv) ∀i2 j2 [ V 2 , i2 = j2 and ∀(i1 j1 ) [ E 1 ,

(a) TD ((i1 , i2 )(j1 , j2 )) = TC 2 (i2 ) ^ TC 2 (j2 ) ^ TD1 (i1 j1 ) (b) ID ((i1 , i2 )(j1 , j2 )) = IC 2 (i2 ) ^ IC 2 (j2 ) ^ ID1 (i1 j1 ) (c) FD ((i1 , i2 )(j1 , j2 )) = FC 2 (i2 ) ^ FC 2 (j2 ) ^ FD1 (i1 j1 )

Definition14: Theunion G1 < G2 oftwoneutrosophicgraph G1 = C 1 , D1 and G2 =C 2 , D2 isdefinedas C , D (),where C= TC , IC , FC isaneutrosophicseton V=V 1 < V 2 and D= TD , ID , FD isananotherneutrosophicseton E=E 1 < E 2 , whichsatisfiesthefollowing:

(i)

(a) TC (i) = TC 1 (i)if i [ V 1 and i V 2 (b) TC (i) = TC 2 (i)if i [ V 2 and i V 1 (c) TC (i) = TC 1 (i) ^ TC 2 (i)if i [ V 1 > V 2

(ii) (a) IC (i) = IC 1 (i)if i [ V 1 and i V 2 (b) IC (i) = IC 2 (i)if i [ V 2 and i V 1 (c) IC (i) = IC 1 (i) ^ IC 2 (i)if i [ V 1 > V 2

(iii)

(a) FC (i) = FC 1 (i)if i [ V 1 and i V 2 (b) FC (i) = FC 2 (i)if i [ V 2 and i V 1 (c) FC (i) = FC 1 (i) ^ IC 2 (i)if i [ V 1 > V 2 (iv)

(a) TD (ij ) = TD1 (ij )if ij [ E 1 and ij E 2 (b) TD (ij ) = TD2 (ij )if ij [ E 2 and ij E 1 (c) TD (ij ) = TD1 (ij ) ^ TD2 (ij )if ij [ E 1 > E 2

(v)

(a) ID (ij ) = ID1 (ij )if ij [ E 1 and ij E 2 (b) ID (ij ) = ID2 (ij )if ij [ E 2 and ij E 1 (c) ID (ij ) = ID1 (ij ) ^ ID2 (ij )if ij [ E 1 > E 2

(vi)

(a) FD (ij ) = FD1 (ij )if ij [ E 1 and ij E 2 (b) FD (ij ) = FD2 (ij )if ij [ E 2 and ij E 1 (c) FD (ij ) = FD1 (ij ) ^ FD2 (ij )if ij [ E 1 > E 2

Definition15: Thejoining G1 +G2 oftwoneutrosophicgraphs G1 =C 1 , D1 and G2 =C 2 , D2 isde finedas C , D (), where C= TC , IC , FC isaneutrosophicseton V=V 1 < V 2 and D= TD , ID , FD isananotherneutrosophicseton E= E 1 < E 2 < E ′ ((E ′ representsalledgesjoiningthevertexof V 1 and V 2 ),whichsatis fiesthefollowing:

(i)

(a) TC (i) = TC 1 (i)if i [ V 1 and i V 2 (b) TC (i) = TC 2 (i)if i [ V 2 and i V 1 (c) TC (i) = TC 1 (i) ^ TC 2 (i)if i [ V 1 > V 2

(ii)

(a) IC (i) = IC 1 (i)if i [ V 1 and i V 2 (b) IC (i) = IC 2 (i)if i [ V 2 and i V 1 (c) IC (i) = IC 1 (i) ^ IC 2 (i)if i [ V 1 > V 2

(iii)

(a) FC (i) = FC 1 (i)if i [ V 1 and i V 2 (b) FC (i) = FC 2 (i)if i [ V 2 and i V 1 (c) FC (i) = FC 1 (i) ^ IC 2 (i)if i [ V 1 > V 2

CAAITrans.Intell.Technol.,2020,Vol.5,Iss.4,pp.308–313 310ThisisanopenaccessarticlepublishedbytheIET,ChineseAssociationforArtificialIntelligenceand ChongqingUniversityofTechnologyundertheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense(http:// creativecommons.org/licenses/by-nc-nd/3.0/)

(iv)

(a) TD (ij ) = TD1 (ij )if ij [ E 1 and ij E 2 (b) TD (ij ) = TD2 (ij )if ij [ E 2 and ij E 1 (c) TD (ij ) = TD1 (ij ) ^ TD2 (ij )if ij [ E 1 > E 2

(v)

(a) ID (ij ) = ID1 (ij )if ij [ E 1 and ij E 2 (b) ID (ij ) = ID2 (ij )if ij [ E 2 and ij E 1 (c) ID (ij ) = ID1 (ij ) ^ ID2 (ij )if ij [ E 1 > E 2

(vi)

(a) FD (ij ) = FD1 (ij )if ij [ E 1 and ij E 2 (b) FD (ij ) = FD2 (ij )if ij [ E 2 and ij E 1 (c) FD (ij ) = FD1 (ij ) ^ FD2 (ij )if ij [ E 1 > E 2

(vii)

(a) TD (ij ) = TD1 (i) _ TD2 (j )if ij [ E ′ (b) ID (ij ) = ID1 (i) _ ID2 (j )if ij [ E ′ (c) FD (ij ) = FD1 (i) ^ FD2 (j )if ij [ E ′

Definition16: Thedirectproduct G1 ∗ G2 oftwoneutrosophic graph G1 and G2 isdefinedasapair C , D (),where C= TC , IC , FC isaneutrosophicseton V=V 1 ×V 2 and D= TD , ID , FD isananotherneutrosophicseton E= { i1 , i2 j1 , j2 |i1 j1 [ E 1 , i2 j2 [ E 2 },whichsatisfiesthefollowing:

(i) ∀(i1 , i2 ) [ V 1 ×V 2

(a) TC (i1 , i2 ) = TC 1 (i1 ) _ TC 2 (i2 ) (b) IC (i1 , i2 ) = IC 1 (i1 ) _ IC 2 (i2 ) (c) FC (i1 , i2 ) = FC 1 (i1 ) ^ FC 2 (i2 )

(ii) ∀(i1 j1 ) [ E 1 , ∀(i2 j2 ) [ E 2

(a) TD (i1 , i2 )(j1 , j2 ) = TD1 (i1 j1 ) _ TD2 (i2 j2 ) (b) ID (i1 , i2 )(j1 , j2 ) = ID1 (i1 j1 ) _ ID2 (i2 j2 ) (c) FD (i1 , i2 )(j1 , j2 ) = FD1 (i1 j1 ) ^ TD2 (i2 j2 )

Definition17: Thelexicographicproduct G1 ·G2 oftwoneutrosophic graph G1 =C 1 , D1 and G2 =C 2 , D2 isdefinedasapair C , D (), where C= TC , IC , FC isaneutrosophicseton V=V 1 ×V 2 and D= TD , ID , FD isananotherneutrosophicseton E= { i, i2 × i, j2 |i [ V 1 , i2 j2 [ E 2 } < { i1 , i2 j1 , j2 |i1 j1 [ E 1 , i2 j2 [ E 2 } whichsatisfiesthefollowing:

(i) ∀(i1 , i2 )

(a) TC (i1 , i2 ) = TC 1 (i1 ) _ TC 2 (i2 ) = IC 1 (i1 ) _ IC 2 (i2 ) = FC 1 (i1 )^ FC 2 (i2 )

(ii) ∀i [ V 1 , ∀(i2 j2 ) [ E 2

(a) TD (i, i2 )(i, j2 ) = TC 1 (i) _ TD2 (i2 j2 )

(b) ID (i, i2 )(i, j2 ) = IC 1 (i) _ ID2 (i2 j2 )

(c) FD (i, i2 )(i, j2 ) = FC 1 (i) ^ FD2 (i2 j2 )

(iii) ∀i1 j1 [ E 1 , ∀(i2 j2 ) [ E 2

(a) TD (i1 , i2 )(j1 , j2 ) = TD1 (i1 j1 ) _ TD2 (i2 j2 )

(b) ID (i1 , i2 )(j1 , j2 ) = ID1 (i1 j1 ) _ ID2 (i2 j2 ) (c) FD (i1 , i2 )(j1 , j2 ) = FD1 (i1 j1 ) ^ FD2 (i2 j2 )

Definition18: Thestrongproduct G1 G2 oftwoneutrosophicgraphs G1 =C 1 , D1 and G2 =C 2 , D2 isdefinedasapair C , D (),where C= TC , IC , FC isaneutrosophicseton V=V 1 ×V 2 and D=

TD , ID , FD isananotherneutrosophicseton E= { i, i2 i, j2 |i [ V 1 , i2 j2 [ E 2 } < { i1 , k j1 , k |k [ V 2 , i1 j1 [ E 1 } < { i1 , i2 × j1 , j2 |i1 j1 [ E 1 , i2 j2 [ E 2 }whichsatisfiesthefollowing:

(i) ∀(i1 , i2 ) [ V 1 ×V 2

(a) TC (i1 , i2 ) = TC 1 (i1 ) _ TC 2 (i2 ) (b) IC (i1 , i2 ) = IC 1 (i1 ) _ IC 2 (i2 ) (c) FC (i1 , i2 ) = FC 1 (i1 ) ^ FC 2 (i2 )

(ii) ∀i [ V 1 , ∀(i2 j2 ) [ E 2

(a) TD (i, i2 )(i, j2 ) = TC 1 (i) _ TD2 (i2 j2 ) (b) ID (i, i2 )(i, j2 ) = IC 1 (i) _ ID2 (i2 j2 ) (c) FD (i, i2 )(i, j2 ) = FC 1 (i) ^ FD2 (i2 j2 )

(iii) ∀i1 j1 [ E 1 , ∀(i2 j2 ) [ E 2 (a) TD (i1 , i2 )(j1 , j2 ) = TD1 (i1 j1 ) _ TD2 (i2 j2 ) (b) ID (i1 , i2 )(j1 , j2 ) = ID1 (i1 j1 ) _ ID2 (i2 j2 ) (c) FD (i1 , i2 )(j1 , j2 ) = FD1 (i1 j1 ) ^ FD2 (i2 j2 )

(iv) ∀i1 j1 [ E 1 , k [ V 2

(a) TD (i1 , k )(j1 , k ) = TD1 (i1 j1 ) _ TC 2 (k ) (b) ID (i1 , k )(j1 , k ) = ID1 (i1 j1 ) _ IC 2 (k ) (c) FD (i1 , k )(j1 , k ) = FD1 (i1 j1 ) ^ FC 2 (k )

4ProposedBellman–Fordalgorithmfor neutrosophicSPP

Ourproposedalgorithmicapproachisthemodificationofclassical Bellman–FordalgorithmforneutrosophicSPP.Inthisalgorithm, wehaveincorporatedtheuncertaintiesinBellman–Fordalgorithm usingneutrosophicsetasanedgeweight.Wehaveshownthe pseudocodeofourproposedalgorithmforneutrosophicSPPin Algorithm1(seeFig. 1).The flowchartofourproposedalgorithm isgiveninFig. 2.Theproposedalgorithm findsallpossible shortestpathsbetweenthesourcenodeandallothernodesinthe neutrosophicgraph G.Ourproposedalgorithmneedsthatthe neutrosophicgraphdoesnotconsistofanyneutrosophiccyclesof negativeneutrosophiclength.However,ifthegraphcontainsany neutrosophiccycle,thenourproposedalgorithmisableto findit. Thesourceisdenoted,respectively,by source

5Numericalexamples

AnumericalexampleofneutrosophicSPPisusedtodescribeour proposedBellman–Fordalgorithm.Forthispurpose,weusean exampleneutrosophicgraph,showninFig. 3,with fivevertices andeightedges.OurmodifiedBellman–Fordalgorithmdetectsthe shortestpathbetweenthestartingvertexandallothernodesinthe neutrosophicgraphwithneutrosophicsetsasedgeweights.For thisneutrosophicSPP,weconsiderthestartingvertexisvertex s Thefollowingeightneutrosophicnumber,showninTable 1,are usedasedgeweightsoftheneutrosophicgraph.Those neutrosophicsetsarenumberfromonetoeight.Forthe neutrosophicgraph,showninFig. 3,weassignthoseneutrosophic setstotheedgesoftheneutrosophicgraphrandomly.

Thestepsofouralgorithmaregivenbelow:

Step1:Letthestartingvertexbe s.Itischangedpermanentnodeand theshortestpathdistance,i.e.dist_score[u]between(s)and(s)is0. Theaccessibleadjacentverticesbetweenstartingvertex s are v1 , v2 and v3 .Thescorevalues(distance)oftheeachadjacentedgeof startingvertex(s)arecalculatedbyusing(4).Amongallthe3 nodes,theshortestone(s) (v1 )istakenoutwithscorevalue0.43. Step2:Now,ourproposedalgorithmmovesthenode v1 andthe findingtheshortestpathstartedfromthevertex(v1 ).Thelowest score(shortestdistance)from(s) (v1 )toitsadjacentis

CAAITrans.Intell.Technol.,2020,Vol.5,Iss.4,pp.308–313 311 ThisisanopenaccessarticlepublishedbytheIET,ChineseAssociationforArtificialIntelligenceand ChongqingUniversityofTechnologyundertheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense(http:// creativecommons.org/licenses/by-nc-nd/3.0/)

Fig.1 Algorithm1:neutrosophicBellman–Fordalgorithm

Fig.2 FlowchartofneutrosophicBellman–Fordalgorithm

determined.Anyoneisminimumthanthepath(s) (v2 )by comparingallthescorevalues.

Step3:Thevertex v2 ischangedtopermanentandallthesearching ofshortestpathbeginswithvertex(v1 )andvertex(s).We findthe scoreoftheeachadjacentofthepath(s) (v2 ).Theshortest scoreamongalltheunvisitedpathis(s) (v3 ).

Step4:Similarity,wedeterminethepathwithlowestscore(i.e.the shortestpath)betweenthesourcevertexandeveryothervertex(t ), theneutrosophicshortestpathis(s) (v2 ) t

Fig.3 Neutrosophicnetworkwithneutrosophicnumbersasarclengthsfor example1

Table1 Arclengthsoftheneutrosophicgraph,representedas neutrosophicnumber IndexSVNs 1 k(4 6,5 5,8 6)l 2 k(4 7,6 9,8 5)l 3 k(6 2,7 6,8 2)l 4 k(6 2,8 9,9 1)l 5 k(4 4,5 9,7 2)l 6 k(6 6,8 8,10)l 7 k(6 3,7 5,8 9)l 8 k(6 2,7 6,8 2)l

6Conclusion

Graphtheoryhasmanyreal-lifeapplicationstotheproblemsin operationsresearch,computernetwork,economics,systems analysis,urbantrafficplanningandtransportation.Inreal-life scenarios,however,uncertaintymayexistinalmosteverygraph theoreticproblem.Neutrosophicsetisapopularandusefultoolto workinuncertainenvironment.Thispaperpresentssomenew operationofSVNGmodel.Wedescribethedefinitionofregular

CAAITrans.Intell.Technol.,2020,Vol.5,Iss.4,pp.308–313 312ThisisanopenaccessarticlepublishedbytheIET,ChineseAssociationforArtificialIntelligenceand ChongqingUniversityofTechnologyundertheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense(http:// creativecommons.org/licenses/by-nc-nd/3.0/)

SVNG,completeSVNGandstrongSVNG.Inthismanuscript,we considerneutrosophicnumbertodescribetheedgeweightsofa neutrosophicgraphforneutrosophicSPP.Analgorithmis introducedtosolvethisproblem.Theuncertaintiesare incorporatedinBellman–FordalgorithmforSPPusing neutrosophicnumberasarclength.Weuseonenumericalexample toillustratetheeffectivenessoftheproposedalgorithm.The SVNGcanbeutilisedtomodelthesocialnetwork,image processing,telecommunication,expertsystemsandcomputer networks.

7References

[1]Zadeh,L.A.: ‘Fuzzysets’ , Inf.Control,1965, 8,(3),pp.338–353

[2]Atanassov,K.T.: ‘Intuitionisticfuzzysets’,in ‘Intuitionisticfuzzysets’ (Springer, Heidelberg,Germany,1999),pp.1–137

[3]Garg,H.,Kumar,K.: ‘Anadvancedstudyonthesimilaritymeasuresof intuitionisticfuzzysetsbasedonthesetpairanalysistheoryandtheir applicationindecisionmaking’ , SoftComput.,2018, 22,(15),pp.4959–4970

[4]Singh,S.,Garg,H.: ‘Distancemeasuresbetweentype-2intuitionisticfuzzysets andtheirapplicationtomulticriteriadecision-makingprocess’ , Appl.Intell., 2017, 46,(4),pp.788–799

[5]Smarandache,F.: ‘Neutrosophy:neutrosophicprobability,set,andlogic:analytic synthesis&syntheticanalysis’ (AmericanResearchPress,USA),1998

[6]Smarandache,F.: ‘Aunifying fieldinlogics:neutrosophiclogic’,in ‘Philosophy’ (AmericanResearchPress,USA,1999),pp.1–141

[7]Smarandache,F.: ‘Aunifying fieldinlogics:neutrosophiclogic.Neutrosophy, neutrosophicset,neutrosophicprobability:neutrsophiclogic.Neutrosophy, neutrosophicset,neutrosophicprobability’ (InfiniteStudy,USA,2005)

[8]Ye,J.: ‘Single-valuedneutrosophicminimumspanningtreeanditsclustering method’ , J.Intell.Syst.,2014, 23,(3),pp.311–324

[9]Yang,H.L.,Guo,Z.L.,She,Y., etal.: ‘Onsinglevaluedneutrosophicrelations’ , J.Intell.FuzzySyst.,2016, 30,(2),pp.1045–1056

[10]Naz,S.,Rashmanlou,H.,Malik,M.A.: ‘Operationsonsinglevalued neutrosophicgraphswithapplication’ , J.Intell.FuzzySyst.,2017, 32,(3), pp.2137–2151

[11]Borzooei,R.A.,Rashmanlou,H.,Samanta,S., etal.: ‘Regularityofvague graphs’ , J.Intell.FuzzySyst.,2016, 30,(6),pp.3681–3689

[12]Akram,M.,Waseem,N.,Dudek,W.A.: ‘Certaintypesofedgem-polarfuzzy graphs’ , Iran.J.FuzzySyst.,2017, 14,(4),pp.27–50

[13]Akram,M.: ‘Certainbipolarneutrosophiccompetitiongraphs’ , J.Indonesian Math.Soc.,2017, 24,(1),pp.1–25

[14]Akram,M.,Siddique,S.: ‘Neutrosophiccompetitiongraphswithapplications’ , J.Intell.FuzzySyst.,2017, 33,(2),pp.921–935

[15]Dey,A.,Pal,A.,Pal,T.: ‘Intervaltype2fuzzysetinfuzzyshortestpathproblem’ , Mathematics,2016, 4,(4),p.62

[16]Shannon,A.,Atanassov,K.: ‘Onageneralizationofintuitionisticfuzzygraphs’ , NIFS,2006, 12,(1),pp.24–29

[17]Parvathi,R.,Karunambigai,M.: ‘Intuitionisticfuzzygraphs’,in ‘Computational intelligence,theoryandapplications’ (Springer,India,2006),pp.139–150

[18]Parvathi,R.,Thamizhendhi,G.: ‘Dominationinintuitionisticfuzzygraphs’ , NotesIntuitionisticFuzzySets,2010, 16,(2),pp.39–49

[19]Parvathi,R.,Karunambigai,M.,Atanassov,K.T.: ‘Operationsonintuitionistic fuzzygraphs’.2009IEEEInt.Conf.onFuzzySystems,Korea,2009, pp.1396–1401

[20]Rashmanlou,H.,Samanta,S.,Pal,M., etal.: ‘Intuitionisticfuzzygraphswith categoricalproperties’ , FuzzyInf.Eng.,2015, 7,(3),pp.317–334

[21]Rashmanlou,H.,Samanta,S.,Pal,M., etal.: ‘Bipolarfuzzygraphswith categoricalproperties’ , Int.J.Comput.Intell.Syst.,2015, 8,(5),pp.808–818

[22]Rashmanlou,H.,Borzooei,R.,Samanta,S., etal.: ‘Propertiesofintervalvalued intuitionistic(s,t)–fuzzygraphs’ , Pac.Sci.Rev.A,Nat.Sci.Eng.,2016, 18,(1), pp.30–37

[23]Sahoo,S.,Pal,M.: ‘Differenttypesofproductsonintuitionisticfuzzygraphs’ , Pac.Sci.Rev.A,Nat.Sci.Eng.,2015, 17,(3),pp.87–96

[24]Wang,J.: ‘Anovel fireflyalgorithmforportfoliooptimizationproblem’ , IAENG Int.J.Appl.Math.,2019, 49,(1),pp.45–50

[25]Akram,M.,Akmal,R.: ‘Operationsonintuitionisticfuzzygraphstructures’ , FuzzyInf.Eng.,2016, 8,(4),pp.389–410

[26]Liu,Q.: ‘ResistancedistanceandKirchhoffindexoftwoedge-subdivisioncorona graphs’ , IAENGInt.J.Appl.Math.,2019, 49,(1),pp.127–133

[27]Prasertpong,R.,Siripitukdet,M.: ‘Applyinggeneralizedroughsetconceptsto approximationspacesofsemigroups’ , IAENGInt.J.Appl.Math.,2019, 49, (1),pp.51–60

[28]Akram,M.,Naz,S.: ‘Energyofpythagoreanfuzzygraphswithapplications’ , Mathematics,2018, 6,(8),p.136

[29]Akram,M.,Habib,A.,Ilyas,F., etal.: ‘SpecifictypesofPythagoreanfuzzy graphsandapplicationtodecision-making’ , Math.Comput.Appl.,2018, 23, (3),p.42

[30]Dey,A.,Pradhan,R.,Pal,A., etal.: ‘Thefuzzyrobustgraphcoloringproblem’ Proc.ofthe3rdInt.Conf.onFrontiersofIntelligentComputing:Theoryand Applications(FICTA)2014,India,2015,pp.805–813

[31]Dey,A.,Pal,A.: ‘Prim’salgorithmforsolvingminimumspanningtreeproblem infuzzyenvironment’ , Ann.FuzzyMath.Inf.,2016, 12,(3),pp.419–430

[32]Akram,M.,Dar,J.M.,Naz,S.: ‘CertaingraphsunderPythagoreanfuzzy environment’ , ComplexIntell.Syst.,2019, 5,(2),pp.127–144

[33]Ghorai,G.,Pal,M.: ‘Certaintypesofproductbipolarfuzzygraphs’ , Int.J.Appl. Comput.Math.,2017, 3,(2),pp.605–619

[34]Garg,H.,Nancy: ‘Animprovedscorefunctionforrankingneutrosophicsetsand itsapplicationtodecision-makingprocess’ , Int.J.Uncertain.Quantif.,2016, 6, (5),pp.377–385

[35]Garg,H.,Nancy: ‘Non-linearprogrammingmethodformulti-criteriadecision makingproblemsunderintervalneutrosophicsetenvironment’ , Appl.Intell., 2018, 48,(8),pp.2199–2213

[36]Garg,H.,Nancy: ‘Multi-criteriadecision-makingmethodbasedonprioritized muirheadmeanaggregationoperatorunderneutrosophicsetenvironment’ , Symmetry,2018, 10,(7),p.280

[37]Garg,H.,Nancy: ‘Somenewbiparametricdistancemeasuresonsingle-valued neutrosophicsetswithapplicationstopatternrecognitionandmedical diagnosis’ , Information,2017, 8,(4),p.162

[38]Chakraborty,A.: ‘Anewscorefunctionofpentagonalneutrosophicnumberand itsapplicationinnetworkingproblem’ , Int.J.NeutrosophicSci.,2020, 1,(1), pp.40–51

[39]Edalatpanah,S.: ‘Adirectmodelfortriangularneutrosophiclinear programming’ , Int.J.NeutrosophicSci.,2020, 1,(1),pp.19–28

[40]Alhabib,R.,Salama,A.: ‘Usingmovingaveragestopavetheneutrosophictime series’ , Int.J.NeutrosophicSci.,2020, 3,(1),pp.14–20

[41]Garg,H.,Nancy: ‘Algorithmsforpossibilitylinguisticsingle-valued neutrosophicdecision-makingbasedonCOPRASandaggregationoperators withnewinformationmeasures’ , Measurement,2019, 138,pp.278–290

[42]Das,S.K.,Edalatpanah,S.: ‘Anewrankingfunctionoftriangularneutrosophic numberanditsapplicationinintegerprogramming’ , Int.J.NeutrosophicSci., 2020, 4,(2),pp.20–30

[43]Dey,A.,Broumi,S.,Bakali,A., etal.: ‘Anewalgorithmfor findingminimum spanningtreeswithundirectedneutrosophicgraphs’ , GranularComput.,2019, 4,(1),pp.63–69

[44]Dey,A.,Pradhan,R.,Pal,A., etal.: ‘Ageneticalgorithmforsolvingfuzzy shortestpathproblemswithintervaltype-2fuzzyarclengths’ , Malaysian J.Comput.Sci.,2018, 31,(4),pp.255–270

[45]Broumi,S.,Bakali,A.,Talea,M., etal.: ‘Spanningtreeproblemwith neutrosophicedgeweights’ , ProcediaComput.Sci.,2018, 127,pp.190–199

[46]Dey,A.,Pal,A.,Long,H.V., etal.: ‘Fuzzyminimumspanningtreewithinterval type2fuzzyarclength:formulationandanewgeneticalgorithm ’ , SoftComput., 2020, 24,(6),pp.3963–3974

[47]Dey,A.,Pal,A.: ‘Computingtheshortestpathwithwords’ , Int.J.Adv.Intell. Paradigms,2019, 12,(3–4),pp.355–369

[48]Broumi,S.,Talea,M.,Bakali,A., etal.: ‘Shortestpathprobleminfuzzy, intuitionisticfuzzyandneutrosophicenvironment:anoverview’ , Complex Intell.Syst.,2019, 5,(4),pp.371–378

[49]Broumi,S.,Nagarajan,D.,Bakali,A., etal.: ‘Theshortestpathproblemin intervalvaluedtrapezoidalandtriangularneutrosophicenvironment’ , Complex Intell.Syst.,2019, 5,(4),pp.391–402

[50]Broumi,S.,Bakali,A.,Talea,M., etal.: ‘Shortestpathproblemunderinterval valuedneutrosophicsetting’ , Int.J.Adv.TrendsComput.Sci.Eng.,2019, 8, (1),pp.216–222

[51]Broumi,S.,Talea,M.,Bakali,A., etal.: ‘Energyandspectrumanalysisof intervalvaluedneutrosophicgraphusingMatlab’ , NeutrosophicSetsSyst., 2019, 24,(1),pp.46–60

[52]Smarandache,F.: ‘Extensionofhypergraphton-superhypergraphandto plithogenicn-superhypergraph,andextensionofhyperalgebraton-ary (classical-/neutro-/anti-)hyperalgebra’ , NeutrosophicSetsSyst.,2020, 33,(1), pp.290–296

[53]Dubois,D.,Parde,H.: ‘Fuzzysetsandsystems:theoryandapplications’,vol.144 (Academicpress,Newyork,1980)

[54]Smarandache,F.: ‘Invisibleparadox’ , ‘Neutrosophy/neutrosophicprobability, set,andlogic’ (AmericanResearchPress,Rehoboth,1998),pp.22–23

[55]Wang,H.,Smarandache,F.,Zhang,Y., etal.: ‘Singlevaluedneutrosophicsets’ , Rev.AirForceAcad.,2010, 1,p.10

CAAITrans.Intell.Technol.,2020,Vol.5,Iss.4,pp.308–313 313 ThisisanopenaccessarticlepublishedbytheIET,ChineseAssociationforArtificialIntelligenceand ChongqingUniversityofTechnologyundertheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense(http:// creativecommons.org/licenses/by-nc-nd/3.0/)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.