TODIMMethodforSingle-ValuedNeutrosophic MultipleAttributeDecisionMaking
Dong-ShengXu 1,CunWei 1,*andGui-WuWei 2,* ID
1 SchoolofScience,SouthwestPetroleumUniversity,Chengdu610500,China;xudongsheng1976@163.com
2 SchoolofBusiness,SichuanNormalUniversity,Chengdu610101,China
* Correspondence:weicun1990@163.com(C.W.);weiguiwu1973@sicnu.edu.cn(G.-W.W.)
Received:20September2017;Accepted:11October2017;Published:16October2017
Abstract: Recently,theTODIMhasbeenusedtosolvemultipleattributedecisionmaking(MADM) problems.Thesingle-valuedneutrosophicsets(SVNSs)areusefultoolstodepicttheuncertaintyof theMADM.Inthispaper,wewillextendtheTODIMmethodtotheMADMwiththesingle-valued neutrosophicnumbers(SVNNs).Firstly,thedefinition,comparison,anddistanceofSVNNsare brieflypresented,andthestepsoftheclassicalTODIMmethodforMADMproblemsareintroduced. Then,theextendedclassicalTODIMmethodisproposedtodealwithMADMproblemswiththe SVNNs,anditssignificantcharacteristicisthatitcanfullyconsiderthedecisionmakers’bounded rationalitywhichisarealactionindecisionmaking.Furthermore,weextendtheproposedmodelto intervalneutrosophicsets(INSs).Finally,anumericalexampleisproposed.
Keywords: multipleattributedecisionmaking(MADM);single-valuedneutrosophicnumbers; intervalneutrosophicnumbers;TODIMmethod;prospecttheory
1.Introduction
Multipleattributedecisionmaking(MADM)isahotresearchareaofthedecisiontheorydomain, whichhashadwideapplicationsinmanyfields,andattractedincreasingattention[1,2].Duetothe fuzzinessanduncertaintyofthealternativesindifferentattributes,attributevaluesindecisionmaking problemsarenotalwaysrepresentedasrealnumbers,andtheycanbedescribedasfuzzynumbers inmoresuitableoccasions,suchasinterval-valuednumbers[3,4],triangularfuzzy variables[5–8], linguisticvariables[9–13]oruncertainlinguisticvariables[14–21],intuitionisticfuzzynumbers (IFSs)[22–27]orinterval-valuedintuitionisticfuzzynumbers(IVIFSs)[28–31],andSVNSs[32]or INSs[33].SinceFuzzyset(FS),whichisaveryusefultooltoprocessfuzzyinformation,was firstlyproposedbyZadeh[34],ithasbeenregardedasanusefultooltosolveMADM[35,36], fuzzylogic[37],andpatternsrecognition[38].Atanassov[22]introducedIFSswiththemembership degreeandnon-membershipdegree,whichwereextendedtoIVIFSs[28].Smarandache[39,40] proposedaneutrosophicset(NS)withtruth-membershipfunction,indeterminacy-membership function,andfalsity-membershipfunction.Furthermore,theconceptsofaSVNS[32]andanINS[33] werepresentedforactualapplications.Ye[41]proposedasimplifiedneutrosophicset(SNS),including theSVNSandINS.Recently,SNSs(INSs,andSVNSs)havebeenutilizedtosolvemanyMADM problems[42–67].
Inordertodepicttheincreasingcomplexityintheactualworld,theDMs’riskattitudes shouldbetakenintoconsiderationtodealwithMADM[68–70].Basedontheprospecttheory, GomesandLima[71]establishedTODIM(anacronyminPortugueseforInteractiveMulti-Criteria DecisionMaking)methodtosolvetheMADMproblemswiththeDMs’psychologicalbehaviors areconsidered.SomescholarshavepaidattentiontodepicttheDMs’attitudinalcharactersinthe MADM[72–74].Also,somescholarsproposedfuzzyTODIMmodels[75,76],intuitionisticfuzzy
Information 2017, 8,125;doi:10.3390/info8040125 www.mdpi.com/journal/information
information Article
TODIMmodels[77,78],thePythagoreanfuzzyTODIMapproach[68],themulti-hesitantfuzzy linguisticTODIM approach[79,80],theintervaltype-2fuzzyTODIMmodel[81],theintuitionistic linguisticTODIMmethod[82],andthe2-dimensionuncertainlinguisticTODIMmethod[83].However, thereisnoscholartoinvestigatetheTODIMmodelwithSVNNS.Therefore,itisverynecessarytopay abundantattentiontothisnovelandworthyissue.TheaimofthispaperistoextendtheTODIMidea tosolvetheMADMwiththeSVNNs,tofillupthisvacancy.InSection 2,wegivethebasicconceptsof SVNSsandtheclassicalTODIMmethodforMADMproblems.InSection 3,weproposetheTODIM methodforSVNMADMproblems.InSection 4,weextendtheproposedSVNTODIMmethodto INNs.InSection 5,anillustrativeexampleispointedoutandsomecomparativeanalysisisconducted. WegiveaconclusioninSection 6
2.Preliminaries
SomebasicconceptsanddefinitionsofNSsandSVNSsareintroduced.
2.1.NSsandSVNSs
Definition1 [39,40]. Let X beaspaceofpoints(objects)withagenericelementinfixset X,denoted by x.NSs A in X ischaracterizedbyatruth-membershipfunction TA (x),anindeterminacy-membership IA (x) andafalsity-membershipfunction FA (x),where TA (x) : X → ] 0,1+ [, IA (x) : X → ] 0,1+ [ andFA (x) : X → ] 0,1+ [ and 0 ≤ supTA (x) + supIA (x) + supFA (x) ≤ 3+ TheNSswasdifficulttoapplytorealapplications.Wang[32]developtheSNSs.
Definition2 [32]. LetXbeaspaceofpoints(objects);aSVNSsAinXischaracterizedasthefollowing: A = {(x, TA (x), IA (x), FA (x))|x ∈ X } (1) wherethetruth-membershipfunction TA (x),indeterminacy-membership IA (x) andfalsity-membershipfunction FA (x), TA (x) : X → [0,1], IA (x) : X → [0,1] and FA (x) : X → [0,1] ,withthecondition 0 ≤ TA (x) + IA (x) + FA (x) ≤ 3. Forconvenience,aSVNNcanbeexpressedtobe A = (TA, IA, FA ), TA ∈ [0,1], IA ∈ [0,1], FA ∈ [0,1], and 0 ≤ TA + IA + FA ≤ 3.
Definition3 [50]. LetA = (TA, IA, FA ) beaSVNN,ascorefunctionS(A) isdefined: S(A) = (2 + TA IA FA ) 3 , S(A) ∈ [0,1].(2)
Definition4 [50]. LetA = (TA, IA, FA ) beaSVNN,anaccuracyfunctionH(A) ofaSVNNisdefined: H(A) = TA FA, H(A) ∈ [ 1,1].(3)
toevaluatethedegreeofaccuracyoftheSVNN A = (TA, IA, FA ),where H(A) ∈ [ 1,1] .Thelargerthevalue ofH(A) is,thehigherthedegreeofaccuracyoftheSVNNA.
Zhangetal.[50]gaveanorderrelationbetweentwoSVNNs,whichisdefinedasfollows:
Definition5 [50]. Let A = (TA, IA, FA ) and B = (TB, IB, FB ) betwoSVNNs,if S(A) < S(B),then A < B; ifS(A) = S(B),then
(1) ifH(A) = H(B),thenA = B; (2) ifH(A) < H(B),thenA < B.
Information 2017, 8,125 2of18
Definition6 [32]. LetAandBbetwoSVNNs,thebasicoperationsofSVNNsare:
(1) A ⊕ B = (TA + TB TA TB, IA IB, FA FB );
(2) A ⊗ B = (TA TB, IA + IB IA IB, FA + FB FA FB ); (3) λ A = 1 (1 TA )λ , (IA )λ , (FA )λ , λ > 0; (4) (A)λ = (TA )λ , (IA )λ ,1 (1 FA )λ , λ > 0.
Definition7 [42]. LetAandBbetwoSVNNs,thenthenormalizedHammingdistancebetweenAandBis: d(A, B) = 1 3 (|TA TB | + |IA IB | + |FA FB |) (4)
2.2.TheTODIMApproach
TheTODIMapproach[71],developedtoconsidertheDM’spsychologicalbehavior,caneffectively solvetheMADMproblems.Basedontheprospecttheory,thisapproachdepictsthedominanceof eachalternativeoverothersbyconstructingafunctionofmulti-attributevalues[69].
Let G = {G1, G2, , Gn } betheattributes, w = (w1, w2, , wn ) betheweightof Gj, 0 ≤ wj ≤ 1, and n ∑ j=1 wj = 1 A = {A1, A2, ··· , Am } arealternatives.Let A = aij m×n beadecisionmatrix, where aij isgivenforthealternative Ai underthe Gj, i = 1,2, ··· , m,and j = 1,2, ··· , n.Weset wjr = wj /wr (j, r = 1,2, , n) arerelativeweightof Gj to Gr,and wr = max wj |j = 1,2, , n , and0 ≤ wjr ≤ 1.
(6) andtheparameter θ showstheattenuationfactorofthelosses.If bij btj > 0,then φj (Ai, At ) representsagain;if bij btj < 0,then φj (Ai, At ) signifiesaloss. Step3. Derivingtheoveralldominancevalueof Ai bytheEquation(7): φ(Ai ) =
m ∑ t=1 δ(Ai, At ) max i
m ∑ t=1 δ(Ai, At ) min i
m ∑ t=1 δ(Ai, At ) min i
m ∑ t=1 δ(Ai, At ) , i = 1,2, , m.(7)
Step4. Rankingallalternativesandselectingthemostdesirablealternativeinaccordancewith φ(Ai ).Thealternativewithminimumvalueistheworst.Inversely,themaximumvalueis thebestone.
Information 2017
3of18
, 8,125
ThenthetraditionalTODIMmodelconcludesthefollowingcomputingsteps: Step1. Normalizing A = aij m×n into B = bij m×n Step2. Computingthedominancedegreeof Ai overeveryalternative At underattribute Gj: δ(Ai, At ) = n ∑ j=1 φj (Ai, At ), (i, t = 1,2, , m) (5) where φj (Ai, At ) =
wjr bij btj / n ∑ j=1 wjr, ifbij btj > 0 0, ifbij btj = 0 1 θ n ∑ j=1 wjr btj bij /wjr, ifbij btj < 0
3.TODIMMethodforSVNMADMProblems
Let A = {A1, A2, , Am } bealternatives,and G = {G1, G2, , Gn } beattributes.Let w = (w1, w2, , wn ) betheweightofattributes,where wj ∈ [0,1], n ∑ j=1 wj = 1.Supposethat R = rij m×n = Tij, Iij, Fij m×n beaSVNmatrix,where rij = Tij, Iij, Fij ,whichisanattributevalue,givenbyan expert,forthealternative Ai under Gj, Tij ∈ [0,1], Iij ∈ [0,1], Fij ∈ [0,1], 0 ≤ Tij + Iij + Fij ≤ 3, i = 1,2, ··· , m, j = 1,2, ··· , n
TosolvetheMADMproblemwithsingle-valuedneutrosophicinformation,wetrytopresent asingle-valuedneutrosophicTODIMmodelbasedontheprospecttheoryandcandepicttheDMs’ behaviorsunderrisk.
Firstly,wecalculatetherelativeweightofeachattribute Gj as: wjr = wj /wr, j, r = 1,2, , n.(8) where wj istheweightoftheattributeof Gj, wr = max wj |j = 1,2, ··· , n ,and0 ≤ wjr ≤ 1. BasedontheEquation(8),wecanderivethedominancedegreeof Ai overeachalternative At withrespecttotheattribute Gj: φj (Ai, At )
wjr d rij, rtj / n ∑ j=1 wjr, ifrij > rtj 0, ifrij = rtj 1 θ n ∑ j=1 wjr d rij, rtj /wjr, ifrij < rtj
(9) d rij, rtj = 1 3 Tij Ttj + Iij Itj + Fij Ftj .(10) wheretheparameter θ showstheattenuationfactorofthelosses,and d rij, rtj istomeasurethe distancesbetweentheSVNNs rij and rtj byDefinition7.If rij > rtj,then φj (Ai, At ) representsagain; if rij < rtj,then φj (Ai, At ) signifiesaloss.
. φj (Am, A1) φj (Am, A2) ··· 0
j (A2, A1) 0 ··· φj (A2, Am ) . .
, j = 1,2, , n (11) OnthebasisofEquation(11),theoveralldominancedegree δ(Ai, At ) ofthe Ai overeach At can becalculated: δ(Ai, At )
o φj (A1, A2) ··· φj (A1, Am ) φ
Information 2017, 8,125 4of18
=
···
=
∑ j=
φ
δ
m
A
δ = [δ(
t )]m×m = A1 A2 . Am o δ
δ
δ
··· δ
. . . δ
Forindicatingfunctions φj (Ai, At ) clearly,adominancedegreematrix φj = φj (Ai, At ) m×m under Gj isexpressedas: A1 A2 ··· Am φj = φj (Ai, At ) m×m = δ
A1 A2 . Am 0
n
1
j (Ai, At ), (i, t = 1,2, , m).(12) Thus,theoveralldominancedegreematrix
= [δ(Ai, At )]
×m canbederivedbyEquation(12):
1 A2 Am
Ai, A
(A1, A2)
(A1, Am )
(A2, A1) 0
(A2, Am )
(Am, A1)
(Am, A2)
.(13)
Then,theoverallvalueofeach Ai canbecalculatedEquation(14):
δ(Ai ) =
m ∑ t=1 δ(Ai, At ) max i
m ∑ t=1 δ(Ai, At ) min i
m ∑ t=1 δ(Ai, At ) min i
m ∑ t=1 δ(Ai, At ) , i = 1,2, ··· , m.(14)
Alsothegreatertheoverallvalue δ(Ai ),thebetterthealternative Ai. Ingeneral,single-valuedneutrosophicTODIMmodelincludesthecomputingsteps: (Procedureone)
Step1. Identifyingthesingle-valuedneutrosophicmatrix R = rij m×n = Tij, Iij, Fij m×n inthe MADM,where rij isaSVNN.
Step2. Calculatingtherelativeweightof Gj byusingEquation(8).
Step3. Calculatingthedominancedegree φj (Ai, At ) of Ai overeachalternative At underattribute Gj byEquation(9).
Step4. Calculatingtheoveralldominancedegree δ(Ai, At ) of Ai overeachalternative At byusing Equation(12).
Step5. Derivingtheoverallvalue δ(Ai ) ofeachalternative Ai usingEquation(14). Step6. Determiningtheorderofthealternativesinaccordancewith δ(Ai )(i = 1,2, , m).
4.TODIMMethodforIntervalNeutrosophicMADMProblems
Furthermore,Wangetal.[33]definedINSs.
Definition8 [33]. Let X beaspaceofpoints(objects)withagenericelementinfixset X,anINSs A in X is characterizedasfollows: A = x, TA (x), IA (x), FA (x) |x ∈ X (15)
wheretruth-membershipfunction TA (x),indeterminacy-membership IA (x) andfalsity-membershipfunction FA (x) areintervalvalues, TA (x) ⊆ [0,1], IA (x) ⊆ [0,1] and FA (x) ⊆ [0,1],and 0 ≤ sup TA (x) + sup IA (x) + sup FA (x) ≤ 3. Anintervalneutrosophicnumber(INN)canbeexpressedas A = TA, IA, FA = TL A, TR A , I L A, I R A , FL A, FR A ,where TL A, TR A ⊆ [0,1], I L A, I R A ⊆ [0,1], FL A, FR A ⊆ [0,1], and 0 ≤ TR A + I R A + FR A ≤ 3.
Definition9 [84]. Let A = TL A, TR A , I L A, I R A , FL A, FR A beanINN,ascorefunction S ofanINNcanbe representedasfollows: S A = 2 + TL A I L A FL A + 2 + TR A I R A FR A 6 , S A ∈ [0,1].(16)
Definition10 [84]. Let A = TL A, TR A , I L A, I R A , FL A, FR A beanINN,anaccuracyfunction H A isdefined: H A = TL A + TR A FL A + FR A 2 , H A ∈ [ 1,1].(17)
Tang[84]definedanorderrelationbetweentwoINNs.
Information 2017, 8,125 5of18
Definition11 [84]. Let A = TL A, TR A , I L A, I R A , FL A, FR A and B = TL B , TR B , I L B , I R B , FL B , FR B betwoINNs, S A = 2+TL A I L A FL A + 2+TR A I R A FR A 6 and S B = 2+TL B I L B FL B + 2+TR B I R B FR B 6 bethe scores,and H A = TL A +TR A FL A +FR A 2 and H B = TL B +TR B FL B +FR B 2 betheaccuracyfunction,thenif S A < S B ,then A < B;ifS A = S B ,then
(1) ifH A = H B ,then A = B; (2) ifH A < H B , A < B
Definition12 [33,61]. Let A1 = TL 1 , TR 1 , I L 1 , I R 1 , FL 1 , FR 1 and A2 = TL 2 , TR 2 , I L 2 , I R 2 , FL 2 , FR 2 betwoINNs,andsomebasicoperationsonthemaredefinedasfollows:
(1) A1 ⊕ A2 = TL 1 + TL 1 TL 1 TL 1 , TR 1 + TR 1 TR 1 TR 1 , I L 1 I L 2 , I R 1 I R 2 , FL 1 FL 2 , FR 1 FR 2 ; (2) A1 ⊗ A2 = TL 1 TL 2 , TR 1 TR 2 , I L 1 + I L 1 I L 1 I L 1 , I R 1 + I R 1 I R 1 I R 1 , FL 1 + FL 1 FL 1 FL 1 , FR 1 + FR 1 FR 1 FR 1 ; (3) λ A1 = 1 1 TL 1 λ ,1 1 TR 1 λ , I L 1 λ , I R 1 λ , FL 1 λ , FR 1 λ , λ > 0; (4) A1 λ = TL 1 λ , TR 1 λ , I L 1 λ , I R 1 λ , 1 1 FL 1 λ ,1 1 FR 1 λ , λ > 0.
Definition13 [84]. Let A1 = TL 1 , TR 1 , I L 1 , I R 1 , FL 1 , FR 1 and A2 = TL 2 , TR 2 , I L 2 , I R 2 , FL 2 , FR 2 betwoINNs,thenthenormalizedHammingdistancebetween A1 = TL 1 , TR 1 , I L 1 , I R 1 , FL 1 , FR 1 and A2 = TL 2 , TR 2 , I L 2 , I R 2 , FL 2 , FR 2 isdefinedasfollows: d A1, A2 = 1 6 TL 1 TL 2 + TR 1 TR 2 + I L 1 I L 2 + I R 1 I R 2 + FL 1 FL 2 + FR 1 FR 2 (18)
Let A, G and w bepresentedasinSection 3.Supposethat R = rij m×n = TL ij , TR ij , I L ij , I R ij , FL ij , FR ij m×n istheintervalneutrosophicdecisionmatrix,where TL ij , TR ij , I L ij , I R ij , FL ij , FR ij istruth-membershipfunction,indeterminacy-membershipfunctionand falsity-membershipfunction, TL ij , TR ij ⊆ [0,1], I L ij , I R ij ⊆ [0,1], FL ij , FR ij ⊆ [0,1], 0 ≤ TR ij + I R ij + FR ij ≤ 3, i = 1,2, , m, j = 1,2, , n
TocopewiththeMADMwithINNs,wedevelopintervalneutrosophicTODIMmodel. Firstly,wecalculatetherelativeweightofeachattribute Gj as: wjr = wj /wr, j, r = 1,2, , n (19) where wj istheweightoftheattributeof Gj, wr = max wj |j = 1,2, ··· , n ,and0 ≤ wjr ≤ 1. BasedontheEquation(20),wecanderivethedominancedegreeof Ai overeachalternative At withrespecttotheattribute Gj: φj (Ai, At ) =
wjr d rij, rtj / n ∑ j=1 wjr, if rij > rtj 0, if rij = rtj 1 θ n ∑ j=1 wjr d rij, rtj /wjr, if rij < rtj
(20)
Information
6of18
2017, 8,125
d rij, rtj = 1 6 TL ij TL tj + TR ij TR tj + I L ij I L tj + I R ij I R tj + FL ij FL tj + FR ij FR tj .(21) wheretheparameter θ showstheattenuationfactorofthelosses,and d rij, rtj istomeasurethe distancesbetweentheINNs rij and rtj byDefinition13.If rij > rtj,then φj (Ai, At ) representsagain;if rij < rtj,then φj (Ai, At ) signifiesaloss.
Forindicatingfunctions φj (Ai, At ) clearly,adominancedegreematrix φj = φj (Ai, At ) m×m under Gj isexpressedas: A1 A2 Am φj = φj (Ai, At ) m
o φj (A1, A2) φj (A1, Am ) φj (A2, A1) 0 φj (A2, Am ) . . . φj (Am, A1) φj (Am, A2) 0
, j = 1,2, , n (22)
OnthebasisofEquation(22),theoveralldominancedegree δ(Ai, At ) ofthe Ai overeach At can becalculated: δ(Ai, At ) = n ∑ j=1 φj (Ai, At ), (i, t = 1,2, ··· , m) (23)
Thus,theoveralldominancedegreematrix δ = [δ(Ai, At )]m×m canbederivedbyEquation(23): A1 A2 Am δ = [δ(Ai, At )]m×m =
A1 A2 . Am
o δ(A1, A2) δ(A1, Am ) δ(A2, A1) 0 δ(A2, Am ) . . . δ(Am, A1) δ(Am, A2) 0
(24)
Then,theoverallvalueofeach Ai canbecalculatedEquation(25): δ(Ai ) =
m ∑ t=1 δ(Ai, At ) max i
m ∑ t=1 δ(Ai, At ) min i
m ∑ t=1 δ(Ai, At ) min i
m ∑ t=1 δ(Ai, At ) , i = 1,2, , m.(25)
Alsothegreatertheoverallvalue δ(Ai ),thebetterthealternative Ai Ingeneral,intervalneutrosophicTODIMmodelincludesthecomputingsteps: (Proceduretwo)
Step1. Identifyingtheintervalneutrosophicmatrix R = rij m×n = TL ij , TR ij , IL ij , IR ij , FL ij , FR ij m×n intheMADM,where rij isanINN.
Step2. Calculatingtherelativeweightof Gj byusingEquation(19).
Step3. Calculatingthedominancedegree φj (Ai, At ) of Ai overeachalternative At underattribute Gj byEquation(20).
Step4. Calculatingtheoveralldominancedegree δ(Ai, At ) of Ai overeachalternative At byusing Equation(23).
Step5. Derivingtheoverallvalue δ(Ai ) ofeachalternative Ai usingEquation(25). Step6. Determiningtheorderofthealternativesinaccordancewith δ(Ai )(i = 1,2, , m)
Information 2017, 8,125 7of18
×m = A1 A2 . Am
5.NumericalExampleandComparativeAnalysis
5.1.NumericalExample1
Inthispart,anumericalexampleisgiventoshowpotentialevaluationofemerging technologycommercializationwithSVNNs.Fivepossibleemergingtechnologyenterprises(ETEs) Ai (i = 1,2,3,4,5) aretobeevaluatedandselected.Fourattributesareselectedtoevaluatethe fivepossibleETEs: 1 G1 istheemploymentcreation; 2 G2 isthedevelopmentofscienceand technology; 3 G3 isthetechnicaladvancement;and 4 G4 istheindustrializationinfrastructure.The fiveETEs Ai (i = 1,2,3,4,5) aretobeevaluatedbyusingtheSVNNsundertheabovefourattributes (whoseweightingvector ω = (0.2,0.1,0.3,0.4)T ),aslistedinthefollowingmatrix.
G1 G2 G3 G4
(0.5,0.8,0.1)(0.6,0.3,0.3)(0.3,0.6,0.1)(0.5,0.7,0.2) (0.7,0.2,0.1)(0.7,0.2,0.2)(0.7,0.2,0.4)(0.8,0.2,0.1) (0.6,0.7,0.2)(0.5,0.7,0.3)(0.5,0.3,0.1)(0.6,0.3,0.2) (0.8,0.1,0.3)(0.6,0.3,0.4)(0.3,0.4,0.2)(0.5,0.6,0.1) (0.6,0.4,0.4)(0.4,0.8,0.1)(0.7,0.6,0.1)(0.5,0.8,0.2)
Then,weuse ProcedureOne toselectthebestETE. Firstly,since w4 = max{w1, w2, w3, w4},then G4 isthereferenceattributeandthereference attribute’sweightis wr = 0.4.Then,wecancalculatetherelativeweightsoftheattributes Gj (j = 1,2,3,4) as w1r = 0.50, w2r = 0.25, w3r = 0.75 and w4r = 1.00.Let θ = 2.5,thenthedominance degreematrix φj (Ai, At )(j = 1,2,3,4) withrespectto Gj canbecalculated:
A1 A2 A3 A4 A5
0.0000 0.4619 0.2828 0.5657 0.4619 0.23090.00000.21600.16330.2000 0.1414 0.43200.0000 0.4899 0.3651 0.2828 0.32660.24490.00000.2000 0.2309 0.40000.1826 0.40000.0000
A1 A2 A3 A4 A5
0.0000 0.40000.12910.05770.1732 0.10000.00000.16330.11550.1826 0.5164 0.65320.0000 0.5657 0.4619 0.2309 0.46190.14140.00000.1826 0.6928 0.73030.1155 0.73030.0000
0.0000 0.4422 0.2981 0.2309 0.2667 0.33170.0000 0.32660.28280.2646 0.22360.24490.00000.20000.2236 0.1732 0.3771 0.26670.0000 0.3528 0.2000 0.3528 0.29810.26460.0000
0.0000 0.3464 0.2582 0.16330.1155 0.34640.00000.23090.30550.3651 0.2582 0.23090.00000.25820.2828 0.1633 0.3055 0.25820.00000.2000 0.1155 0.3651 0.2828 0.20000.0000
Information 2017, 8,125 8of18
R = A
A
A
A
A
1
2
3
4
5
φ
=
1
A1 A2 A3 A4 A5
φ
=
A
φ3 = A1 A2 A3 A4 A5
A1
2
5 φ4 = A1 A2 A3 A4 A5
2
A1 A2 A3 A4 A5
1 A2 A3 A4 A5
A
A3 A4 A
Theoveralldominancedegree δ(Ai, At ) ofthecandidate Ai overeachcandidate At canbederived byEquation(13):
A1 A2 A3 A4 A5
0.0000 1.6505 0.7100 0.9022 0.4399 1.00900.00000.28360.86711.01234 0.1068 1.07120.0000 0.5974 0.3206 0.3884 1.4711 0.13860.00000.2298 0.3774 1.8482 0.2828 1.06570.0000
Finally,wegetorderofETEsby δ(Ai )(i = 1,2,3,4,5): A2 A4 A3 A5 A1,andthusthe mostdesirableETEis A2.
5.2.ComparativeAnalysis1
Inwhatfollows,wecompareourproposedmethodwithotherexistingmethodsincludingthe SVNWAoperatorandSVNWGoperatorproposedbySahin[85]asfollows:
Definition14 [85]. Let Aj = Tj, Ij, Fj (j = 1,2, , n) beacollectionofSVNNs, w = (w1, w2, , wn )T betheweightofAj (j = 1,2, , n),andwj > 0, n ∑ j=1 wj = 1 .Then
ri = (Ti, Ii, Fi )
= SVNWAw (ri1, ri2, , rin ) = n ⊕ j=1 wjrij = 1 n ∏ j=1 1 Tij wj , n ∏ j=1 Iij wj , n ∏ j=1 Fij wj
ri = (Ti, Ii, Fi ) = SVNWGω (ri1, ri2, ··· , rin ) = n ⊗ j=1 rij wj = n ∏ j=1 Tij wj ,1 n ∏ j=1 1 Iij wj ,1 n ∏ j=1 1 Fij wj
(26)
(27)
Byutilizingthe R,aswellastheSVNWAandSVNWGoperators,theaggregatingvaluesare derivedinTable 1
Table1. TheaggregatingvaluesoftheemergingtechnologyenterprisesbytheSVNWA (SVNWG)operators.
SVNWASVNWG
A1 (0.4591,0.6307,0.1473)(0.4369,0.6718,0.1627) A2 (0.7449,0.2000,0.1625)(0.7384,0.2000,0.2124) A3 (0.5627,0.3868,0.1692)(0.5578,0.4571,0.1822) A4 (0.5497,0.3464,0.1762)(0.4799,0.4381,0.2067) A5 (0.5822,0.6389,0.1741)(0.5610,0.6933,0.2083)
Information 2017
9of18
, 8,125
A1 A2 A3 A4 A5 δ =
Then,wegettheoverallvalue δ(Ai )(i = 1,2,3,4,5) byusingEquation(14): δ(A1) = 0.0000, δ(A2) = 1.0000, δ(A3) = 0.2648 δ(A4) = 0.3944, δ(A5) = 0.0187
AccordingtotheaggregatingresultsinTable 1,thescorefunctionsarelistedinTable 2.
Table2. Thescorefunctionsoftheemergingtechnologyenterprises.
SVNWASVNWG
A1 0.56040.5341 A2 0.79420.7753
A3 0.66890.6398 A4 0.67570.6117 A5 0.58980.5531
AccordingtothescorefunctionsshowninTable 2,theorderoftheemergingtechnology enterprisesareinTable 3
Table3. Orderoftheemergingtechnologyenterprises.
Order
SVNWAA2 >A4 >A3 >A5 >A1 SVNWGA2 >A3 >A4 >A5 >A1
Fromtheaboveanalysis,itcanbeseenthattwooperatorshavethesamebestemergingtechnology enterpriseA2 andtwomethods’rankingresultsareslightlydifferent.However,theSVNTODIM approachcanreasonablydepicttheDMs’psychologicalbehaviorsunderrisk,andthus,itmaydeal withtheaboveissueeffectively.Thisverifiesthemethodweproposedisreasonableandeffectivein thispaper.
5.3.NumericalExample2
Ifthefivepossibleemergingtechnologyenterprises Ai (i = 1,2,3,4,5) aretobeevaluatedby usingtheINNSundertheabovefourattributes(whoseweightingvector ω = (0.2,0.1,0.3,0.4)T ), aslistedinthematrix R,then:
([0.5,0.6], [0.8,0.9], [0.1,0.2])([0.6,0.7], [0.3,0.4], [0.3,0.4]) ([0.7,0.9], [0.2,0.3], [0.1,0.2])([0.7,0.8], [0.1,0.2], [0.2,0.3]) ([0.6,0.7], [0.7,0.8], [0.2,0.3])([0.5,0.6], [0.7,0.8], [0.3,0.4]) ([0.8,0.9], [0.1,0.2], [0.3,0.4])([0.6,0.7], [0.3,0.4], [0.4,0.5]) ([0.6,0.7], [0.4,0.5], [0.4,0.5])([0.4,0.5], [0.8,0.9], [0.1,0.2]) ([0.3,0.4], [0.6,0.7], [0.1,0.2])([0.5,0.6], [0.7,0.8], [0.1,0.2]) ([0.7,0.9], [0.2,0.3], [0.4,0.5])([0.8,0.9], [0.2,0.3], [0.1,0.2]) ([0.5,0.6], [0.3,0.4], [0.1,0.2])([0.6,0.7], [0.3,0.4], [0.2,0.3]) ([0.3,0.4], [0.4,0.5], [0.2,0.3])([0.5,0.6], [0.6,0.7], [0.1,0.2]) ([0.7,0.8], [0.6,0.7], [0.1,0.2])([0.5,0.6], [0.8,0.9], [0.2,0.3])
Then,weuse ProcedureTwo toselectthebestETE. Firstly,since w4 = max{w1, w2, w3, w4},then G4 isthereferenceattributeandthereference attribute’sweightis wr = 0.4.Then,wecancalculatetherelativeweightsoftheattributes
Information 2017, 8,125 10of18
R =
Gj (j = 1,2,3,4) as: w1r = 0.50, w2r = 0.25, w3r = 0.75 and w4r = 1.00.Let θ = 2.5,thenthedominance degreematrix φj (Ai, At )(j = 1,2,3,4) withrespectto Gj canbecalculated:
A1 A2 A3 A4 A5
0.0000 0.4761 0.2828 0.5657 0.4619 0.23800.00000.22360.15280.2082 0.1414 0.44720.0000 0.4899 0.3651 0.2828 0.30550.24490.00000.2000 0.2309 0.41630.1826 0.40000.0000
0.0000 0.46190.12910.05770.1732 0.11550.00000.17320.12910.1915 0.5164 0.69280.0000 0.5657 0.4619 0.2309 0.51640.14140.00000.1826 0.6928 0.76590.1155 0.73030.0000
0.0000 0.4522 0.2981 0.2309 0.2667 0.33910.00000.25500.29150.2739 0.2236 0.33990.00000.20000.2236 0.1732 0.3887 0.26670.0000 0.3528 0.2000 0.3651 0.29810.26460.0000
A1 A2 A3 A4 A5
0.0000 0.3266 0.2828 0.11550.1633 0.32660.00000.23090.30550.3651 0.2828 0.23090.00000.25820.2828 0.1155 0.3055 0.25820.00000.2000 0.1633 0.3651 0.2828 0.20000.0000
Theoveralldominancedegree δ(Ai, At ) ofthecandidate Ai overeachcandidate At canbederived byEquation(24):
A1 A2 A3 A4 A5
0.0000 1.7168 0.7346 0.75060.0698 1.01920.00000.37270.35130.8305 0.1314 1.03100.0000 0.47260.0445 0.3406 1.5161 0.13860.20000.0298 0.4252 1.9124 0.8654 0.66570.0000
Information 2017, 8,125 11of18
φ1 =
3 A4 A5
A1 A2 A
φ2 = A1 A2 A3 A4 A5
A1 A2 A3 A4 A5
φ3 =
1
2 A3 A4 A5
A1 A2 A3 A4 A5
A
A
φ
=
4
A1 A2 A3 A4 A5
δ
δ
δ
= A1 A2 A3 A4 A5
Then,wegettheoverallvalue δ(Ai )(i = 1,2,3,4,5) byusingEquation(25):
(A1) = 0.1143, δ(A2) = 1.0000, δ(A3) = 0.3944
(A4) = 0.4322, δ(A5) = 0.0000 Finally,wegetorderofETEsby δ(Ai )(i = 1,2,3,4,5): A2 A4 A3 A1 A5,andthusthe mostdesirableETEis A2 5.4.ComparativeAnalysis2 Inwhatfollows,wecompareourproposedmethodwithotherexistingmethodsincludingthe INWAoperatorandINWGoperatorproposedbyZhangetal.[50]asfollows:
Definition15 [50]. Let Aj = TL j , TR j , I L j , I R j , FL j , FR j (j = 1,2, , n) beacollectionofINNs, w = (w1, w2, , wn )T betheweightofAj (j = 1,2, , n),andwj > 0, n ∑ j=1 wj = 1 .Then ri = TL i , TR i , I L i , I R i , FL i , FR i = INWAw (ri1, ri2, , rin ) = n ⊕ j=1 wjrij =
1 n ∏ j=1 1 TL ij wj ,1 n ∏ j=1 1 TR ij wj , n ∏ j=1 I L ij wj , n ∏ j=1 I R ij wj , n ∏ j=1 FL ij wj , n ∏ j=1 FR ij wj
(28) ri = TL i , TR i , I L i , I R i , FL i , FR i = INWGw (ri1, ri2, , rin ) = n ⊗ j=1 rij wj
(29) Byutilizingthedecisionmatrix R,andtheINWAandINWGoperators,theaggregatingvalues areinTable 4
Table4. TheaggregatingvaluesoftheemergingtechnologyenterprisesbytheINWAand INWGoperators.
INWA
A1 ([0.4591,0.5611],[0.6307,0.7342],[0.1116,0.2144])
A2 ([0.7449,0.8928],[0.1866,0.2881],[0.1625,0.2742])
A3 ([0.5627,0.6634],[0.3868,0.4925],[0.1692,0.2734])
A4 ([0.5497,0.6674],[0.3464,0.4657],[0.1762,0.2844]) A5 ([0.5822,0.6863],[0.6389,0.7421],[0.1741,0.2825])
INWG
A1 ([0.4369,0.5395],[0.6718,0.7805],[0.1223,0.2227])
A2 ([0.7384,0.8895],[0.1905,0.2906],[0.2124,0.3144])
A3 ([0.5578,0.6581],[0.4571,0.5685],[0.1822,0.2825])
A4 ([0.4799,0.5851],[0.4381,0.5440],[0.2067,0.3077])
A5 ([0.5610,0.6624],[0.6933,0.8082],[0.2083,0.3097])
AccordingtotheaggregatingvaluesinTable 4,thescorefunctionsareinTable 5.
Table5. Thescorefunctionsoftheemergingtechnologyenterprises.
INWAINWG
A1 0.55490.5298
A2 0.78770.7700
A3 0.65070.6209
A4 0.65740.5948 A5 0.57180.5340
Information 2017, 8,125 12of18
= n ∏ j=1 TL ij wj , n ∏ j=1 TR ij wj , 1 n ∏ j=1 1 I L ij wj ,1 n ∏ j=1 1 I R ij wj , 1 n ∏ j=1 1 FL ij wj ,1 n ∏ j=1 1 FR ij wj
AccordingtothescorefunctionsshowninTable 5,theorderoftheemergingtechnology enterprisesareinTable 6.
Table6. Orderoftheemergingtechnologyenterprises.
Ordering
INWAA2 >A4 >A3 >A5 >A1
INWGA2 >A3 >A4 >A5 >A1
Fromtheaboveanalysis,itcanbeseenthattwooperatorshavethesamebestemerging technologyenterpriseA2 andtwomethods’rankingresultsareslightlydifferent.However,the intervalneutrosophicTODIMapproachcanreasonablydepicttheDMs’psychologicalbehaviorsunder risk,andthus,itmaydealwiththeaboveissueeffectively.Thisverifiesthemethodweproposedis reasonableandeffective.
6.Conclusions
Inthispaper,wewillextendtheTODIMmethodtotheMADMwiththesingle-valued neutrosophicnumbers(SVNNs).Firstly,thedefinition,comparisonanddistanceofSVNNsare brieflypresented,andthestepsoftheclassicalTODIMmethodforMADMproblemsareintroduced. Then,theextended classicalTODIMmethodisproposedtodealwithMADMproblemswiththe SVNNs,anditssignificantcharacteristicisthatitcanfullyconsiderthedecisionmakers’bounded rationalitywhichisarealactionindecisionmaking.Furthermore,weextendtheproposed modeltointervalneutrosophicsets(INSs).Finally,anumericalexampleisproposedtoverifythe developedapproach.
Inthefuture,theapplicationoftheproposedmodelsandmethodsofSVNSsandINSsneeds tobeexploredinthedecisionmaking[86–99],riskanalysisandmanyotheruncertainandfuzzy environment[100–112].
Acknowledgments: TheworkwassupportedbytheNationalNaturalScienceFoundationofChinaunder GrantNo.71571128andtheHumanitiesandSocialSciencesFoundationofMinistryofEducationofthe People’sRepublic ofChina(17XJA630003)andtheConstructionPlanofScientificResearchInnovationTeamfor CollegesandUniversitiesinSichuanProvince(15TD0004).
AuthorContributions: Dong-ShengXu,CunWeiandGui-WuWeiconceivedandworkedtogethertoachieve thiswork,Gui-WuWeiwrotethepaper,CunWeimadecontributiontothecasestudy.
ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.
References
1. Buyukozkan,G.;Arsenyan,J.;Ruan,D.Logisticstoolselectionwithtwo-phasefuzzymulticriteriadecision making:Acasestudyforpersonaldigitalassistantselection. ExpertSyst.Appl. 2012, 39,142–153.[CrossRef]
2. Wei,G.W.;Wang,J.M.;Chen,J.Potentialoptimalityandrobustoptimalityinmultiattributedecisionanalysis withincompleteinformation:Acomparativestudy. Decis.SupportSyst. 2013, 55,679–684.[CrossRef]
3. Xu,Z.S.TheuncertainOWAoperator. Int.J.Intell.Syst. 2002, 17,569–575.[CrossRef]
4. Ran,L.G.;Wei,G.W.Uncertainprioritizedoperatorsandtheirapplicationtomultipleattributegroup decisionmaking. Technol.Econ.Dev.Econ. 2015, 21,118–139.[CrossRef]
5. VanLaarhoven,P.J.M.;Pedrycz,W.AfuzzyextensionofSaaty’sprioritytheory. FuzzySetsSyst. 1983, 11, 229–241.[CrossRef]
6. Zhao,X.F.;Lin,R.;Wei,G.W.Fuzzyprioritizedoperatorsandtheirapplicationtomultipleattributegroup decisionmaking. Appl.Math.Model. 2013, 37,4759–4770.[CrossRef]
7. Wei,G.W.;Zhao,X.F.;Wang,H.J.;Lin,R.Fuzzypoweraggregatingoperatorsandtheirapplicationto multipleattributegroupdecisionmaking. Technol.Econ.Dev.Econ. 2013, 19,377–396.[CrossRef]
8. Wei,G.W.FIOWHMoperatoranditsapplicationtomultipleattributegroupdecisionmaking. ExpertSyst.Appl. 2011, 38,2984–2989.[CrossRef]
Information 2017, 8,125 13of18
Information 2017, 8,125
9. Herrera,F.;Martínez,L.A2-tuplefuzzylinguisticrepresentationmodelforcomputingwithwords. IEEETrans.FuzzySyst. 2000, 8,746–752.
10. Herrera,F.;Martínez,L.Anapproachforcombininglinguisticandnumericalinformationbasedon2-tuple fuzzylinguisticrepresentationmodelindecision-making. Int.J.Uncertain.Fuzziness 2000, 8,539–562. [CrossRef]
11. Herrera,F.;Martínez,L.Amodelbasedonlinguistic2-tuplesfordealingwithmultigranularhierarchical linguisticcontextsinmulti-expertdecision-making. IEEETrans.Syst.ManCybern. 2001, 31,227–234. [CrossRef][PubMed]
12. Xu,Z.S.Amethodformultipleattributedecisionmakingwithincompleteweightinformationinlinguistic setting. Knowl.-BasedSyst. 2007, 20,719–725.[CrossRef]
13. Wei,G.W.Somelinguisticpoweraggregatingoperatorsandtheirapplicationtomultipleattributegroup decisionmaking. J.Intell.FuzzySyst. 2013, 25,695–707.
14. Xu,Z.S.Uncertainlinguisticaggregationoperatorsbasedapproachtomultipleattributegroupdecision makingunderuncertainlinguisticenvironment. Inf.Sci. 2004, 168,171–184.[CrossRef]
15. Xu,Z.S.InduceduncertainlinguisticOWAoperatorsappliedtogroupdecisionmaking. Inf.Fusion 2006, 7, 231–238.[CrossRef]
16. Wei,G.W.UncertainlinguistichybridgeometricmeanoperatoranditsApplicationtogroupdecisionmaking underuncertainlinguisticenvironment. Int.J.Uncertain.Fuzziness 2009, 17,251–267.[CrossRef]
17. Wei,G.W.Interval-valueddualhesitantfuzzyuncertainlinguisticaggregationoperatorsinmultipleattribute decisionmaking. J.Intell.FuzzySyst. 2017, 33,1881–1893.[CrossRef]
18. Lu,M.;Wei,G.W.Pythagoreanuncertainlinguisticaggregationoperatorsformultipleattributedecision making. Int.J.Knowl.-BasedIntell.Eng.Syst. 2017, 21,165–179.[CrossRef]
19. Wei,G.W.Intervalvaluedhesitantfuzzyuncertainlinguisticaggregationoperatorsinmultipleattribute decisionmaking. Int.J.Mach.Learn.Cybern. 2016, 7,1093–1114.[CrossRef]
20. Zhou,L.Y.;Lin,R.;Zhao,X.F.;Wei,G.W.Uncertainlinguisticprioritizedaggregationoperatorsandtheir applicationtomultipleattributegroupdecisionmaking. Int.J.Uncertain.Fuzziness 2013, 21,603–627. [CrossRef]
21. Wei,G.W.;Zhao,X.F.;Lin,R.;Wang,H.J.UncertainlinguisticBonferronimeanoperatorsandtheirapplication tomultipleattributedecisionmaking. Appl.Math.Model. 2013, 37,5277–5285.[CrossRef]
22. Atanassov,K.Intuitionisticfuzzysets. FuzzySetsSyst. 1986, 20,87–96.[CrossRef]
23. Xu,Z.S.Intuitionisticfuzzyaggregationoperators. IEEETrans.FuzzySyst. 2007, 15,1179–1187. 24. Xu,Z.S.;Yager,R.R.Somegeometricaggregationoperatorsbasedonintuitionisticfuzzysets. Int.J. Gen.Syst. 2006, 35,417–433.[CrossRef] 25. Zhao,X.F.;Wei,G.W.SomeIntuitionisticFuzzyEinsteinHybridAggregationOperatorsandTheir ApplicationtoMultipleAttributeDecisionMaking. Knowl.-BasedSyst. 2013, 37,472–479.[CrossRef] 26. Wei,G.W.;Zhao,X.F.Someinducedcorrelatedaggregatingoperatorswithintuitionisticfuzzyinformation andtheirapplicationtomultipleattributegroupdecisionmaking. ExpertSyst.Appl. 2012, 39,2026–2034. [CrossRef]
27.
28.
29.
30.
31.
Wei,G.W.Grayrelationalanalysismethodforintuitionisticfuzzymultipleattributedecisionmaking. Expert Syst.Appl. 2011, 38,11671–11677.[CrossRef]
Atanassov,K.;Gargov,G.Interval-valuedintuitionisticfuzzysets. FuzzySetsSyst. 1989, 31,343–349. [CrossRef]
Atanassov,K.Operatorsoverinterval-valuedintuitionisticfuzzysets. FuzzySetsSyst. 1994, 64,159–174. [CrossRef]
Wei,G.W.Approachestointervalintuitionistictrapezoidalfuzzymultipleattributedecisionmakingwith incompleteweightinformation. Int.J.FuzzySyst. 2015, 17,484–489.[CrossRef]
Wei,G.W.;Wang,H.J.;Lin,R.Applicationofcorrelationcoefficienttointerval-valuedintuitionisticfuzzy multipleattributedecisionmakingwithincompleteweightinformation. Knowl.Inf.Syst. 2011, 26,337–349. [CrossRef]
32.
Wang,H.;Smarandache,F.;Zhang,Y.Q.;Sunderraman,R.Singlevaluedneutrosophicsets. MultispaceMultistruct 2010, 4,410–413.
33. Wang,H.;Smarandache,F.;Zhang,Y.Q.;Sunderraman,R. IntervalNeutrosophicSetsandLogic:Theoryand ApplicationsinComputing;Hexis:Phoenix,AZ,USA,2005.
14of18
2017, 8,125
34. Zadeh,L.A.Fuzzysets. Inf.Control 1965, 8,338–356.[CrossRef] 35. Bellman,R.;Zadeh,L.A.Decisionmakinginafuzzyenvironment. Manag.Sci. 1970, 17,141–164.[CrossRef] 36. Yager,R.R.Multipleobjectivedecision-makingusingfuzzysets. Int.J.Man-Mach.Stud. 1997, 9,375–382. [CrossRef] 37. Zadeh,L.A.Fuzzylogicandapproximatereasoning. Synthese 1975, 30,407–428.[CrossRef] 38. Pedrycz,W.Fuzzysetsinpatternrecognition:Methodologyandmethods. PatternRecognit. 1990, 23,121–146. [CrossRef] 39.
Smarandache,F.Aunifyingfieldinlogics.In Neutrosophy:NeutrosophicProbability,SetandLogic; AmericanResearchPress:Rehoboth,DE,USA,1999. 40. Smarandache,F.Aunifyingfieldinlogics:Neutrosophiclogic.In Neutrosophy,NeutrosophicSet,Neutrosophic ProbabilityandStatistics,3rded.;Xiquan:Phoenix,AZ,USA,2003.
41. Ye,J.Amulticriteriadecision-makingmethodusingaggregationoperatorsforsimplifiedneutrosophicsets. J.Intell.FuzzySyst. 2014, 26,2459–2466.
42. Majumdar,P.;Samant,S.K.Onsimilarityandentropyofneutrosophicsets. J.Intell.FuzzySyst. 2014, 26, 1245–1252.
43. Ye,J.Multicriteriadecision-makingmethodusingthecorrelationcoefficientundersingle-valueneutrosophic environment. Int.J.Gen.Syst. 2013, 42,386–394.[CrossRef]
44. Broumi,S.;Smarandache,F.Correlationcoefficientofintervalneutrosophicset. Appl.Mech.Mater. 2013, 436, 511–517.[CrossRef]
45. Zhang,H.Y.;Ji,P.;Wang,J.;Chen,X.H.Animprovedweightedcorrelationcoefficientbasedonintegrated weightforintervalneutrosophicsetsanditsapplicationinmulti-criteriadecision-makingproblems. Int.J. Comput.Intell.Syst. 2015, 8,1027–1043.[CrossRef]
46. Peng,J.J.;Wang,J.Q.;Zhang,H.Y.;Chen,X.H.Anoutrankingapproachformulti-criteriadecision-making problemswithsimplifiedneutrosophicsets. Appl.SoftComput. 2014, 25,336–346.[CrossRef]
47. Zhang,H.Y.;Wang,J.Q.;Chen,X.H.Anoutrankingapproachformulti-criteriadecision-makingproblems withinterval-valuedneutrosophicsets. NeuralComput.Appl. 2016, 27,615–627.[CrossRef]
48. Tian,Z.P.;Zhang,H.Y.;Wang,J.;Wang,J.Q.;Chen,X.H.Multi-criteriadecision-makingmethodbasedona cross-entropywithintervalneutrosophicsets. Int.J.Syst.Sci. 2016, 47,3598–3608.[CrossRef]
49. Biswas,P.;Pramanik,S.;Giri,B.C.TOPSISmethodformulti-attributegroupdecision-makingunder single-valuedneutrosophicenvironment. NeuralComput.Appl. 2016, 27,727–737.[CrossRef]
50. Zhang,H.Y.;Wang,J.Q.;Chen,X.H.Intervalneutrosophicsetsandtheirapplicationinmulticriteriadecision makingproblems. Sci.WorldJ. 2014, 2014,645953.[CrossRef][PubMed]
51.
52.
Liu,P.D.;Wang,Y.M.Multipleattributedecisionmakingmethodbasedonsingle-valuedneutrosophic normalizedweightedBonferronimean. NeuralComput.Appl. 2014, 25,2001–2010.[CrossRef]
Liu,P.D.;Chu,Y.C.;Li,Y.W.;Chen,Y.B.SomegeneralizedneutrosophicnumberHamacheraggregation operatorsandtheirapplicationtogroupdecisionmaking. J.Intell.FuzzySyst. 2014, 16,242–255.
53. Zhao,A.W.;Du,J.G.;Guan,H.J.Intervalvaluedneutrosophicsetsandmulti-attributedecision-making basedongeneralizedweightedaggregationoperator. J.Intell.FuzzySyst. 2015, 29,2697–2706.
54. Sun,H.X.;Yang,H.X.;Wu,J.Z.;Yao,O.Y.IntervalneutrosophicnumbersChoquetintegraloperatorfor multi-criteriadecisionmaking. J.Intell.FuzzySyst. 2015, 28,2443–2455.[CrossRef]
55. Liu,P.D.;Wang,Y.M.IntervalneutrosophicprioritizedOWAoperatoranditsapplicationtomultipleattribute decisionmaking. J.Syst.Sci.Complex. 2016, 29,681–697.[CrossRef]
56. Wu,X.H.;Wang,J.Q.;Peng,J.J.;Chen,X.H.Cross-entropyandprioritizedaggregationoperatorwith simplifiedneutrosophicsetsandtheirapplicationinmulti-criteriadecision-makingproblems. J.Intell. FuzzySyst. 2016, 18,1104–1116.[CrossRef]
57. Ye,J.Exponentialoperationsandaggregationoperatorsofintervalneutrosophicsetsandtheirdecision makingmethods. Springerplus 2016, 5,1488.[CrossRef][PubMed]
58. Li,Y.;Liu,P.;Chen,Y.SomeSingleValuedNeutrosophicNumberHeronianMeanOperatorsandTheir ApplicationinMultipleAttributeGroupDecisionMaking. Informatica 2016, 27,85–110.[CrossRef]
59. Mao,H.;Lin,G.-M.Intervalneutrosophicfuzzyconceptlatticerepresentationandinterval-similarity measure. J.Intell.FuzzySyst. 2017, 33,957–967.[CrossRef]
60. Ye,J.Singlevaluedneutrosophiccross-entropyformulticriteriadecisionmakingproblems. Appl.Math.Model. 2014, 38,1170–1175.[CrossRef]
15of18
Information
Information 2017, 8,125
61.
Ye,J.Similaritymeasuresbetweenintervalneutrosophicsetsandtheirapplicationsinmulticriteria decision-making. J.Intell.FuzzySyst. 2014, 26,165–172.
62. Ye,J.Improvedcosinesimilaritymeasuresofsimplifiedneutrosophicsetsformedicaldiagnoses. Artif.Intell.Med. 2015, 63,171–179.[CrossRef][PubMed]
63.
64.
65.
Ye,J.Singlevaluedneutrosophicsimilaritymeasuresbasedoncotangentfunctionandtheirapplicationin thefaultdiagnosisofsteamturbine. SoftComput. 2017, 21,817–825.[CrossRef]
Ye,J.Single-valuedneutrosophicclusteringalgorithmsbasedonsimilaritymeasures. J.Classif. 2017, 34, 148–162.[CrossRef]
Ye,J.Multipleattributedecision-makingmethodbasedonthepossibilitydegreerankingmethodand orderedweightedaggregationoperatorsofintervalneutrosophicnumbers. J.Intell.FuzzySyst. 2015, 28, 1307–1317.
66. Ye,J.Projectionandbidirectionalprojectionmeasuresofsinglevaluedneutrosophicsetsandtheir decision-makingmethodformechanicaldesignschemes. J.Exp.Theor.Artif.Intell. 2016, 29,731–740. [CrossRef]
67.
Ye,J.Intervalneutrosophicmultipleattributedecision-makingmethodwithcredibilityinformation. Int.J. FuzzySyst. 2016, 18,914–923.[CrossRef]
68. Ren,P.;Xu,Z.;Gou,X.PythagoreanfuzzyTODIMapproachtomulti-criteriadecisionmaking. Appl.SoftComput. 2016, 42,246–259.[CrossRef]
69. Kahneman,D.;Tversky,A.Prospecttheory:Ananalysisofdecisionunderrisk. Econom.J.Econom.Soc. 1979, 47,263–291.[CrossRef]
70. Abdellaoui,M.;Bleichrodt,H.;Paraschiv,C.Lossaversionunderprospecttheory:Aparameter-free measurement. Manag.Sci. 2007, 53,1659–1674.[CrossRef]
71. Gomes,L.;Lima,M.TODIM:Basicsandapplicationtomulticriteriarankingofprojectswithenvironmental impacts. Found.Comput.Decis.Sci. 1991, 16,113–127.
72. Chen,L.H.;Hung,C.C.;Tu,C.C.Consideringthedecisionmaker’sattitudinalcharactertosolvemulti-criteria decision-makingproblemsinanintuitionisticfuzzyenviron-ment. Knowl.BasedSyst. 2012, 361,29–38.
73. Liu,H.C.;You,J.X.;Fan,X.J.;Chen,Y.Z.SiteselectioninwastemanagementbytheVIKORmethodusing linguisticassessment. Appl.SoftComput. 2014, 214,53–61.[CrossRef]
74. Wu,J.;Chiclana,F.Ariskattitudinalrankingmethodforinterval-valuedintuitionisticfuzzynumbersbased onnovelattitudinalexpectedscoreandaccuracyfunctions. Appl.SoftComput. 2014, 222,72–86.[CrossRef]
75. Krohling,R.A.;deSouza,T.T.M.Combiningprospecttheoryandfuzzynumberstomulti-criteriadecision making. Exp.Syst.Appl. 2012, 39,11487–11493.[CrossRef]
76. Fan,Z.P.;Zhang,X.;Chen,F.D.;Liu,Y.ExtendedTODIMmethodforhybridmultipleattributedecision makingproblems. Knowl.BasedSyst. 2013, 42,40–48.[CrossRef]
77. Lourenzutti,R.;Krohling,R.A.AstudyofTODIMinaintuitionisticfuzzyandrandomenvironment. Exp.Syst.Appl. 2013, 40,6459–6468.[CrossRef]
78. Krohling,R.A.;Pacheco,A.G.C.;Siviero,A.L.T.IF-TODIM:AnintuitionisticfuzzyTODIMtomulti-criteria decisionmaking. Knowl.BasedSyst. 2013, 53,142–146.[CrossRef]
79. Wang,J.;Wang,J.-Q.;Zhang,H.Y.Alikelihood-basedTODIMapproachbasedonmulti-hesitantfuzzy linguisticinformationforevaluationinlogisticsoutsourcing. Comput.Ind.Eng. 2016, 99,287–299.[CrossRef]
80. Wei,C.;Ren,Z.;Rodríguez,R.M.AHesitantFuzzyLinguisticTODIMMethodBasedonaScoreFunction. Int.J.Comput.Intell.Syst. 2015, 8,701–712.[CrossRef]
81. Sang,X.;Liu,X.Anintervaltype-2fuzzysets-basedTODIMmethodanditsapplicationtogreensupplier selection. J.Oper.Res.Soc. 2016, 67,722–734.[CrossRef]
82. Wang,S.;Liu,J.ExtensionoftheTODIMMethodtoIntuitionisticLinguisticMultipleAttributeDecision Making. Symmetry 2017, 9,95.[CrossRef]
83. Liu,P.;Teng,F.AnextendedTODIMmethodformultipleattributegroupdecision-makingbasedon 2-dimensionuncertainlinguisticVariable. Complexity 2016, 21,20–30.[CrossRef]
84. Tang,G.ApproachesforRelationalMultipleAttributeDecisionMakingwithIntervalNeutrosophic NumbersBasedonChoquetIntegral.MasterThesis,ShandongUniversityofFinanceandEconomics, Jinan,China,2016.
85. Sahin,R.Multi-criterianeutrosophicdecisionmakingmethodbasedonscoreandaccuracyfunctionsunder neutrosophicenvironment. arXiv,2014.
16of18
86. Wei,G.W.Picture2-tuplelinguisticBonferronimeanoperatorsandtheirapplicationtomultipleattribute decisionmaking. Int.J.FuzzySyst. 2017, 19,997–1010.[CrossRef]
87. Wei,G.W.;Lu,M.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Pythagorean2-tuplelinguisticaggregationoperators inmultipleattributedecisionmaking. J.Intell.FuzzySyst. 2017, 33,1129–1142.[CrossRef]
88. Park,K.S.Mathematicalprogrammingmodelsforcharacteringdominanceandpotentialoptimalitywhen multicriteriaalternativevaluesandweightsaresimultaneouslyincomplete. IEEETrans.Syst.ManCybern. PartASyst.Hum. 2004, 34,601–614.[CrossRef]
89. Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Hesitantbipolarfuzzyaggregationoperatorsinmultiple attributedecisionmaking. J.Intell.FuzzySyst. 2017, 33,1119–1128.[CrossRef]
90. Lu,M.;Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Hesitantpythagoreanfuzzyhamacheraggregation operatorsandtheirapplicationtomultipleattributedecisionmaking. J.Intell.FuzzySyst. 2017, 33,1105–1117. [CrossRef]
91. Yager,R.R.Pythagoreanmembershipgradesinmulticriteriadecisionmaking. IEEETrans.FuzzySyst. 2014, 22,958–965.[CrossRef]
92. Zhang,X.L.;Xu,Z.S.ExtensionofTOPSIStomultiplecriteriadecisionmakingwithPythagoreanfuzzysets. Int.J.Intell.Syst. 2014, 29,1061–1078.[CrossRef]
93. Gou,X.;Xu,Z.;Ren,P.ThePropertiesofContinuousPythagoreanFuzzyInformation. Int.J.Intell.Syst. 2016, 31,401–424.[CrossRef]
94. Wei,G.W.;Zhang,N.AmultiplecriteriahesitantfuzzydecisionmakingwithShapleyvalue-basedVIKOR method. J.Intell.FuzzySyst. 2014, 26,1065–1075.
95. Lu,M.;Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Bipolar2-tuplelinguisticaggregationoperatorsin multipleattributedecisionmaking. J.Intell.FuzzySyst. 2017, 33,1197–1207.[CrossRef]
96. Wei,G.W.Picturefuzzyaggregationoperatorsandtheirapplicationtomultipleattributedecisionmaking. J.Intell.FuzzySyst. 2017, 33,713–724.[CrossRef]
97. Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Alinearassignmentmethodformultiplecriteriadecision analysiswithhesitantfuzzysetsbasedonfuzzymeasure. Int.J.FuzzySyst. 2017, 19,607–614.[CrossRef]
98. Wei,G.W.;Wang,J.M.Acomparativestudyofrobustefficiencyanalysisanddataenvelopmentanalysis withimprecisedata. ExpertSyst.Appl. 2017, 81,28–38.[CrossRef]
99. Garg,H.ANewGeneralizedPythagoreanFuzzyInformationAggregationUsingEinsteinOperationsand ItsApplicationtoDecisionMaking. Int.J.Intell.Syst. 2016, 31,886–920.[CrossRef]
100. Zeng,S.;Chen,J.;Li,X.AHybridMethodforPythagoreanFuzzyMultiple-CriteriaDecisionMaking. Int.J. Inf.Technol.Decis.Mak. 2016, 15,403–422.[CrossRef]
101. Garg,H.Anovelaccuracyfunctionunderinterval-valuedPythagoreanfuzzyenvironmentforsolving multicriteriadecisionmakingproblem. J.Intell.FuzzySyst. 2016, 31,529–540.[CrossRef]
102. Wei,G.W.Picturefuzzycross-entropyformultipleattributedecisionmakingproblems. J.Bus.Econ. 2016, 17,491–502.[CrossRef]
103. Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Hesitantfuzzylinguisticarithmeticaggregationoperatorsin multipleattributedecisionmaking. Iran.J.FuzzySyst. 2016, 13,1–16.
104. Wei,G.W.;Zhao,X.F.;Lin,R.Somehesitantinterval-valuedfuzzyaggregationoperatorsandtheir applicationstomultipleattributedecisionmaking. Knowl.-BasedSyst. 2013, 46,43–53.[CrossRef]
105. Zhang,H.Y.;Yang,S.Y.;Yue,Z.W.Oninclusionmeasuresofintuitionisticandinterval-valuedintuitionistic fuzzyvaluesandtheirapplicationstogroupdecisionmaking. Int.J.Mach.Learn.Cybern. 2016, 7,833–843. [CrossRef]
106. Nayagam,V.L.G.;Sivaraman,G.Rankingofinterval-valuedintuitionisticfuzzysets. Appl.SoftComput. 2011, 11,3368–3372.[CrossRef]
107. Wei,G.W.;Lu,M.PythagoreanFuzzyMaclaurinSymmetricMeanOperatorsinMultipleAttributeDecision Making. Int.J.Intell.Syst. 2016.[CrossRef]
108. Wei,G.W.;Lu,M.DualhesitantPythagoreanfuzzyHamacheraggregationoperatorsinmultipleattribute decisionmaking. Arch.ControlSci. 2017, 27,365–395.[CrossRef]
109. Wang,H.J.;Zhao,X.F.;Wei,G.W.Dualhesitantfuzzyaggregationoperatorsinmultipleattributedecision making. J.Intell.FuzzySyst. 2014, 26,2281–2290.
110. Wei,G.W.Pythagoreanfuzzyinteractionaggregationoperatorsandtheirapplicationtomultipleattribute decisionmaking. J.Intell.FuzzySyst. 2017, 33,2119–2132.[CrossRef]
17of18
Information 2017, 8,125
111. Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Projectionmodelsformultipleattributedecisionmakingwith picturefuzzyinformation. Int.J.Mach.Learn.Cybern. 2016.[CrossRef]
112. Wei,G.W.;Alsaadi,F.E.;Hayat,T.;Alsaedi,A.Picture2-tuplelinguisticaggregationoperatorsinmultiple attributedecisionmaking. SoftComput. 2016.[CrossRef]
© 2017bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution (CCBY)license(http://creativecommons.org/licenses/by/4.0/).
Information 2017, 8,125 18of18