JP Joly 11/09
1
Institut National de l’Energie Solaire
270 270 scientists scientists 15000 15000 m2 m2 40 40 patents/ patents/year year 100 100 industrial industrial partner partner 30 30 M M€€ of of contracts contracts/y /y
JP Joly 11/09
2
Photovoltaics activities Solar Mobility (EV) Rewables and Smart Grids Photovoltaics and systems
Modules and System Certification
Modules encasulation Solar cells Silicon feedstock and wafers
JP Joly 11/09
3
Solar thermal and Building
Experimentation and simulation
LYNX II LYNX
CSP
Building components (enveloppe and Comfort)
Solar Thermal testing
JP Joly 11/09
4
What materials and technologies for several hundred GWp PV capacities 1. 2. 3.
The context of PV development KWh cost is not linked only to the Wp cost Capacity of existing technologies to reach the target a)
Thin films i. Chalcogenides ii. a-Si and multijunctions iii. Organic
b) c)
4. 5.
Wafer based Silicon CPV and III-Vs
Possible breakthrough: current materials but going to 3D What perspectives?
JP Joly 11/09
5
1.
JP Joly 11/09
The context of PV development
6
A strong market growth expected and pushed by incentives in the short term Present Market still very small compared to what it will be
EPIA scenarii JP Joly 11/09
7
A key enabler: the cost reduction speed
sourceEPIA 2009
?
?
How to continue and up to where? JP Joly 11/09
8
A reference to an other market: Flat Panel displays
Here: Just incremental innovation and manufacturing knowledge
JP Joly 11/09
9
PV will use a large quantity of materials soon (2020 projection )
JP Joly 11/09
10
2.
JP Joly 11/09
KWh cost is not linked only to the module Wp cost
11
A large cost share devoted to installation and BOS 3,50 3,00
€/ W
~3,5 €/W
From Dominique Sarti (INES) Si-a (1.1 €/W)
2,50 2,00
~3€/W Si-c (1.3 €/W) Roof BIPV (3 kW)
1,50 1,00
PV farm ( 1MW)
0,50 0,00 80
90 100 110 120 130 140 150 160 170 180 190 200 210
W/m² Module
PV BOS versus Power density delivered per each module Estimated Thin film Si module cost (€/W) in 2020 (efficiency 12%) Estimated c-Si module cost (€/W) in 2020 (efficiency 18 %)
Increase of module Conversion efficiency is essential Importance of BOS cost reduction too JP Joly 11/09
12
x
1.0
Average differene between module and ambient temperature 30 as a function of irradiance level
2.5
0.8
2.0
0.6
1.5
c-Si CdTe CIS
0.4 0.2
m-Si a-Si 2j a-Si 3j
1.0 0.5 0.0
0.0 0.0
0.5 1.0 Isc/IscSTC (number of Suns S)
Climate+ Module integration
Distribution function of irradiation multi-crystalline module at Cadarache (Provence)
3.0
D is trib u tio n fu n c tio n o f irra d ia tio n
Irradiance coefficient@25°C
x
Illumination
0.0
Technological performance
0.2
0.4 0.6 0.8 Irradiance in Suns
1.0
1.2
Module temperature (°C)
Technology
versus irradiance for six technologies
25 20 15 10 5 0 -50.0
0.2
0.4
0.6
0.8
1.0
1.2
Irradiance in Suns
Probability density site illumination
Module Integration
Productivity of PV systems Lab1
Lab2
Lab3
….Does not only depend on module nominal power
INES
5 Error %
0 -5 -10 -15 -20
JP Joly 11/09
CIS 6
CIS 16
CIS 17
CIS 20
13
Standard roofs
Flaat roofs
Solar farms
Buildin Integration
Stand alone systems
Market segments: some technologies more adapted to a given one
Facades
Parkings
JP Joly 11/09
14
3.
JP Joly 11/09
Capacity of existing technologies to reach the target
15
Available Technologies
Key material requirements: Eg: bandgap matched with Solar spectrum short absorption length (Îą) and carrier diffusion (L) larger than Îą JP Joly 11/09
16
Very long maturing
c-Si
Cu2S a-Si
III-Vs
Dye
Organic
CdTe CIGS
JP Joly 11/09
17
3a. Thin films
JP Joly 11/09
18
Much less fabrication steps than Silicon
CIS 300 x 1200 mm 13 steps 1 plant
JP Joly 11/09
c-Si 156 x 156 mm 25 steps 3 plants
19
The chalcogenide route Best commercial modules/ best lab results (%)
12/ 20.5
11/ 16.5
JP Joly 11/09
20
CIGS : the most promising Advantages : – Very good efficiency proven at lab scale – Not sensitive to native defects and GB
Residual difficulties: – Potential In resource availibility and sensitivity to supply – Toxic matérial CdS ( remplacement by ZnS) – Having both low cost deposition technique and High efficiency still not proven – 4 deposition techniques used by the manufacturers
JP Joly 11/09
21
CIGS deposition technique still not fixed
JP Joly 11/09
22
An alternative CZTS (kesterite) appearing
With no material availability concerns and which can be deposited using ÂŤ printing or dipping Âť technologies JP Joly 11/09
23
Amorphous Silicon and related multijunctions Light Trappings between Layers ZnO Glass
aSi:H
µcSi:H
SiO (PhosphorusDoped Interlayer)
-Thickness and quality of µc layer ZnO)/Ag
-Optical confinement and structures TCOs
Best single junction in production: 7% Best tandem: 10% JP Joly 11/09
24
Âľ-c Silicon quality and dep rate still an issue
From IMT Neuchatel
JP Joly 11/09
25
Material abundance and extraction cost
JP Joly 11/09
26
OPV progressing rapidly Organiques Pure Organic Nanocristaux Hybrid Organic/ Nanocristals TiO2 sensibilisĂŠ (solide)
+ 0.5%/year
Annonce Siemens P3HT/PCBM
Cellule tandem Heeger
P3HT/PCBM
Konarka/M. Leclerc Plextronics
+ LiF
Toray Konarka
MDMO-PPV/PCBM
CEA
CdTe/CdSe
P3HT/Nanorods CdSe
JP Joly 11/09
P3HT/Tetrapodes CdSe
27
3b. Wafer based Si: the workhorse of PV
JP Joly 11/09
28
PV c-Si Cost structure Silicium charge
Module
30%
28%
Cellule
Lingot
14%
Wafer
18%
10%
What margins left for cost reduction?
JP Joly 11/09
29
c-Si
Decrease of Silicon cost and consumption is essential while maintaining the quality
JP Joly 11/09
30
Use new routes for Silicon purification whith much less energy and lower cost
PHOTOSIL
Melting (Furnace 1) + segrĂŠgation Si UMG-2 Plasma Purification (Furnace 2) Si SoG
Segregation
Direct Ingot Casting
SoG Si (Feedstock)
Si PV Ingots
JP Joly 11/09
31
Very good efficiency with Photosil approach and with large B et P content - LID reduced from 5% to 1,5% absolute - [B] = 1ppmw Much reduced cost of purification
It is possible to use a not so pure Silicon for PV JP Joly 11/09
32
Reduced cost for casting Electromagnetic Casting: French Company EMIX approach
Cells with efficiency approaching 16%
JP Joly 11/09
33
Get read of sawing ? (1)
JP Joly 11/09
34
Get read of sawing ? (2)
rendement de conversion (%)
Rendement de conversion (% ) Si cristallin en fonction de l'épaisseur (µm) : Application aux couches minces recristallisées
15,0
150
100
50
20 10 5
10,0 2
5,0
0,0
0
0
20
40
60
80
100
120
140
160
épaisseur (µm)
From Henley (SiGen) JP Joly 11/09
35
Increase the efficiency while keeping low cost Cell
Optical Surface loss
Metal optical loss
Surface recomb
Volume recomb
Resistive losses
Record η = 24.7%
3%
3%
10%
0%
2%
Std: Si mono η = 17.6%
5%
11%
20%
0%
5%
Std: mc-Si η = 16.1%
8%
11%
16%
6%
6%
Std: UMG η = 13.5%
8%
11%
12%
20%
6%
Loss/η η = 29.8%
17,5 17
efficiency (%)
16,5 16 15,5 15 14,5
mc-Si
Mono-Si
14 13,5 13
1
JP Joly 11/09
10
100
Carrier lifetime (µs)
1000
36
Approaches appearing at the Industrial scale • Example of results for two kinds of advanced cells and modules:
2/ RCC
1/HET Structure
η Lab. (%)
η Prod. (%)
Cell
Module
Cell
Module
HET (Sanyo)
23.0
20.6
19.5
17.1
RCC (SunPower)
23.4
20.1
22.4
18.1
Standard (Sharp, SolarWorld…)
_
_
_
15
INES working on HET: 19,3 % on large wafers JP Joly 11/09
37
Increase of Conversion efficiency while using very thin wafers
JP Joly 11/09
38
High efficiency PV cells : heterojunction cells (HET)
Evolution efficiency of heterojunction Evolutionof du rendement des cellules PV hétérojonction PV cells 22
Evolution du rendement des cellules PV hétérojonction 22
20.5%
20
20 18
14
12
Juillet
Mai
Juin
Avril
Mars
Février
Janvier
Décembre
Novembre
Août
Octobre
Septembre
Mai
Juin
Juillet
Avril
Mars
Fevrier
10
16
Janvier
Rendement max (ù)
16
18
14
12
Juillet
Juin
Mai
Avril
Mars
Février
Janvier
Décembre
Novembre
Octobre
Septembre
2009
Août
Juillet
Juin
Mai
Avril
Mars
Fevrier
Janvier
10
2010 18.5 %
RECORD, July 2010: CZ, 300µm
JP Joly 11/09
37
713
77,7
20,5 Fraunhofer certification
39
Example of low thickness high efficiency cell: SANYO HIT
Very low cell efficiency degradation: efficiancy in the 21% at the research lavel on 70 Âľm thick wafers
JP Joly 11/09
40
Wafer based Si versus thin films: Market share and evolution ?
Share of thin film progressing but more slowly Strong growth for both anyhow
JP Joly 11/09
41
A key for any technology implementation: highly productive machines
AMAT AMAT PECVD PECVD cluster cluster
Casting Casting furnace furnace ECM ECM for for 800 800 kg kg ingots ingots
Towards fabrication line of about GW capacities JP Joly 11/09
42
4.
JP Joly 11/09
CPV and III-Vs
43
III-V cells: State of the art
Effiencies at labscale: 42,3% at 600 sun (US) 35,8% at 1 sun (Sharp)
JP Joly 11/09
44
Towards Quadruple junctions and use of molecular bonding
JP Joly 11/09
45
Eventually quantum wells or dots
JP Joly 11/09
46
5.
JP Joly 11/09
Possible Breakthrough: Current materials but going to 3D
47
Going to 3D structures with a mix of optical trapping and advanced material structuring
JP Joly 11/09
48
Use of Silicon rods 67 Âľm long Si rods with 4.2% packing density Equivalent to 2,8 Âľm thick silicon (material quantity)
Can get good efficiencies comparable with thick wafer
JP Joly 11/09
49
Experimental implementation of 3D concepts with CdS/CdTe SNOP Solar NanO Pilar
JP Joly 11/09
50
Use of quantum confinement and nanodots to adapt the spectral response
JP Joly 11/09
51
What perspectives in Conclusion • Still a lot of room with existing technologies and in particular Wafer Based silicon to reduce its cost • Chalcogenides have big chance to take the leads of thin films and to progress in terms of market share but precise technology still unclear • A key point will be to reduce the materials consumption keeping the 2D approach first and then going to 3D
JP Joly 11/09
52
Thank you for your attention
JP Joly 11/09
53