Moa Point Civil Defence Centre Process Booklet

Page 1

PROJECT ONE B I O T Y P E

:

V I R U S


B IOT YPE: VIR U S

CHARACTERISTICS + ATTRIBUTES A virus is an infectious agent present in infected living organisms. A virus infects a target host by the process of viral replication. A virus particle, also known as virions, consist of genetic material which the virus consists of. As a virus multiplies and infects the host living organism, The infected living organism begins to deteriorate the host. The process of overtaking a host can be redefined as two main categorical features: 1) The replication of the Virus particles to spread the infection within. 2) The degradation or decay of the living organism as the Virus is spread.

EXPERIMENTAL INVESTIGATION The experimentation of my biotype will be broken into two parts to replicate the two main phases of a viral infection of a living organism. Phase One: Replication of Virus Phase Two: Degradation of Host


PHASE ONE MODELI NG + EXPLORATI ON MATERIALS: -

Petri Dishes Agar Powder Water Cotton Buds Bacterial Source Bleach Measuring Jar

EXPERIMENTATION + VARIABLES: BACTERIAL SOURCE: - Soil - Saliva - Shoe - Meat The Bacterial source allows a variety of different bacteria organisms to grow. Having a variety of sources allows us to understand what source is suited for specific growing conditions. DURATION: Due to the time frame of the project, the duration of all growth experiments will remain the same. Ideally a spread over a month would indicate the multiplication of bacteria growth over time however, by allowing the time frame of the experiments to be consistant creates comparable results.

METHOD: - Dark, Room Temperature - Dark, Heated Light for 2 Hours Daily - Dark, Sprayed with Warm Water Daily - Natural Conditions on Window Sill - Dark, Room Temperature, Bleach The various methods of growing conditions test if environments have an impact on the growth and spread of a bacterial virus.


P R OC E S S E S PROCESS OF MAKING: 1) Prepare Petri dishes for pouring Agar solution into. 2) Heat water until boiling and pour 250ml of boiling water into a measuring jug. 3) Add one packet of Agar into the boiling water and stir until completely dissolved. 4) After the Agar has completely diluted, place the measuring jug with the solution and microwave for two minutes. 5) Pour the Agar solution on to petri dishes until cool. 6) When the Agar solution has solidified, use a damp cotton bud and run numerous times over desire bacterial source. 7) In a Zig-Zag motion run bacteria infested cotton bud over the surface of the solidified Agar solution. 8) Store the petri dishes in the specified environments. 9) Check daily and tend to petri dishes according to specified environments

The purpose of this process is to identify thriving environments for bacteria to grow; how can these environments effect the viral replication of bacteria? In addition, extracting patterns of growth controlled by specific variables and how the relate to each other. Throughout the duration of a viral infection on a host living organism, a virus spreads itself to eventually destroy its host.


M A C RO IN S P E C TI ON

B ACTE RI AL S P RE AD

1 2 3 4 5

DARK, ROOM TEMPERATURE DARK, HEATING LIGHT FOR 2 HOURS DARK, SPRAYED WITH WARM WATER NATURAL CONDITIONS ON WINDOW SILL DARK, ROOM TEMPERATURE, BLEACH

S P E CIM E N I. SOURCE: DURATION: CONDITION:

SPECIMEN I. A

S OIL 7 D AYS 1

S P ECIMEN I. B

S P E CIM E N II. SOURCE: DURATION: CONDITION:

S P E C I M E N II . A

S A L IVA 7 D AYS 1

S P ECIMEN II. B

S P E CIM E N III . SOURCE: DURATION: CONDITION:

S P E C I M E N II I. A

S H OE 7 D AYS 1

S P ECIMEN III. B

S P E CIM E N IV. SOURCE: DURATION: CONDITION:

S P E C I M E N IV. A

S P ECIMEN IV. B

M E AT 7 D AYS 1


M A C RO IN S P E C TI ON

B ACTE RI AL S P RE AD

1 2 3 4 5

DARK, ROOM TEMPERATURE DARK, HEATING LIGHT FOR 2 HOURS DARK, SPRAYED WITH WARM WATER NATURAL CONDITIONS ON WINDOW SILL DARK, ROOM TEMPERATURE, BLEACH

S P E CIM E N V. SOURCE: DURATION: CONDITION:

S P E C I M E N V. A

S OIL 7 D AYS 2

S P ECIMEN V. B

S P E CIM E N V I. SOURCE: DURATION: CONDITION:

S P E C I M E N VI . A

S A L IVA 7 D AYS 2

S P ECIMEN VI. B

S P E CIM E N V II. SOURCE: DURATION: CONDITION:

S P E C I M E N V I I. A

S H OE 7 D AYS 2

S P ECIMEN VII. B

S P E CIM E N V III. SOURCE: DURATION: CONDITION:

S P E C I M E N VI II . A

SP ECIMEN VIII. B

M E AT 7 D AYS 2


M A C RO IN S P E C TI ON

B ACTE RI AL S P RE AD

1 2 3 4 5

DARK, ROOM TEMPERATURE DARK, HEATING LIGHT FOR 2 HOURS DARK, SPRAYED WITH WARM WATER NATURAL CONDITIONS ON WINDOW SILL DARK, ROOM TEMPERATURE, BLEACH

S P E CIM E N IX. SOURCE: DURATION: CONDITION:

S P E C I M E N IX . A

S OIL 7 D AYS 3

S P ECIMEN IX. B

S P E CIM E N X . SOURCE: DURATION: CONDITION:

SPECIMEN X. A

S A L IVA 7 D AYS 3

S P ECIMEN X. B

S P E CIM E N X I. SOURCE: DURATION: CONDITION:

S P E C I M E N XI. A

S H OE 7 D AYS 3

S P ECIMEN XI. B

S P E CIM E N X II. SOURCE: DURATION: CONDITION:

S P E C I M E N X II . A

S P ECIMEN XII. B

M E AT 7 D AYS 3


M A C RO IN S P E C TI ON

B ACTE RI AL S P RE AD

1 2 3 4 5

DARK, ROOM TEMPERATURE DARK, HEATING LIGHT FOR 2 HOURS DARK, SPRAYED WITH WARM WATER NATURAL CONDITIONS ON WINDOW SILL DARK, ROOM TEMPERATURE, BLEACH

S P E CIM E N X III. SOURCE: DURATION: CONDITION:

S P E C I M E N XII I. A

S OIL 7 D AYS 4

S P ECIMEN XIII. B

S P E CIM E N X IV. SOURCE: DURATION: CONDITION:

S P E C I M E N XIV. A

S A L IVA 7 D AYS 4

S P ECIMEN XIV. B

S P E CIM E N X V. SOURCE: DURATION: CONDITION:

S P E C I M E N X V. A

S H OE 7 D AYS 4

S P ECIMEN XV. B

S P E CIM E N X VI. SOURCE: DURATION: CONDITION:

SPECIMEN XVI. A

S P ECIMEN XVI. B

M E AT 7 D AYS 4


VIRAL VANQUISH

S A L I VA

C EL L ULAR // INF E CTIOU S S P RE A D / / E P ID E M IC

S EVEN DAYS DA R K , R OOM TEMPERAT URE

0

10

20

30

40

50

60

70

80

90

II

A v ari ety of di fferen t si z e mould colonies w ere produ ced as a resu lt of this experi men t. Th e con di ti on were sufficient for th e grow th of mou l d i n the petri dishes. 0

10

20

30

40

50

60

70

80

90


VIRAL VANQUISH

S HO E

C EL L UL AR // INF E CTIOU S S P RE A D / / E P ID E M IC

SEVEN DAYS DA R K , S P R AY ED W I TH WARM WAT ER

0

10

20

30

40

50

60

70

80

90

XI

Col on i es produ ced w h en sprayed with w arm w ater dai l y, ten d to be small colonies bu t i n l arge qu an ti ti es. This petri dish h ad th e most col on i es w hen compared to oth ers. 0

10

20

30

40

50

60

70

80

90


VIRAL VANQUISH

MEAT

CE L L U L AR / / I N F E C T I OUS SPR E AD / / E PI DE M IC

S E V E N D AY S NAT U R A L CO ND I T I O NS O N W I N D O W S I LL

0

10

20

30

40

50

60

70

80

90

XVI

T h i s p e t r i d i s h p ro d u c e d larg e co lo nies o f m o u l d g ro w t h . T h i s i s d ue t o t he hig h c o n c e n t r a t e o f b a c t e r i a w it hin t he meat s o u rc e . 0

10

20

30

40

50

60

70

80

90


VIRAL VANQUISH

S A L I VA

C EL L U LAR // INF E CTIOU S S P RE A D / / E P ID E M IC

S EVEN DAYS DA R K , R OOM TEMP ER ATURE, BLEACH

0

10

20

30

40

50

60

70

80

90

XVIII

Wh en compared to th e other petri dishes i n th e set, th i s parti cu l ar petri dish was th e on l y on e th at cou l d resist the chemical di si n fectan t properti es of bleach. 0

10

20

30

40

50

60

70

80

90


PHASE TWO

M O D E LI N G + E X P LO R AT I O N MATERIALS: -

Hot Charcoal Acetone Styrofoam Gold Foam Polyethylene Foam Plaster of Paris Water Spray Paint Tape Face Mask Heating Pot Gloves Shovel

EXPERIMENTATION + VARIABLES: MEDIUM: - Styrofoam - Gold Foam - Polyethylene Foam

Secondary Variable:

Thickness

The medium provides a base for the charcoal and acetone to decay with. The variation of materials have different properties and can result in a variation of formal qualities of the decayed form. Properties such as the specific heat capacity will be the key differentiation across the three mediums as a material with a lower specific heat capacity will allow temperature change to occur sooner and thus allowing the material to decay at a greater rate. VIRAL SUBSTANCE: Secondary Variable: - Charcoal Amount / Quantity / Size - Acetone The viral substance reacts with the medium to decay the body of material. The form of the decay may differ according to the substance and the rate of decay could also differ. Quantity and amount will also be a secondary variable which will factor in the form of decay. METHOD: - Placed on top - Wedged between Placing charcoal on top on the foam will create a linear shape with a base and top. Placing charcoal on a single thickness foam, then immediately wedging it between another sheet and shaking the foam up and down will create a decayed form with no top and base.


PROCESSES PROCESS OF MAKING: 1) Heat up Charcoal in a durable heat resistant pot until glowing red. 2) Prepare various Foam medium to the desire thickness. 3) Before placing Charcoal on Foam medium, ensure a face mask is used to block out hazardous fumes from being inhaled. Additionally ensure the workspace is well ventilated. 4) Select desired size Charcoal using a shovel to be placed on Foam medium. 5) Place the desire amount and size of Charcoal on the Foam medium. 6) The Foam medium will react with the heat, and begin to melt/decay. Eventually the hot Charcoal will pass through the Foam medium entirely. 7) Now Prepare Styrofoam by taping any holes at the base of the Foam block. 8) Prepare two parts Plaster of Paris with 1 part Water. 9) Stir well and pour Plaster of Paris into the decayed Foam ‘Moulds’. 10) After an hour the Plaster will be set, and break off the foam moulds to extract the decayed form. 11) The Gold Foam moulds may be challenging to break off so any additional segments can be melted off using a blow torch. This process is repeated using Acetone, however, Acetone only reacts with Styrofoam and not with Gold Foam or the Polyethylene Foam. To compensate, Acetone is poured to the desire amount and set on fire. This process presented itself as unsuccessful dune to the uncontrollable nature of fire. Decayed forms can be seen as a subtraction from an overall solid, but rarely understood in it’s negative form. This experimentation process is an attempt to extract and understand the forms produced from the decay/ degradation of a living organism when infected by a virus


D ECAY F ROM VIR A L CO NTAMINAT ION

D E C AY FOR M

SPECIM EN 01.

SPE CI ME N 01 . A

MEDIUM INFECTED: - THICKNESS:

STYROFOAM ONE

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL SMALL THREE

COMPOSITION OF FORM:

PLAS TER

SPEC IM EN 01. B

SPECIM EN 02.

SPE CI ME N 02 . A

MEDIUM INFECTED: - THICKNESS:

STYROFOAM TWO

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL SMALL THREE

COMPOSITION OF FORM:

PLAS TER

SPEC IM EN 02. B

SPECIM EN 03.

SPE CI ME N 03 . A

MEDIUM INFECTED: - THICKNESS:

STYROFOAM TWO

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL SMALL SIX

COMPOSITION OF FORM:

PLAS TER

SPEC IM EN 03. B

SPECIM EN 04.

SPE CI ME N 04 . A

SPEC IM EN 04. B

MEDIUM INFECTED: - THICKNESS:

STYROFOAM THREE

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL SMALL SIX

COMPOSITION OF FORM:

PLAS TER


DECAY F ROM VIR A L CO NTAMINAT ION

D E CAY FOR M

SPECIM EN 05.

SPE CI ME N 0 5 . A

MEDIUM INFECTED: - THICKNESS:

GOLD FOAM ONE

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM TWO

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 05. B

SPECIM EN 06.

SPE CI ME N 0 6 . A

MEDIUM INFECTED: - THICKNESS:

GOLD FOAM ONE

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM THREE

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 06. B

SPECIM EN 07.

SPE CI ME N 0 7 . A

MEDIUM INFECTED: - THICKNESS:

GOLD FOAM TWO

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM THREE

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 07. B

SPECIM EN 08.

SPE CI ME N 0 8 . A

SPEC IM EN 08. B

MEDIUM INFECTED: - THICKNESS:

STYROFOAM THREE

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM THREE

COMPOSITION OF FORM:

PLASTER


DECAY F ROM VIR A L CO NTAMINAT ION

D E CAY FOR M

SPECIM EN 09.

SPE CI ME N 0 9 . A

MEDIUM INFECTED: - THICKNESS:

POLYETHYLENE TWO

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL SMALL TWO

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 09. B

SPECIM EN 10.

SPE CI ME N 1 0 . A

MEDIUM INFECTED: - THICKNESS:

POLYETHYLENE TWO

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM TWO

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 10. B

SPECIM EN 11.

SPE CI ME N 1 1 . A

MEDIUM INFECTED: - THICKNESS:

POLYETHYLENE TWO

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL LARGE TWO

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 11. B

SPECIM EN 12.

SPE CI ME N 1 2 . A

SPEC IM EN 12. B

MEDIUM INFECTED: - THICKNESS:

POLYETHYLENE

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL LARGE TWO

COMPOSITION OF FORM:

PLASTER

TWO


DECAY F ROM VIRA L CO NTAMINAT ION

D E C AY FOR M

SPECIM EN 13.

SPE CI ME N 13 . A

MEDIUM INFECTED: - THICKNESS:

STYROFOAM ONE

VIRAL SUBSTANCE: - AMOUNT:

ACETONE 5ML

COMPOSITION OF FORM:

PLAS TER

SPEC IM EN 13. B

SPECIM EN 14.

SPE CI ME N 14 . A

MEDIUM INFECTED: - THICKNESS:

STYROFOAM ONE

VIRAL SUBSTANCE: - AMOUNT:

ACETONE 10ML

COMPOSITION OF FORM:

PLAS TER

SPEC IM EN 14. B

SPECIM EN 15.

SPE CI ME N 15 . A

MEDIUM INFECTED: - THICKNESS:

GOLD FOAM ONE

VIRAL SUBSTANCE: - AMOUNT:

ACETONE + FIRE 10ML

COMPOSITION OF FORM:

PLAS TER

SPEC IM EN 15. B

SPECIM EN 16.

SPE CI ME N 16 . A

SPEC IM EN 16. B

MEDIUM INFECTED: - THICKNESS:

POLYETHYLENE ONE

VIRAL SUBSTANCE: - AMOUNT:

ACETONE + FIRE 10ML

COMPOSITION OF FORM:

PLAS TER


D ECAY F ROM VIR A L CO NTAMINAT ION

D E C AY FOR M

SPECIM EN 17. MEDIUM INFECTED: - THICKNESS:

STYROFOAM TWO / WEDGED

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM FOUR / WEDGED

COMPOSITION OF FORM: SPE CI ME N 17 . A

PLASTER

SPEC IM EN 17. B

SPECIM EN 18. MEDIUM INFECTED: - THICKNESS:

POLYETHYLENE TWO / WEDGED

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM ONE / WEDGED

COMPOSITION OF FORM: SPE CI ME N 18 . A

PLASTER

SPEC IM EN 18. B

SPECIM EN 19. MEDIUM INFECTED: - THICKNESS:

GOLD FOAM TWO / WEDGED

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM ONE / WEDGED

COMPOSITION OF FORM: SPE CI ME N 19 . A

PLASTER

SPEC IM EN 19. B

SPECIM EN 20. MEDIUM INFECTED: - THICKNESS:

GOLD FOAM TWO / WEDGED

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL MEDIUM FOUR / WEDGED

COMPOSITION OF FORM: SPE CI ME N 20 . A

SPEC IM EN 20. B

PLASTER


DECAY F ROM VIR A L CO NTAMINAT ION

D EC AY FOR M

SPECIM EN 21. MEDIUM INFECTED: - THICKNESS:

STYROFOAM TWO / WEDGED

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL LARGE THREE / WEDGED

COMPOSITION OF FORM: SPE CI ME N 2 1 . A

PLASTER

SPEC IM EN 21. B

SPECIM EN 22.

SPE CI ME N 2 2 . A

MEDIUM INFECTED: - THICKNESS:

GOLD FOAM FOUR

VIRAL SUBSTANCE: - COARSENESS: - QUANTITY:

CHARCOAL SMALL EIGHT

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 22. B

SPECIM EN 23.

SPE CI ME N 2 3 . A

MEDIUM INFECTED: - THICKNESS:

STYROFOAM TWO

VIRAL SUBSTANCE: - AMOUNT:

ACETONE 20ML

COMPOSITION OF FORM:

PLASTER

SPEC IM EN 23. B

SPECIM EN 24.

SPE CI ME N 2 4 . A

SPEC IM EN 24. B

MEDIUM INFECTED: - THICKNESS:

GOLD FOAM ONE

VIRAL SUBSTANCE: - AMOUNT:

ACETONE + FIRE 20ML

COMPOSITION OF FORM:

PLASTER


GOLD FOAM

12

11

10

IR PL A AC L E S M U E B N S T TA N OF C E

09

08

07

06

05

04

03

Compared t o t he St yrof oam, t he g o ld foam does not mel t as qui ckl y. Th e fo rm still uni f orm f rom t op t o bot t om, i nd ic a tin g that t he heat energy exert ed by t he h o t char coal s remai n const ant as i t pa s s e s thr ou gh.

V

05

02

C ON TOU R : 0 1

O NE LAY ER CHA R CO A L ME D I U M , T W O


S T Y R O FOAM

12

11

10

09

IR PL A AC L E S M U E B N S T TA N OF C E

08

07

06

05

04

03

We d gi ng pi ec es of c oal i n betwee n t w o pi ec es of Sty rofoam c reate a lmo st sy m m etri c al hal v es . Where the c o a ls w e r e p la c ed i s ev i dent i n the form .

V

17

02

CO NTO UR: 0 1

TW O LAYERS / / WE D G E D CH A R C O A L MEDI UM, FO UR W EDG ED B E T WE E N


P OLY ET H Y L E NE

12

11

10

IR PL A AC L E S M U E B N S T TA N OF C E

09

08

07

06

05

04

03

The a l i gnment of t he t wo moul ds wa s inaccurat e whi ch resul t ed i n a di sfig u re d for m.

V

18

02

C ON TOU R : 0 1

TWO L AYERS / / W ED G ED CHA R CO A L MEDIUM, ONE WEDGED B ET W EEN


GOLD FOAM

IR PL A AC L E S M U E B N S T TA N OF C E

12

11

10

09

08

07

06

05

04

03

A fou r l ayered bl ock of gol d f oam with char coal pl aced i n di ff erent l ocat io n pr ovid ed t he charcoal wi t h ampl e time for charcoal t o go mel t a pat h i n d iffe re n t abnormal di rect i ons. Occasi onal l y th e heat energy of a charcoal woul d b e lo s t due t o t he l arge t hi ckness of t he m e d iu m and t heref ore addi t i onal charcoal p ie c e s wer e put i n t o al l ow t he f orm t o rea c t th e botto m.

V

22

02

C ON TOU R : 0 1

F OU R LAY ER S CHA R CO A L SMA LL, EI G HT


PROJECT ONE


PROJECT TWO B I O T Y P E

:

V I R U S


P HA S E O NE

PROJECT ONE

GROWTH S OUR C E OF VIR U S DURATION OF GR OWTH GROWTH C ON D ITION S

DECAY PH ASE TWO

V I RA L S UBSTAN C E (C OAL e tc.) QUA NT ITY OF SU BSTAN C E S I Z E OF SU BSTAN C E ME D IU M FOR D EC AY T HI CKN ESS OF MED IU M LOCAT I ON / PL AC EMEN T OF SU BSTAN C E

PROJECT TWO T he ai m o f Pro je ct tw o is to i nt egrate a sp e cts o f p ro je ct one t o in fo rm th e o u tco me of desi g n in p ro je ct tw o . Th e i mpl eme n ta tio n o f g ro w th a n d decay as p h a se s in th e d e sig n wi l l det ermin e th e su cce ss o f th e o u tco me .


10 00 m 0m 0 10 4 1

o

2 0 ’

2 6 . 9 4 ”

S ,

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N NT T


ONE KILOMETRE GRID

MOA POINT SITE CONSTRAINTS

A N A LY S I S O F WAT E R VELOCITY IN Y DIRECTION

A N A LY S I S O F WAT E R VELOCITY IN X DIRECTION

10 0 Y 0m 0m 0 10 X

LOWEST ANGLE AT M O A P O I N T

MEDIAN ANGLE AT M O A P O I N T

G R E AT E S T A N G L E AT M O A P O I N T

WATER VELOCITY

higher quant it ies of so ft so i l .

devel opment of ve g e tati o n and

loc at ions ar e c or r elat ed t o l ow r o o t

of y ear s . D ec ay at t he s pec if ic

v alley s w hic h dec ay ov er t hous ands

This inf or mat ion inf or ms us of t he

r ainf all.

t o t he w at er v eloc it y ex per ienc ed by

The angles of t he s it e ar e r elat iv e

c olour s on a s et s pec t r a.

r emapped as a s er ies of height s and

c ont our s it s in r elat ion t o t he Z ax is is

The angle in w hic h t he point on t he

pr ojec t ed ont o t he Moa P oint C ont our.

U s ing Gr as s hopper, a point gr id is


ONE KILOMETRE GRID

MOA POINT SITE CONSTRAINTS

VA L L E Y S A N D R I D G E S DERIVED FROM MODEL

0

AREAS SUSCEPTIBLE T O D E C AY D U E T O SOFT SOIL AND MINIMAL ROOT DEVELOPMENT

1

0 0

m 0

1

0

0

m

POINTS OF HIGH DECAY


2 0 0 0

O F

R I S I N G

W A T E R

L E V E L S

2 0 2 0

2 0 4 0

i n t e r ac t i on w i t h t h e w a t e r o ve r t i m e a s w a t e r l e v e l s ri s e .

2 0 6 0

o n c e d e c a y e d t h e l a nd f or m t o s c u l p t o f t h e h i l l s o f M o a P o i nt . T h e d e s i g n will f o r m a n

Th e d es i gn of t h i s p ro j e c t w i l l e n c o m p a s s p re h i s t o ri c ra i n c o n d i t i o n s o f M o a P o in t wh ich

t o p o g r ap hi c al f e at u re s p r es en t o n t h e s i t e ; t h e ro c k y i s l a n d wi l l o n e d a y b e n o m o r e .

R i s i n g s e a l e v e l s a t M o a P oi n t w i l l re s u l t i n s i g n i f i c a n t c h a n ge t o t h e n a t u r a l

r i si n g w a t e r l e ve l , re s u l t i n g i n re d u c e d c o a s t a l l a n d m a s s .

n a t u ra l en vi r o n m e n t s a r ou nd t h e w o rl d . C o a s t a l a re a s i n p a rt i c u l a r a r e e xp e r ie n cin g

Th e e ff e c t s o f G l ob al Wa rm i n g a re b e c o m i n g i n c re a s i n g l y e v i d e n t i n t h e e co lo g ica l a n d

P R O G R E S S I O N

IMPACT OF GLOBAL WARMING

2 0 8 0


1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME

015 030 045 060 075 090 105 120 135

W ind (Tur bul enc e)

Si te Vari able

D ur ati on of Gr ow th

Pr oject 01 Vari able

- P ar ti cl e emi t ter - D el ete i nfl ue nce of grav i ty on part i cl e e mi ss i on - C r eate a t urbul enc e fi el d - A dj ust at tri bu tes of tur bul ent fi el d - C onv ert nP ar ti c le s to Po ly gon s - A dj ust out put mes h a ttr i bute s - R un si m ul ati on and pa use at set i nc re ment s to produc e it era ti ons s i mul at i ng gr ow th

Pr ocess

M ay a - nP ar ti c l es

M et hodol ogy

S i mu lat i ng t he gr ow th of bac ter i a ov er t i me. The for m i s in for med by Tur bu le nt W ind pre sen t at M oa P oi nt

GROWTH

GROWTH 1.7

GROWTH 1.4

GROWTH 1.1

GROWTH 1.8

GROWTH 1.5

GROWTH 1.2

GROWTH 1.9

GROWTH 1.6

GROWTH 1.3



2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME

020 040 060 080 100 120 140 160 180

Wave s (A mpl i tu de)

Si te Var iabl e

D ura ti on of G row th

AMPLITUDE AMPLITUDE AMPLITUDE AMPLITUDE AMPLITUDE AMPLITUDE AMPLITUDE AMPLITUDE AMPLITUDE

Proj ect 01 Var iabl e

0.00M 0.25M 0.50M 0.75M 1.00M 1.25M 1.50M 1.75M 2.00M

- C reat e a pl ane and de for m th e s urf ac e ov er ti me us i ng te xt ure map pi ng t o s im ul ate w av es - Adj us t fr ames s o that amp li t ude of w av es i nc reas es ov er ti m e - C reat e a mas h n etw or k emi tti ng mo re c ubes ov er ti m e - Li nk the undu la ti ng oc ean sur fac e to t he c ol li di ng sur fac e of the d yna mi c - C reat e m as h tr ai l s - R un s i mul at i on and paus e a t s et i nc rem ents t o pr oduc e i t erati on s s im ul ati ng gr ow th

Process

Ma ya - Ma sh Tr ai l s /D yn ami c s

M ethodol ogy

S i mul at in g the gr ow th of ba ct eri a ove r ti m e. The form i s i nf l uence d by i nc reas i ng am pl it udes i n t he ocean ov er ti me .

GROWTH

GROWTH 2.7

GROWTH 2.4

GROWTH 2.1

GROWTH 2.8

GROWTH 2.5

GROWTH 2.2

GROWTH 2.9

GROWTH 2.6

GROWTH 2.3



1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME

020 040 060 080 100 120 140 160 180

P ubl i c Wa lk w ay N etw or k s

Pot enti al Pr og ramm e of Use

N at ural f eat ures of Lan d for m (Va l l eys )

Si te Vari able

T hic k nes s o f M ate ri al ( D ura tio n)

Pr oj ect 01 Var i abl e

- I nput the Moa Po in t l an d for m in to May a as a mes h. - C re ate a Ma sh netw or k . - C re ate a Ma sh D yna mi c. - I nput the l and f orm as a co ll i der for t he M ash net wo rk . - C re ate a Ma sh gl ue c ons tr ai nt and tra il s c onnec ti ng the Mas h geom etr y t oget her. - A ni mat e and fr eez e at i nter va ls to c aptu re t he c hange of sh ape du e to l and for m.

Pr ocess

M ay a - Mas h D y nam i cs /C on str ai nts

M ethodol ogy

M as h di s tri but i on o f s pher es dro p on to the M oa P oi nt S i te as a re sul t of gr avi ty. The f orm al qual i ti es p rodu ced ar e i nfl uen ced by t he l and for m, nat ural l y at tra ct ed to wa rd s t he v al l eys .

D E C AY

DECAY 1.7

DECAY 1.4

DECAY 1.1

DECAY 1.8

DECAY 1.5

DECAY 1.2

DECAY 1.9

DECAY 1.6

DECAY 1.3


2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

-

POINTS: POINTS: POINTS: POINTS: POINTS: POINTS: POINTS: POINTS: POINTS:

Si te Vari able

10 10 10 05 05 05 03 03 03

Q uant it y of Vi ral S ubs tan ce

P l ac eme nt Lo cat i on of Vi ra l S ubs tanc e

Pr oject 01 Vari able

- C r eate a gr i d on Gr ass hop per to sp eci fi ed l en gths and s ubdi vi s i ons - U s i ng a ran dom seed i ter ate poi nt l oc at io ns w it hi n t he gr i d; al so s pec i fyi ng t he quanti t y of poi nts . - A rea aro und s pec i fi ed con tro l poi nt s d ecr eas es ov er ti me . Gr i d di v i si on p oi nts t hat fal l outs i de of t he ar ea, sn ap to and c l us ter ar ound c l os est po in ts on a re a b oundar y. - D at a s tr uct ure of poi nts a re ret ai ned a fte r c l us ter in g, an d c urv e is i nte rpol at ed t hro ugh ne w i ter ati ons o f th e gr i d. - A nemo ne l oop i s use d t o si m ul ate ti me a nd ar ea d eca y.

Pr ocess

G ras s hopper - A nemon e

M et hodology

S i mu la ti ng t he d ecay ov er ti m e se en i n p la n. The fo rm i s i nfl uenc ed by the l oca tio n o f p oin ts rep res ent in g the pl ac eme nt l oc at io n of the v ir al s ubs tan ce.

D E C AY

DECAY 2.7

DECAY 2.4

DECAY 2.1

DECAY 2.8

DECAY 2.5

DECAY 2.2

DECAY 2.9

DECAY 2.6

DECAY 2.3


TRANSLATION ROTATION SCALE

TRANSLATION ROTATION SCALE

TRANSLATION ROTATION SCALE

FRAME 001

FRAME 125

FRAME 250

0 0 1

0 270 -

X 0 0 3.5

The dec reas e in s cal e i s in tro duc ed t o em ul ate the lo ss of t herm al en ergy o f th e hot c oal s as i t p ass es t hrou gh th e f oam me di um. Thi s res ul ts i n the ex it poi nt of the c oal s to be m ore sl en der w ith l es s of the fo am ‘de cay i ng’ aw ay.

The ro tati on i s i ntr oduc ed to em ul ated th e ra ndomn ess of t he c oal s pat h i n P ro je ct 1.

Proj ect 01 Emul ati on

A n an im ati on ov er a per i od of 25 0 fr am es i s cr eat ed w i th a t rans l ati on dow nw ar ds . A s the ani mat i on i s pl ay ed. the cur ve i s ro tat ed on al l ax i s and t he s c al e de cr eas es ov er ti me .

A Ma sh netw or k i s di st ri but ed al ong the c urv e e xt rac ted fr om Gr ass hop per. T hi s Ma sh netw or k em ul ates th e ho t c oal s f rom P roj ec t 1.

U si ng the D eca yed for m cr eat ed o n Gr as sho pper fr om the prev i ous pa ge, c urv es ex tr act ed f rom a fr eeze fr ame ar e th en r ei ntro duc ed i nto Ma ya.

D E C AY

Z 0 0 3.5

0 0 1

-50 0 1

0 270 270 -

Y 0 0 3.5

PLAN ELEVATION

DECAY 2.1

DECAY 2.2

DECAY 2.3


DECAY 2.4

DECAY 2.5

DECAY 2.6


DECAY 2.7

DECAY 2.8

DECAY 2.9


THICKNESS OF TRAILS: 0.1 NUMBER OF “COALS” : 75 TRAILS SCALE: 1.0

THICKNESS OF TRAILS: 0.5 NUMBER OF “COALS” : 75 TRAILS SCALE: 1.0

THICKNESS OF TRAILS: 1.0 NUMBER OF “COALS” : 75 TRAILS SCALE: 1.0

THICKNESS OF TRAILS: 1.0 NUMBER OF “COALS” : 35 TRAILS SCALE: 1.0

THICKNESS OF TRAILS: 1.0 NUMBER OF “COALS” : 35 TRAILS SCALE: 5.0

THICKNESS OF TRAILS: 1.0 NUMBER OF “COALS” : 35 TRAILS SCALE: 10

THICKNESS OF TRAILS: 1.0 NUMBER OF “COALS” : 35 TRAILS SCALE: 20

THICKNESS OF TRAILS: 1.0 NUMBER OF “COALS” : 15 TRAILS SCALE: 20

THICKNESS OF TRAILS: 0.1 NUMBER OF “COALS” : 500 TRAILS SCALE: 1.0

DECAY 2.90

DECAY 2.91

DECAY 2.92

DECAY 2.93

DECAY 2.94

DECAY 2.95

DECAY 2.96

DECAY 2.97

DECAY 2.98

Var ia ble s f rom P r oj ect On e ar e re in tro duced as v ari ab le s wi thi n May a. Th e fo ll ow i ng ser i es of mode l w il l be i ter ati ons of D ec ay model 2.9.

TESTING MODEL CONSTRAINTS

D E C AY DECAY 2.90

DECAY 2.91

DECAY 2.92

DECAY 2.93


DECAY 2.94

DECAY 2.95

DECAY 2.96 DECAY 2.97

DECAY 2.98


Releasing Mash particles at specified location to reciprocate historic path of rain fall to emulate the decay Moa Point; forming t h e s i t e i t i s t o d a y.

RECIPROCATING PREHISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


PLAN VIEW

RECIPROCATING HISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


Releasing another set of Mash particles to interacting with the site contours.

RECIPROCATING PREHISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


PLAN VIEW

RECIPROCATING HISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


Speed of particles are hard to control, resulting in estrayed particles flowing down the contour at differing speeds.

Mash particles join to fully reciprocate the prehistoric rainfall of Moa Point, sculpting valleys.

RECIPROCATING PREHISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


PLAN VIEW

RECIPROCATING HISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


The particles emulating rain, reconnect with the Ocean.

By using Mash constraints the interaction between the Mash particles and the contour become more controlled with even distribution.

RECIPROCATING PREHISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


PLAN VIEW

RECIPROCATING HISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


This is achieved by using successful elements from the series: Decay 2

Mash particles interact with t h e O c e a n w a t e r. O v e r a period of years, the rising water levels influence the growth of a tower-like structure to emerge from the ocean

RECIPROCATING PREHISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


PLAN VIEW

RECIPROCATING HISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


Ideas from Decay series 1, are re-implemented to create networks between Mash particles. This create a structure situated in the valleys of Moa Point.

RECIPROCATING PREHISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y


C anti levered S truct ure // F ut urist ic DOC H ut t

P o t e n t ia l P r o g r a m m e o f U s e

RECIPROCATING HISTORIC PATH OF RAINFALL TO MORPH MOA POINT

VA L L E Y PLAN VIEW


2 6 . 9 4 ”

4 1

S ,

/ /

V I E W I N G

T O W E R

o

2 0 ’

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N N TT

H O U S E

L I G H T


2 6 . 9 4 ”

4 1

S ,

/ /

V I E W I N G

T O W E R

o

2 0 ’

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N N TT

H O U S E

L I G H T


2 6 . 9 4 ”

4 1

S ,

/ /

V I E W I N G

T O W E R

o

2 0 ’

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N N TT

H O U S E

L I G H T


2 6 . 9 4 ”

4 1

S ,

/ /

V I E W I N G

T O W E R

o

2 0 ’

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N N TT

H O U S E

L I G H T


2 6 . 9 4 ”

4 1

S ,

/ /

V I E W I N G

T O W E R

o

2 0 ’

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N N TT

H O U S E

L I G H T


2 6 . 9 4 ”

4 1

S ,

/ /

V I E W I N G

T O W E R

o

2 0 ’

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N N TT

H O U S E

L I G H T


PROJECT THREE MOA POINT CIVIL DEFENSE CENTER


SCENARIO 2080 The World is in a state of emergency due to mankind’s contributions to Global Warming. Sea levels have risen drastically and unforeseen natural disasters constantly occur. Cities Worldwide have been devastated and destroyed due to the disastrous weather conditions. Moa Point, Wellington The community of Moa Point is extremely susceptible to extreme weather conditions due to its topographical location.

CLIENT Moa Point Civil Defense Center The Architectural purpose of the structure is to provide spaces for a variety of people in the instance an emergency caused by natural disasters occurs. The spaces will need to inhibit: -

Sleeping Rooms for the Community Shared Communal Areas First Responders First Aid Storage for goods

Due to the purpose of being a Civil Defense Center and with technological advancements, The Architecture will need to incorporate ‘responsive’ design features which can adjust to the conditions of the outside world (wind and sea currents etc.)


TEST ONE T E S T I N G O F n PA R T I C L E A N D M A S H T R A I L S F R O M PROJECT 2 PHASE 1

PHASE 2

n Pa rti c l e s w i th Vo rte x to Trai l s

nP arti cl e emi t from Obj ect

PHASE 3

PHASE 4

nPa rti c l e Pa s s i v e C o l l i d e r to Trai l s

nP arti cl e P assi ve C ol l i der to Trai l s

PHASE 5

C o mbi nati on of al l P hases


TEST TWO nParticles interact with the contours and M ASH Trails are created

The M ash Trails are M irrored

nParticles are emitted from the mirrored object

A structure is formed using the nParticle Points

Particles are emitted and collide with the object to create Trails around the Object.


TEST THREE

USING NEWTONS TO INFORM DIRECTION OF n PA R T I C L E F L O W


C O M P O N EN TS OF FIN AL D ESIGN Structural Column Grid An array of structural columns are created on the Moa Point Site. This reciprocates the grid used in 2D Decay simulation from Project 2, showing the decay of the site based on the location of points.

Large Communal Building Structure The large communal building structure is created using a location of points within the column grid and are dropped to interact with the site terrain. The Points then are converted into polygons to create a singular unified structure.

Exo-Skeleton An exo-skeleton around the Large structure is created by emitting nParticles from the structure. The points are then connect by closest points with the MASH Trails command. The Purpose of the exo-skeleton is to create structural integrity from large natural forces such as wind force and large debris flying around.

Smaller Sleeping Dorms Similarly, the smaller sleeping dorms are created the using the same method as the large communal building structure. ‘Clusters’ of multiple points are emitted to create multiple smaller structures.

Diffusive Poles Created by emitting nParticles and turning all elements into Passive Colliders. These poles are responsive and adjust according to wind and sea conditions. They work to reduce the forces of the wind and sea thus keeping the Civil Defense Center safe.


R E S P O N S I V E W I N D A N D S E A S T R E N G T H M I T I G AT I O N P O L E S

SMALLER SLEEPING DORMS

HEIGHT ADJUSTMENT GEARS BASED ON TIDAL HEIGHT

SMALLER SLEEPING DORMS

EXTENDABLE BRIDGING UNIT TO SMALLER STRUCTURES

LARGE SHARED COMMUNAL ROOMS (KITCHEN, DINING ETC.)

R O B O T I C A R M T O F O R T R A N S P O R TAT I O N O F H E AV Y S U P P L I E S

EAST SEC TION


PERSPECT IV E IMAG E


8. Dock connecting Ocean to Lift Pod

7. Lift Pod

6. Sleeping Dorm

5. Hospital & First Responders

4. Communal Lounge

3. Communal Dining

2. Communal Kitchen

1. Supply Storage

MAST ERPLAN PE RS PECT IVE

8

7

5

4

1

2

3

6


P3. PERSPECT IV E F RO M BO AT DO C K


4 1

o

2 0 ’

2 6 . 9 4 ”

S ,

1 7 4

o

4 8 ’

4 1 . 7 3 ”

E

M MO OA A •• P PO O II N NT T


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.