conceptos básicos de probabilidad

Page 1

j


Araceli Arjona Muñoz

Índice 1.

EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL ....................................................................... 3

2.

SUCESOS. OPERACIONES CON SUCESOS ........................................................................................ 3 2.1 SUCESOS .............................................................................................................................................. 3 2.2 OPERACIONES CON SUCESOS...................................................................................................................... 3

3.

DEFINICIÓN DE PROBABILIDAD. PROPIEDADES ............................................................................. 4 3.1 DEFINICIÓN ............................................................................................................................................ 4 3.2 PROPIEDADES ......................................................................................................................................... 4

4.

PROBABILIDAD CONDICIONADA .................................................................................................... 5 4.1 SUCESOS DEPENDIENTES E INDEPENDIENTES.................................................................................................. 5

5.

TABLAS DE CONTINGENCIA Y DIAGRAMAS DE ÁRBOL ................................................................... 6

• • 6.

Conversión de una tabla en diagrama de árbol .......................................................................... 6 Conversión de un diagrama en tabla de contingencia ................................................................ 7

PROBABILIDAD TOTAL ................................................................................................................... 8 Teorema de la probabilidad total ........................................................................................................ 8 Teorema de Bayes................................................................................................................................ 8

2 ticmatec.blogspot.com


Araceli Arjona Muñoz

1. Experimentos aleatorios. Espacio muestral Experimentos o fenómenos aleatorios son los que pueden dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización del experimento. Suceso aleatorio es un acontecimiento que ocurrirá o no, dependiendo del azar. Espacio muestral es el conjunto formado por todos los posibles resultados de un experimento aleatorio. En adelante lo designaremos por E.

2. Sucesos. Operaciones con sucesos 2.1 Sucesos Suceso de un fenómeno o experimento aleatorio es cada uno de los subconjuntos del espacio muestral E. Todos estos subconjuntos del espacio muestral E los llamamos sucesos. Los elementos de E se llaman sucesos individuales o sucesos elementales. También son sucesos el suceso vacío o suceso imposible , Ø, y el propio E, suceso seguro. Al conjunto de todos los sucesos de una experiencia aleatoria lo llamaremos S. Si E tiene un número finito, n, de elementos, el número de sucesos de E es 2n.

2.2 Operaciones con sucesos Dados dos sucesos, A y B, se llaman: Unión

es el suceso formado por todos los elementos de A y todos los elementos de B.

Intersección

es el suceso formado por todos los elementos que son, a la vez, de A y de B.

3 ticmatec.blogspot.com


Araceli Arjona Muñoz Diferencia

es el suceso formado por todos los elementos de A que no son de B.

Suceso

El suceso

=E - A se llama suceso contrario de A.

contrario

Dos sucesos A y B, se llaman incompatibles cuando no tienen ningún elemento común. Es decir, cuando

= Ø (A y B son disjuntos)

3. Definición de probabilidad. Propiedades 3.1 Definición Un experimento aleatorio se caracteriza porque repetido muchas veces y en idénticas condiciones el cociente entre el número de veces que aparece un resultado (suceso) y el número total de veces que se realiza el experimento tiende a un número fijo. Esta propiedad es conocida como ley de los grandes números, establecida por Jakob Bernouilli. Tiene el inconveniente de variar la sucesión de las frecuencias relativas de unas series de realizaciones a otras, si bien el valor al que se aproximan a medida que el número de realizaciones aumenta se mantiene estable. Probabilidad de un suceso es el número al que tiende la frecuencia relativa asociada al suceso a medida que el número de veces que se realiza el experimento crece. •

La frecuencia relativa del suceso A:

3.2 Propiedades Propiedades de la frecuencia relativa: 1. 0

fr (A)

1 cualquiera que sea el suceso A. 4 ticmatec.blogspot.com


Araceli Arjona Muñoz

2. fr(

) = fr(A) + fr(B)

3. fr(E) = 1

si

= Ø.

fr(Ø) = 0.

P(

P( Ø ) = 0

Si

A

B

P( B ) = P( A ) + P(

Si

A

B

P( A )

Si A1 , A2 , ... , Ak , son incompatibles dos a dos, entonces:

) = 1 - P( A )

P( A1

A2

...

)

P( B )

Ak ) = P( A1 ) + P( A2 ) + ... + P( Ak )

P(

Si el espacio muestral E es finito y un sucesos es A={x1 , x2 , ... , xK} , entonces:

) = P( A ) + P( B ) - P(

)

P( A ) = P( x1 ) + P( x2 ) + ... + P( xK )

4. Probabilidad condicionada

Sean A y B dos sucesos tal que P( A )

0, se llama probabilidad de B condicionada a A,

P(B/A), a la probabilidad de B tomando como espacio muestral A, es decir, la probabilidad de que ocurra B dado que ha sucedido A.

4.1 Sucesos dependientes e independientes Decimos que dos sucesos A y B son independientes entre sí si la ocurrencia de uno de ellos no modifica la probabilidad del otro, es decir, si P( B/A ) = P( B )

ó

P( A/B ) = P( A )

5 ticmatec.blogspot.com


Araceli Arjona Muñoz Decimos que dos sucesos A y B son dependientes entre sí si la ocurrencia de uno de ellos modifica la probabilidad del otro, es decir, si P( B/A )

P( B )

ó

P( A/B )

P( A )

Como consecuencia inmediata de la definición se tiene: •

Dos sucesos A y B son independientes si se cumple: P( A

B ) = P( A ) · P( B )

Tres sucesos A, B y C son independientes si se cumplen a la vez: P( A

B ) = P( A ) · P( B )

P( A

C ) = P( A ) · P( C )

P( B

C ) = P( B ) · P( C )

P( A

B

C ) = P( A ) · P( B ) · P( C )

5. Tablas de contingencia y diagramas de árbol En los problemas de probabilidad y en especial en los de probabilidad condicionada, resulta interesante y práctico organizar la información en una tabla de contingencia o en un diagrama de

árbol.

Las tablas de contingencia y los diagramas de árbol están íntimamente relacionados, dado uno de ellos podemos construir el otro. Unas veces, los datos del problema permiten construir fácilmente uno de ellos y a partir de él podemos construir el otro, que nos ayudará en la resolución del problema. •

Conversión de una tabla en diagrama de árbol Las tablas de contingencia están referidas a dos características que presentan cada una dos o más sucesos.

En el caso de los sucesos A,

,By

, expresados en frecuencias absolutas, relativas

o probabilidades la tabla, adopta la forma adjunta. 6 ticmatec.blogspot.com


Araceli Arjona Muñoz

A P( A

B

P( A TOTAL

P( A )

TOTAL B)

P( )

P( P(

P( B )

B) ) )

P(

)

1

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y

se les ha asociado los sucesos B y

.

Sobre las ramas del diagrama de árbol se han anotado las probabilidades condicionadas correspondientes, deducidas de las relaciones análogas a:

Conversión de un diagrama en tabla de contingencia De manera recíproca, dado el diagrama de árbol podemos construir la tabla de contingencia equivalente si más que utilizar la expresión P( B

A ) = P( B/A ) · P( A ), para calcular las probabilidades de las intersecciones de

sucesos que forman la tabla. 7 ticmatec.blogspot.com


Araceli Arjona Muñoz

6. Probabilidad total Llamamos sistema completo de sucesos a una familia de sucesos A1, A2, ...,An que cumplen: 1. Son incompatibles dos a dos, Ai

Aj = Ø

2. La unión de todos ellos es el suceso seguro,

Teorema de la probabilidad total Sea A1, A2, ...,An un sistema completo de sucesos tales que la probabilidad de cada uno de ellos es distinta de cero, y sea B un suceso cualquier del que se conocen las probabilidades condicionales P(B/Ai), entonces la probabilidad del suceso B viene dada por la expresión:

Teorema de Bayes Sea A1, A2, ...,An un sistema completo de sucesos, tales que la probabilidad de cada uno de ellos es distinta de cero, y sea B un suceso cualquier del que se conocen las probabilidades condicionales P(B/Ai), entonces la probabilidad P(Ai/B) viene dada por la expresión:

8 ticmatec.blogspot.com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.