INTRODUCCIÓN El Cálculo Diferencial e Integral es una herramienta matemática que surgió en el siglo XVII para resolver algunos problemas de geometría y de física. El problema de hallar una recta tangente a la gráfica de una función en un punto dado y la necesidad de explicar racionalmente los fenómenos de la astronomía o la relación entre distancia, tiempo, velocidad y aceleración, estimularon la invención y el desarrollo de los métodos del Cálculo. Sobresalieron entre sus iniciadores John Wallis, profesor de la Universidad de Oxford e Isaac Barrow, profesor de Newton en la Universidad de Cambridge, Inglaterra. Pero un método general de diferenciación e integración fue descubierto solo hacia 1665 por el Inglés Isaac Newton y posteriormente por Gottfried Wilhelm Von Leibniz, nacido en Leipziy, Alemania, por lo que a ellos se les atribuye la invención del Cálculo. En la actualidad el Cálculo se aplica al estudio de problemas de diversas áreas de la actividad humana y de la naturaleza: la economía, la industria, la física, la química, la biología, para determinar los valores máximos y mínimos de funciones, optimizar la producción y las ganancias o minimizar costos de operación y riesgos. En este fascículo estudiarás una parte del Cálculo conocida como Cálculo Diferencial. Para abordar estos contenidos es necesario que apliques los conocimientos que adquiriste de álgebra, geometría, trigonometría y geometría analítica. El objetivo de este material es apoyarte para que adquieras el concepto de función derivada, aprendas técnicas para derivar funciones y apliques estos conocimientos en la construcción de gráficas y la solución de problemas a partir de la discusión de situaciones de la vida real, para que obtengas elementos que te permitan estar en condiciones de tomar decisiones acertadas y pronosticar los cambios experimentan dos cantidades relacionadas funcionalmente además de proporcionarte las bases para que accedas al estudio del Cálculo Integral.