4 minute read
de la Independencia después
la Nación, la columna sufrió agrietamientos de varios centímetros en su recubrimiento.
Advertisement
Efectos de directividad durante un evento sísmico
El conocimiento sobre el fenómeno sísmico se ha incrementado sustancialmente debido a la mejora en la precisión y en el aumento de la instrumentación sísmica. En ese contexto, uno de los fenómenos sobre los cuales se han hecho adelantos recientes en nuestro país es el de la directividad de la ruptura. Un sismo se genera al liberarse súbitamente la energía acumulada entre dos placas tectónicas en contacto. La liberación de energía ocurre a través de la propagación de una ruptura en la superficie de falla y se sabe que la dirección de la ruptura tiene un impacto muy importante en la intensidad del movimiento del suelo.
En la figura 3, los sitios 1 y 2 se encuentran a la misma distancia epicentral del punto de inicio de la ruptura (foco); sin embargo, el movimiento del suelo en el sitio 1 es mucho mayor y con una menor duración debido a que la ruptura se propaga en dirección del sitio 1 y se genera una interacción constructiva entre las ondas sísmicas. Por otro lado, el movimiento del suelo en el sitio 2 es de menor amplitud y con una mayor duración respecto al sitio 1, debido a que la ruptura se propaga en dirección opuesta al sitio y se genera una interferencia entre las ondas sísmicas que dispersa el movimiento del suelo.
En la figura 4 se muestra la distribución de estaciones de la red de instrumentación del Instituto de Ingeniería de la UNAM y del Servicio Sismológico Nacional. Aunque todavía es necesario incrementar su número, estas redes han permitido documentar convincentemente el efecto de directividad de la ruptura durante los sismos del 8 de mayo de 2014 Mw= 6.5; 10 de mayo de 2014 Mw= 6.1, y 8 de septiembre de 2021 Mw= 7 (Singh et al., 2019). De hecho, se ha comprobado que el movimiento del suelo en la Ciudad de México por esos sismos fue afectado por los efectos de directividad; cuando la ruptura se propaga en dirección de la ciudad capital ocurren intensidades sísmicas aproximadamente tres veces mayores que cuando la ruptura se propaga en dirección
Estación acelerográfica Océano Pacífico
EO-EGF 31 mayo 1990
NS-EGF 31 mayo 1990
EO-EGF 8 mayo 2014
NS-EGF 8 mayo 2014 T1=1.037 s T2=0.170 s contraria. Estos resultados sugieren que los efectos de directividad también influyeron durante el sismo del 19 de septiembre de 1985 Mw=8 y el del 28 de julio de 1957 Mw~7.5-7.7 y que contribuyeron fuertemente a la destrucción observada.
Estos resultados podrían explicar, 66 años después, la razón por la que el Ángel de la Independencia cayó en 1957. Así, considerando los registros la estación acelerométrica UC44, que está localizada a unos 800 m del monumento, se sintetizó el movimiento del suelo que pudo haberse observado durante el sismo de 1957. Se consideraron registros con efectos de directividad y sin ellos. Se usó como semilla el sismo del 31 de mayo de 1990 para sintetizar el caso sin efectos de directividad y el sismo del 8 de mayo de 2014 para sintetizar movimiento con efectos de directividad. Entonces, aunque ambos registros están asociados con la misma magnitud y aproximadamente la misma distancia, la aceleración que provocan en el sitio es diferente.
En la figura 5 se muestran los espectros de respuesta de ambas señales en la dirección norte-sur y este-oeste que pudieron haber ocurrido durante el sismo de 1957: con línea roja se muestran los espectros asociados a sismos con efecto de directividad hacia la Ciudad de México, mientras con línea azul se muestran los espectros para sismos sin directividad. Las intensidades para el caso de efectos de directividad son mayores que las intensidades para el sismo sin efecto de directividad. Es interesante notar que solo cuando se incluyen los efectos de directividad se obtiene una magnitud de aceleración máxima cercana al 10% de la gravedad, que es la intensidad que estimaron algunos investigadores para relacionar los daños registrados en 1957 en la zona del Monumento a la Independencia (Rosenblueth, 1960).
Paralelamente, a partir del reporte de la reconstrucción y los limitados documentos históricos disponibles, se realizó un modelo detallado de la columna original (de 1957), cuyos periodos se incluyeron en la figura 5a. El propósito del estudio es evaluar si las demandas de desplazamiento y aceleración impuestas en la estatua provocarían el colapso cuando se incluyen los efectos de directividad (figura 5b), en contraste con el caso en que no se incluyen. Por ejemplo, en la figura 6 se muestran los desplazamientos obtenidos en análisis dinámicos con las señales obtenidas.
Dada la incertidumbre, el estudio pretende establecer la probabilidad de colapso mediante un estudio
NS-EGF 31 mayo 1990
EO-EGF 31 mayo 1990
Caída del Ángel de la Independencia 66 años después
Máximos DNS=106.9 mm DEW=70.6 mm
Máximos DNS=259.6 mm DEW=161.5 mm
NS-EGF 8 mayo 2014
EO-EGF 8 mayo 2014 estadístico, por lo que se están realizando decenas de análisis ante un número equivalente de señales.
Figura 6. Comparación de los desplazamientos en la estatua: a) señal del 31 de mayo de 1990; b) señal del 8 de mayo de 2014.
Conclusión
Los adelantos tecnológicos han permitido comprender de una manera más detallada la forma que se propagan las ondas sísmicas a partir de los registros sísmicos medidos. La tendencia de los resultados de esta investigación permitirá identificar la influencia de los efectos de directividad para establecer el potencial destructivo en nuevos sismos y también comprender mejor lo que ocurrió en eventos sísmicos previos, como en 1957
Referencias El Mundo Ilustrado, EMI (1901). Monumento a los Héroes de la Independencia. El Mundo Ilustrado. T. 1, núm. 19.
Rosenblueth, E. (1960). The earthquake of 28 July in Mexico City. Memorias del 2º. Congreso Internacional de Ingeniería Sísmica: 359-379.
Ruiz, S. (1958). Expediente de la reconstrucción de la columna de la independencia de 1957. Reporte Técnico. Archivo Histórico de la Nación.
Singh, S. K., et al. (2019). Evidence of directivity during the earthquakes of 8 and 10 May 2014 in Guerrero, Mexico seismic gap and some implications. Journal of Seismology 23:683-697.
Servicio Sismológico Nacional, SSN (2023). Catálogo de Sismos. Consultado el 10 de febrero de 2023.
¿Desea opinar o cuenta con mayor información sobre este tema? Escríbanos a helios@heliosmx.org
GERARDO
HIRIART LE BERT
Ingeniero naval mecánico. Desde hace 50 años, incorporado al desarrollo de la ingeniería mexicana en la academia, el servicio público y el sector privado, principalmente en temas del sector de energía eléctrica.