Kan man blande enhver farve med grundfarver

Page 1

BLAN KAN MAN

ENHVER

FARVE

?

GRUND FARVEr

MED

Af Sissel Albrecht Kahr


DE og Ulrik Ishøj Søndergaard 87


Kan man blande enhver farve med tre grundfarver? De fleste lærer på et tidspunkt i folkeskolen, at svaret på dette spørgsmål er ja. Mark Twain tilskrives ofte citatet: ”I have never let my schooling interfere with my education”. I denne ånd vil vi ikke lade vores gamle skoling stå i vejen for en fornyet undersøgelse af spørgsmålet. Det viser sig, at man ikke kan blande alle farver med tre grundfarver, men at det ofte er godt nok i praksis.

skærme. Alternativet er subtraktiv farveblanding, der er relevant for blanding af maling. Hvad er en farve i en fysikers øjne? Det mest korrekte er at definere farver, som det sanseindtryk man oplever, når såkaldte tapceller på øjets nethinde stimuleres af lys. Denne oplevelse vil afhænge af hvilke bølgelængder, der er indeholdt i det lys, der rammer øjet.

Det raske øje indeholder tre forskellige tapceller, der har deres primære For at uddybe svaret Figur 1: Additiv farveblanding følsomhed ved hhv. er det nødvendigt at forklare og præcisere de ord, der indgår korte, mellemlange og lange bølgelængi spørgsmålet. F.eks. bør man præcisere der (figur 2). Disse refereres til som S, M, hvilken slags farveblanding, der er tale og L-tappe. Sendes grønt laserlys med en om. Her vil vi udelukkende snakke om bølgelængde på 537 nm ind i øjet vil det additiv farveblanding (figur 1). Dvs. den mest være M-tappe, der stimuleres og i slags farveblanding, der er relevant, når nogen grad L-tappe. Denne kombination lys af forskellige farver blandes. Additiv opfatter hjernen som farven grøn. Oftest farveblanding anvendes f.eks. i computer- er det lys, der rammer øjet, en kombina-

Figur 2: Tapcellernes følsomhed 88

Hjerneblod l

6/2016


Figur 3: Venstre: sparepære. Højre: glødelampe. tion af mange forskellige bølgelængder. Her kan øjets spektrale sensitiviteter bruges til at beregne, hvilken farve hjernen vil opleve. Lad f.eks. s(λ) være den spektrale sensitivitet for S-tappene. s(λ) er den blå kurve på figur 2. Lad I(λ) være den spektrale udstråling fra en glødepære som vist på figur 3. Så kan vi beregne, hvor meget S-tappene stimuleres af lyset fra glødepæren vha. integralet

Tilsvarende kan M- og L-tappenes stimuli beregnes, og resultatet kan samles i en vektor.

Vektoren angiver entydigt et farveindtryk.

Det rum, som vektoren lever i, kaldes et LMS-farverum. Et nok mere velkendt farverum er RGB-farverummet, der f.eks. anvendes af computere. I princippet har hvert menneske sit eget LMS-farverum, da genetiske variationer betyder, at tapcellernes spektrale sensitiviteter varierer mellem individer. Det farveindtryk, man får, når elektromagnetisk stråling rammer øjet, afhænger altså kun af hvor meget hhv. L-, M- og S-tappene stimuleres. Derfor kan vidt forskellige strålingssammensætninger godt give anledning til samme farveindtryk. Dette fænomen kaldes metameri. På figur 3 ses en sparepære side om side med en glødepære. Glødepærens spektrum (figur 4) er meget anderledes end sparepærens spektrum (figur 5), men de opleves næsten ens. Dette kan forklares ved, at sammensætningen af lyset fra begge typer pærer stimulerer L-, M- Ø 89


Figur 4: Spektral udstråling fra glødepære.

Figur 5: Spektral udstråling fra sparepære.

og S-tappene i nogenlunde samme forhold. F.eks. ses det af figur 4, at glødepæren udstråler mest lys ved bølgelængder i det område, hvor M- og L-tappene er følsomme. Det samme er tilfældet for sparepæren (figur 5), selvom udstrålingen primært fordeler sig i smalle, adskilte bølgelængde-intervaller. I kompaktlysstofrør som sparepæren her vælges sammensætningen af såkaldte lysstoffer/fosforer netop sådan, at udstrålingen nogenlunde stimulerer L-, M- og S-tappene i samme forhold som glødepærer.

hvilken farveoplevelse computerskærmen giver os, er intensiteterne af henholdsvis rødt, grønt og blåt lys. Ud fra det lys computeren udsender, kan man beregne, hvor meget vores tre typer tappe stimuleres af hver af computerens udsendte tre farver. Eksempelvis kan vi beregne, hvor meget S-tappen stimuleres af computerens blå farve ved integralet

Computerens gengivelse af farver Computerskærme udsender ikke lys ved alle bølgelængder. På figur 6, der viser intensitetsspektret for hvidt lys udsendt fra en computerskærm, ses en fordeling, der minder om de tre typer tapcellers sensitivitet. Det viser sig altså, at computeren kun udsender de samme tre grundfarver, som menneskets øjne opfanger: rød, grøn og blå. Hver af de tre farver bliver opfattet i hver af vores tre typer tappe. Det der afgør, 90

Hjerneblod l

6/2016

Figur 6: Intensitetsspektrum for computerens hvide lys.


Her angiver s(λ) den spektrale sensitivitet for S-tappen, der er vist med blåt figur 2. Iblå (λ) angiver den spektrale intensitet udstrålet fra computerens blå pixel. Computerskærmens blå farve vil foruden at stimulere S-tappene også stimulere M- og L-tappene en smule. Disse stimuli kan beregnes på tilsvarende måde. Denne kryds-stimulering er endnu mere udpræget for de grønne og røde farver idet M- og L-tappenes spektrale sensitiviteter har stort overlap.

Figur 7: Farveblandingsfunktioner. Viser blandingsforholdet mellem computer-skærmens blå, grønne og røde farver, når den forsøger at matche oplevelsen af lys ved en bestemt bølgelængde.

Disse overlap tager computeren højde for, når den prøver at gengive en farve. Betragtes et fotografi af en regnbue på computerskærmen forsøger computeren at blande den gule farve ved en kombination af rød og grøn. I virkeligheden er regnbuens gule farve et resultat af, at lys ved ca. 570 nm rammer vores øje. Man kan via de spektrale sensitiviteter finde, at LMS-vektoren for gult lys ved 570 nm bliver

Computeren kan justere lysstyrkerne xrød, xgrøn og xblå ved at løse ligningssystemet

hvor f.eks. Sgrøn angiver hvor meget

computerens grønne farve stimulerer S-tappene. Løses dette ligningssystem viser det sig, at xblå skal være negativ. Computeren kan naturligvis ikke udstråle en negativ lysmængde, så det bedste, den kan gøre, er bare at slukke for den blå farve, men den resulterende LMS-vektor matcher ikke oplevelsen af den ’ægte’ gule farve helt. Hvis man laver samme udregning for lys ved alle bølgelængder i det synlige område får man tre grafer, der beskriver den mængde rødt, grønt og blåt lys computeren skal udsende, for at matche givne bølgelængder. Disse ses på figur 7, og kaldes farveblandingsfunktioner. Det ses, at computeren har sværest ved at gengive turkise farver, fordi det er i intervallet fra ca. 470nm til 550nm, hvori de bølgelængder, vi opfatter som turkise, ligger, at computeren har brug for at udsende den største mængde af ”negativt” lys, hvilket som sagt ikke kan lade sig gøre. Ø 91


Computerskærme kan altså kun til dels gengive farver i det synlige lysspektrum. Tænk over dette næste gang du oplever en regnbue eller en solnedgang gennem din smartphone. Hvor gode er vi til at skelne farverne fra hinanden? Et mål for forskellen mellem to farveoplevelser er vinklen mellem de to LMS-vektorer. I en simpel model kan vi sige, at vinklen mellem to LMS-vektorer skal være større end ca. 1,4° for at vi kan skelne farverne. Med de spektrale sensitiviteter kan vi nemt finde LMS-vektorerne for lys ved bestemte bølgelæng-

der og finde ud af, hvor stor forskellen i bølgelængde skal være for, at vi netop kan skelne farveoplevelserne. Med det simple minimumskriterium for LMS-vektorernes indbyrdes vinkel viser det sig, at turkise og gule farver er de letteste at skelne. Den røde kurve på figur 8 angiver for hver position i den synlige spektrum, hvor stor bølgelængdeforskel der skal til for, at LMS-vektorernes indbyrdes vinkel netop bliver 1,4°. Kurvens forløb stemmer nogenlunde overens med observationer fra tidligere studier af forsøgspersoners evne til at skelne lyskilder med forskellige bølgelængder.

Figur 8: Forskellen Δλ (på figuren Dl) i bølgelængde, der skal til for, at mennesker kan skelne to farver fra hinanden. De forskellige punkttyper repræsenterer forskellige undersøgelser givet i Wright, W. D. (1947) Researches on normal and comparative colour vision. St. Louis. Mosby, men punkter som afbildet her er vist i Jacobs, G. H., (1981) Comparative Color Vision. Academic Press. Den røde kurve viser den forventede sammenhæng beregnet ud fra tappenes spektrale sensitiviteter. 92

Hjerneblod l

6/2016


Farveblindhed Farveblindhed dækker over en række forskellige, ofte arvelige, forhold, der resulterer i nedsat farvesyn. Hos nogle er den ene type tapcelle helt fraværende, men det mest almindelige er, at en genetisk mutation giver en forskudt spektral sensitivitet for den ene tapcelle. Specielt er deuteranomali, der forskyder M-tappens følsomhedsområde mod L-tappens, udbredt blandt mænd. At mændende oftere er ramt af denne rød-grøn-farveblindhed skyldes, at de relevante gener er placeret på X-kromosomet. Vi ser nu på en person, hvis M- og L-tap har den maksimale sensitivitet ved samme bølgelængde. Dvs. en person med deuteranomali. Vi kan nemt få et indblik i hvilke farver denne person kan skelne. Vi forskyder blot M-tappens sensitivitetskurve (figur 2) lidt til højre og gentager beregningerne. Resultatet kan ses på figur 9. Her fremgår det, at personen skal bruge meget stor forskel i bølgelængde for at kunne skelne mellem de grøn-røde nuancer.

Figur 9: Forskellen Δλ (på figuren Dl) i bølgelængde, der skal til for, at mennesker med deuteranomali kan skelne to farver fra hinanden.

Perspektiver For de fleste mennesker er synsindtryk nok den vigtigste måde at sanse verden på. Det er forbløffende, hvordan man ved hjælp af tapcellernes spektrale sensitiviteter kan give ganske præcise forklaringer på, hvordan farveblanding virker, hvilke farver mennesker bedst kan skelne og hvordan dette er anderledes for mennesker med forskellige former for farveblindhed. I denne artikel har vi blandt andet vist, at det ikke lader sig gøre med computerskærmens tre grundfarver at blande enhver anden farve, men her melder en række spørgsmål sig. Med hvilke tre farver kan man bedst blande regnbuens farver? Hvor meget bedre ville en skærm med fire grundfarver være? Og kan man lave en brille, der hjælper de farveblinde? o

Om Sissel: Jeg hedder Sissel Albrecht Kahr, er 19 år og blev student fra Slagelse Gymnasium her i sommer. Jeg har valgt den naturvidenskabelige retning, med maA, fyA og keA, fordi jeg synes, at det er spændende at kunne undersøge og forklare forskellige fænomener. Efter gym vil jeg læse fysik, bæredygtigt biokemi eller bæredygtigt design - det har jeg ikke helt besluttet endnu.

93


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.