4.2
Improvements in the nutrient efficiency of hops through fertilization systems with fertigation (ID 5612)
Sponsor:
Bayerische Landesanstalt für Landwirtschaft, Institut für Pflanzenbau und Pflanzenzüchtung, AG Hopfenbau, Produktionstechnik (IPZ 5a) [Bavarian State Research Center for Agriculture, Institute for Plant Production and Plant Breeding, AG Hop Production, Production Technology (IPZ 5a)]
Financing:
Erzeugergemeinschaft HVG e. G. (HVG Hop Producer Group)
Project Management:
J. Portner
Team:
J. Stampfl, S. Fuß
Collaboration:
Prof. Dr. T. Ebertseder, Hochschule Weihenstephan-Triesdorf (Weihenstephan-Triesdorf University of Applied Sciences) Prof. Dr. F. Wiesler, LUFA Speyer Hop farms in the Hallertau
Duration:
March 2017 to December 2020
Hop plants place high demands on the water supply in order to deliver stable yields at a high quality. If the cultivation takes place in areas with a humid climate, both the absolute amount of precipitation and the distribution of precipitation over time are important. However, the global climate change is already causing a measurable rise in temperatures, as well as an increase in the frequency of extreme weather conditions such as dry periods and periods of heavy precipitation. The effects of these worldwide developments have become more pronounced in the German hop-growing regions in recent years. As a result of the deteriorating water supply, the production of hops in sufficient quantity and at high quality is becoming increasingly difficult, which means that it is also becoming more complicated to plan outcomes in the entire hop value chain. In addition to breeding new hop varieties with a higher tolerance for heat spells and dry periods as an adaptation to the consequences of climate change, additional irrigation with water-saving drip irrigation systems is also a possible adaptation strategy.
Figure 4.2: Drip irrigation systems for hops
27