DOCUMENT TYPE:
CALCULATION REPORT DOCUMENT TITLE:
HEAT RECOVERY STRUCTURE CALCULATION REPORT
4 3 2 1
-
REV.
DATE
-
-
-
PRE.
CHK.
APP.
CONTRACTOR
GEG
-
Issue For Approval
Client
Description
Purpose of Issue
PROJECT TITLE :
GOL-E-GOHAR MEGA MODULE PROJECT Client :
Client : MINES & METALS TECHNOLOGICAL ENGINEERING CO.
Client ‘S Project Code Main Area Code Plant Group Equipment Document Project Contractor Code Type
GEG
7
119 NAME
PREPARED CHECKED APPROVED
1005
7
RU
Eng. Discipline
Serial No.
S
001
15 MMTE No.
DATE
GGMMSM40C4-001
SHEET
REV.
A
Contract No. : 90/1942
This document and the information disclosed are the property of MMTE and are not to be used to furnish any information for making of documents or apparatus except where approved by written agreement.
REVISION RECORD SHEET
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Note: This Table is use for External Comments.
Page:
2 of 15
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
3 of 15
Table of Contents 1 Introduction........................................................................................................................................... 2 General View......................................................................................................................................... 3 Structural System................................................................................................................................. 13.
Foundation................................................................................................................................. 7
23.
Super Structure.......................................................................................................................... 7
3.2.1 Vertical loads......................................................................................................................7 3.2.2 Lateral loads.......................................................................................................................7 3.2.3 Floors.................................................................................................................................7 4 Loads..................................................................................................................................................... 14.
Dead Load.................................................................................................................................. 7
24.
Super Dead Load....................................................................................................................... 7
34.
Live Load.................................................................................................................................... 7
4.
Vessels and Equipment Load..................................................................................................... 7
54.
Wind Loads................................................................................................................................ 8
64.
Earthquake Loads...................................................................................................................... 8
74.
Thermal Load............................................................................................................................ 11
84.
Duct Load................................................................................................................................. 11
5 Load Combinations............................................................................................................................. 6 Foundation Design.............................................................................................................................. 16.
Foundation Dimensions............................................................................................................ 14
26.
Reinforcement.......................................................................................................................... 14
36.
Punching Shear Check............................................................................................................. 14
7 Overturning & Sliding Check............................................................................................................. 17.
Overturning control................................................................................................................... 18
Appendix A –Duct Loading Data ........................................................................................................ A1
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Document No: Client Document NO: MMTE Document NO:
Heat Recovery Structural Calculation Report
1
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
4 of 15
Introduction
Heat Recovery includes two separate steel structures. It works as a support for numerous vertical and horizontal pipes. Furthermore, Heat Recovery has contact to other structures like Pipe Rack and Reformer. Overall structural systems >Foundation
Reinforced Concrete
>Grade slab
Reinforced Concrete
>Structure
Steel Structure above GL+(0.00)m
>Stairs
Steel Structure + Grating
>Walkways and platforms
Steel Structure + Grating
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
2
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
General View
Location of structure in plant site is shown in Figure 1. Y
X
North
Figure 1: Location in Plant Site
Page:
5 of 15
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Second Part In Figure 2 and , three dimensional views of the structure are shown:
Figure 2: 3D View A
Figure 3: 3D View B
Page:
6 of 15
First Part
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
7 of 15
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
Document No: Client Document NO: MMTE Document NO:
3
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
8 of 15
Structural System
3.1 Foundation Foundation structural system is a 0.8 m thick strip reinforced concrete. The top level of the First Part Foundation is 1.200 m under the finished ground level and for Second Part 1.000.
3.2 Super Structure 3.2.1 Vertical loads Vertical loads are supported by Steel frames.
3.2.2 Lateral loads Lateral loads are supported by a steel concentrically braced frame in both longitudinal and transverse directions.
3.2.3 Floors All floors are mainly covered by 32 mm grating.
4
Loads
4.1 Dead Load Weight of structural components is included in analytical model based on specific weight of 25KN/m 3 for concrete and 78.5KN/m3 for steel parts.
4.2 Super Dead Load Super dead load is dead load of non-structural component such as following item: Grating floors:
0.55 KN/m2
4.3 Live Load Live loads include the followings: Main Platforms:
5.0 KN/m²
Auxiliary Platforms:
5.0 KN/m²
Gangways and stairs:
5.0 KN/m²
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
9 of 15
4.4 Vessels and Equipment Load Location and amount of each equipment point loads for individual cases are as attachment.
4.5 Wind Loads Wind load could be evaluated as mentioned in General Design Criteria but is not applied on analytical model of the structure. It is assumed that the whole structure is not closed so the wind load is negligible against seismic loads.
4.6 Earthquake Loads Earthquake loads are evaluated as mentioned in General Design Criteria regarding the following considerations: The lateral load resisting system is a concentrically braced steel frame so that the behaviour coefficient (R) is assumed equal to 3. Important Factor is assumed equal to 1.0. Dynamic analysis of the structure will be performed in order to evaluate the seismic effect on structural components. Mass Sources are evaluated regarding the following considerations: Mass Source* Load** Supd100 Live20 EMDL100 EMLL100
Multiplier 1.0 0.2 1.0 1.0
First Part : OutputCase Text MODAL MODAL MODAL
TABLE: Modal Load Participation Ratios ItemType Item Static Text Text Percent Acceleration UX 99.9161 Acceleration UY 100.0057 Acceleration UZ 99.7506
TABLE: Modal Participating Mass Ratios OutputCase StepType StepNum Period Text Text Unitless Sec MODAL Mode 1 0.46255 MODAL Mode 2 0.412636 MODAL Mode 3 0.365473 MODAL Mode 4 0.31941 MODAL Mode 5 0.308248 MODAL Mode 6 0.304014 MODAL Mode 7 0.27632 MODAL Mode 8 0.272863
UX Unitless 0.00002894 0.02171 0.00064 0.2915 0.00003257 0.07045 0.00445 0.00655
UY Unitless 0.02752 1.264E-07 0.74767 0.01269 0.00041 0.00634 0.00013 0.00001581
Dynamic Percent 94.0479 99.6097 95.2233 UZ Unitless 0.00003586 0.000001511 0.01131 0.00109 0.00025 0.00153 0.00009917 0.000003359
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Document No:
Heat Recovery Structural Calculation Report
MODAL MODAL MODAL MODAL
Client Document NO: MMTE Document NO:
Mode Mode Mode Mode
9 10 11 12
MMTE Rev .
DATE:
A
GGMMSM40C4-001
0.247913 0.237001 0.226444 0.222132
0.00084 0.16407 0.00004913 0.01712
Page:
0.00001628 0.00931 0.00046 0.00016
10 of 15
0.00024 0.0000137 0.00101 0.00001596
First Part Seismic Load According to Standard No. 2800 3rd. Edition 2005 Soil Type : II X Direction
B
To Ts S
0.1 0.5 1.5
Massx = Massy = Tx dyn = Ty dyn = H= I= Ct x = Ct y = Rx= Ry= A=
1819 1819 0.320 0.360 18 1 0.08 0.08 3 3 0.3
KN KN Sec. Sec. m
g
T 1x= Ct x * H3/4
0.699
Static Period Multiplier (0.8 or 1) T x st T = MIN(1.25 * T x st ,T x dyn ) Bx1 Bx min=0.1*Rx Bx Cx=ABI/Rx Vx
1.0 0.699 0.320 2.500 0.300 2.500 0.250 455
Y Direction T 1y = Ct y * H3/4 Period Multiplier (0.8 or 1) T y st T = MIN(1.25 * T y st ,T y dyn ) By1 By min=0.1*Ry By Cy=ABI/Ry Vy
0.699 1.0 0.699 0.360 2.500 0.300 2.500 0.250 455
3.0 2.5 2.0 1.5 1.0 0.5 0.0
Period (T Se c.)
Sec.
Sec.
KN Sec. Sec.
KN
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Document No: Client Document NO: MMTE Document NO:
Heat Recovery Structural Calculation Report
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
11 of 15
Second Part : TABLE: Modal Load Participation Ratios ItemType Item Static Text Text Percent Acceleration UX 99.9984 Acceleration UY 99.9942 Acceleration UZ 99.6026
OutputCase Text MODAL MODAL MODAL
TABLE: Modal Participating Mass Ratios OutputCase StepType StepNum Text Text Unitless MODAL Mode 1 MODAL Mode 2 MODAL Mode 3 MODAL Mode 4 MODAL Mode 5 MODAL Mode 6 MODAL Mode 7 MODAL Mode 8 MODAL Mode 9 MODAL Mode 10 MODAL Mode 11 MODAL Mode 12
Period Sec 0.39 0.35 0.31 0.30 0.22 0.20 0.19 0.17 0.17 0.16 0.15 0.14
UX Unitless 0.02 0.76 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dynamic Percent 97.8435 95.3135 84.6214
UY Unitless 0.50 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00
UZ Unitless 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.09 0.00 0.00
Secon Part Seismic Load According to Standard No. 2800 3rd. Edition 2005 Soil Type : II X Direction
To Ts S
0.1 0.5 1.5
Massx = Massy = Tx dyn = Ty dyn = H= I=
1405 1405 0.390 0.350 15 1
KN KN Sec. Sec. m
T 1x= Ct x * H3/4
0.610
Static Period Multiplier (0.8 or 1) T x st T = MIN(1.25 * T x st ,T x dyn ) Bx1 Bx min=0.1*Rx Bx Cx=ABI/Rx Vx
1.0 0.610 0.390 2.500 0.300 2.500 0.250 351
Y Direction T 1y = Ct y * H3/4 Period Multiplier (0.8 or 1) T y st T = MIN(1.25 * T y st ,T y dyn )
0.610 1.0 0.610 0.350
Sec.
Sec.
KN Sec. Sec.
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Document No: Client Document NO: MMTE Document NO:
Heat Recovery Structural Calculation Report
Ct x = Ct y = Rx= Ry= A=
0.08 0.08 3 3 0.3
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Page:
By1 By min=0.1*Ry By Cy=ABI/Ry Vy
g
2.500 0.300 2.500 0.250 351
12 of 15
KN
4.7 Thermal Load In this structure, effects of thermal stresses are negligible because of the small length of the structure between the fixed points, so this effect is not considered in analysis.
4.8 Duct Load Duct and Pipe loading is as attachment.
5
Load Combinations
Following tables describe the load cases and combination factors for design of foundation, concrete and steel parts. Table 1, includes load cases and Table 2, includes load combination factors that are used in this structure. In tables 2 & 3 env (…) means the envelop effect of loads written in parentheses. Table 1: Load Cases Definition Load Cases
Type
Description
Intermediate Load cases
Dead
Weight of structure alone
ALL Dead= Dead00+Supd100+EMDL100
Supd100
Dead
Weight of floors + grating + internal walls + finishing+…
ALL Live=Live20+ EMLL100
Live20
Live
Live loads that contribute in Earthquake 20%
Main Load cases
Structural Loads Dead00
SpecX
Earthquake Loads in X dir: Spectrum Analysis
Fv=( 0.7AI=0.21) x ALLDead (Seismic Vertical Effect)
SpecY
Earthquake Loads in Y dir: Spectrum Analysis
FvN= - Fv
Earthquake Loads in X dir: Auto Lateral Loading Earthquake Loads in Y dir: Auto Lateral Loading
EQX
Quake
EQY
Quake
WLX
Wind
WLXN
Wind
Wind Load in -X dir
WLY
Wind
Wind Load in +Y dir
WLYN
Wind
Wind Load in -Y dir
Wind Load in +X dir
Equipment Loads Equipment Dead Loads that contribute in Earthquake 100% Equipment Live loads that contribute in Earthquake100%
EMDL100
Dead
EMLL100
Live
EMEXLO
Quake
Equipment Earthquake Load in X dir Local
EMEYLO
Quake
Equipment Earthquake Load in Y dir Local
FvEnv=env(Fv, FvN)
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
MMTE Rev .
Document No:
Heat Recovery Structural Calculation Report
Client Document NO: MMTE Document NO:
DATE:
A
GGMMSM40C4-001
Page:
13 of 15
Table 2: Load Combination Factors
Design Combinations (for Soil Pressure Evaluation and Steel Design)
ALL Dead
ALL Live
ASD1
1
1
ASD2
1
ASD3
0.75
0.75
ASD4
0.75
0.75
ASD5
0.75
0.75
ASD6
0.75
0.75
ASD7
0.75
ASD8
0.75
Test load
WLX
WLY
WLXN
WLYN
SpecX
SpecY
FvEnv
EMEYLO
EMEXLO
0.75 0.75 0.75 0.75 0.75 0.75
ASD9
0.75
ASD10
0.75
0.75
ASD11
0.75
0.75
0.75
0.225
0.225
ASD12
0.75
0.75
0.225
0.75
0.225
ASD13
0.75
0.75
0.225
0.225
0.75
ASD14
0.75
0.75
0.225
0.225
ASD15
0.75
0.225
0.75
0.225
ASD16
0.75
0.225
0.225
0.75
0.75
ASD17
1
Design Combinations
ASD18
0.75
0.75
1 0.225
0.75
0.225
ASD19
0.75
0.75
0.225
0.75
-0.225
(for Equipment Supporting Elements Design) *
ASD20
0.75
0.75
0.225
-0.75
0.225
ASD21
0.75
0.75
0.225
-0.75
-0.225
ASD22
0.75
0.75
0.225
0.225
0.75
ASD23
0.75
0.75
0.225
0.225
-0.75
ASD24
0.75
0.75
0.225
-0.225
0.75
ASD25
0.75
0.75
0.225
-0.225
-0.75
ASD26
0.75
0.75
0.75
0.225
0.225
ASD27
0.75
0.75
0.75
0.225
-0.225
ASD28
0.75
0.75
0.75
-0.225
0.225
ASD29
0.75
0.75
0.75
-0.225
-0.225
ASD30
0.75
0.225
0.75
0.225
ASD31
0.75
0.225
0.75
-0.225
ASD32
0.75
0.225
-0.75
0.225
ASD33
0.75
0.225
-0.75
-0.225
ASD34
0.75
0.225
0.225
0.75
ASD35
0.75
0.225
0.225
-0.75
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
MMTE Rev .
Document No:
Heat Recovery Structural Calculation Report
Client Document NO: MMTE Document NO:
DATE:
A
GGMMSM40C4-001
Page:
ASD36
0.75
0.225
-0.225
0.75
ASD37
0.75
0.225
-0.225
-0.75
ASD38
0.75
0.75
0.225
0.225
ASD39
0.75
0.75
0.225
-0.225
ASD40
0.75
0.75
-0.225
0.225
0.75
-0.225
-0.225
ASD41
0.75
Design Combinations
ASDF1
0.75
0.75
1.5
0.45
0.225
ASDF2
0.75
0.75
0.45
1.5
0.225
(With Over Strength Factor)
ASDF3
0.75
1.5
0.45
0.225
ASDF4
0.75
0.45
1.5
0.225
USD1
1.4
USD2
1.4
USD3
1.05
1.275
USD4
1.05
1.275
USD5
1.05
1.275
USD6
1.05
1.275
USD7
0.9
USD8
0.9
1.402 5 0.420 8 1.402 5 0.420 8
0.420 8 1.402 5 0.420 8 1.402 5
Design Combinations (for Concrete Design)
14 of 15
1.7
0.9 0.9
USD11
1.05
1.275
USD12
1.05
1.275
USD13
1.05
USD14
1.05
ASD Checking Combinations USD
1.4
1.275 1.275
1.3
USD9
env(ASD1 to ASD41) env(USD1 to USD15)
1.275
1.3
USD10
USD15
1.275
1.3 1.3
1.7
GOL-E-GOHAR MEGA MODULE PROJECT DOCUMENT TITLE
Heat Recovery Structural Calculation Report
6
Document No: Client Document NO: MMTE Document NO:
MMTE Rev .
DATE:
A
GGMMSM40C4-001
Base Plate Design
For base plate design please refer to spreadsheet as attached.
Page:
15 of 15