1675
01
1852 2016
Robert Hooke Gaudí and Catenary Models Venice Biennale The War on Bending
Comtemporary Shell Construction & Computer Aid Design TNA solver
Material Construction Techniques
01.Masonry--
02
02.Tessellation--
03.Reciprocal-04.Bending-05.Gridshell--
03
Digital technology intervention and manufacture
04
Full-scale Elastic Gridshell framework for Vaulting construction
05
Core value of Construction method
Gaudí and Catenary Models
Forceform
Force
Form
Fabrication
The War on Bending — Ochsendorf, Block, and DeJong
Vaulting Construction +
/
Comtemporary Shell Construction&Computer Aid Design
Falsework
Construction Techniques Construction Materials
/ForceForm /Vault
01Masonry
Construction Methodologies
02 Tessellation-03 Reciprocal-04 Bending-05 Gridshell--
Software: Rhinoceros5.0 Plug-in/RhinoVault, Grasshopper Plug-in/Kangaroo
This stage conducts with the multi-party discussions on Vaulting Construction base on the beginning of the focus on Contemporary Shell Construction & Computer Aid Design and conducts the Multi-party discussions on Vaulting Construction. The application of computer-aided initiation to construction technology is mentioned in this chapter.
Form-Finding Technique
Thrust Network Analysis(TNA)
geometric prototype
form diagram
force diagram
mechanical formation
01 Masonry Input Surface
Form Diagram
Force Diagram
I Form-Finding
Digital Stereotomy
TNA Solver
Decentering
II Materialization
Compression-only Surface
1:10 scale Physical Model_
02 Tessellation- Initial Surface
Input Surface
Form Diagram
Force Diagram
Compression-only Surface
I Form-Finding TNA Solver
II Geometry Optimization / Planerize Surface
Iteration step:0
II Materialization
Iteration step:20 Total Face Count:80
Iteration step:160 Total Face Count:158
Iteration step:300 Total Face Count:211
Iteration step:1080 Total Face Count:270
1:10 scale Physical Model_
03 Reciprocal--
Initial Surface
Input Surface
Smooth Form Diagram horizontal equilibrium
Iteration step:30
I Form-Finding TNA Solver
II Geometry Optimization
Force Diagram
Compression-only Surface
horizontal+vertical equilibrium Height:3M
1:10 scale Physical Model_
04 Bending /Linear--
Initial Surface
Input Surface
Smooth Form Diagram horizontal equilibrium
Iteration step:30
I Form-Finding TNA Solver
II Construction Methodology
Force Diagram
Compression-only Surface
horizontal+vertical equilibrium Height:3M
04 Bending/Planar --
Initial Surface
Input Surface
Smooth Form Diagram horizontal equilibrium
Iteration step:30
I Form-Finding TNA Solver Breaking Equilibrium forms Into Fabricated Parts
01
00
02
06 03 04
05
II Construction Methodology /Panelization
Force Diagram
Compression-only Surface
horizontal+vertical equilibrium Height:3M
05 Gridshell-Initial Surface
Input Surface
Smooth Form Diagram horizontal equilibrium
Force Diagram
Iteration step:30
TNA Solver FiberGlass Rebar Layout
II Construction Methodology
horizontal+vertical equilibrium Height:3M
I Form-Finding / Layout /Construction Setting Out
Compression-only Surface
Gridshell Formation
1:10 scale Physical Model_
Abstract_
The project explores the ability of bending active Gridshell structures, made in this case by fiberglass rebar, to produce an efficient structural frame for a fabric formed FRP shell. The organizing pattern of the bars are guided by the TNA Grid of the structure, which help to shape the fabric formed FRP shell in relation to those optimal stresses. The aim of this project is to expand a tectonic and methodological approach to developing structurally efficient, formally unique and buildable bending active frames and shell structures by working directly with force flow and material behaviour. 本設計探索了 Bending-active Gridshell結構 的能力,這種結構在這種情況下是由玻璃纖維 管製成,能夠為形成的FRP外殼提供有效的結 構框架。桿的組織模式由結構的主應力線引導 ,這有助於相對於那些最佳應力來成形織物形 成的FRP外殼。本項目的目的是擴展一種構造 和方法學方法,通過直接應用Gridshell結構 形式和材料行為共同作用來呈現有效的拱形結 構,複雜曲面的拱形建造可已在此建造技術下 呈現。
Site Selection
Elastic gridshell erection
Three techniques have successfully been used for the erection of such structures: the ‘lift-up’ (which consists of assembling the flat grid on the ground and then lifting it up by means of cables and cranes); the ‘push-up’ (low-budget version of the lift-up, implemented by using jacking towers and forklifts); the ‘ease-down’ (which consists of assembling the grid flat configuration on a raised level to later bend it down by means of modular scaffolds and mechanical formworks).
Abstract_
Realtime Bending moments
Mxx_Visualize quantities
Mxx_Visualize diagram
Myy_Visualize quantities
Myy_Visualize diagram
Initialisation of the Form-finding process
Freeform Vault Framework_TNA (Thrust network analysis)
Input topology_ Join all untrim srf in to one polysurface.
rvForm_
Generates form diagram Set up division and define openings.
rvDual_
Generates force diagram non-equilibrium state.
rvRelax_
Redistrbutes the form diagram All edges tend to minimize the length resulting in smoother solution.
rvHorizontal_
Compute a possible horizontal equilibrium for the form & force diagram.
rvVertical_
Find a thrust network by solving the vertical equilibrium based on the computed horizontal equili-brium.
Generates shell thickness Design Optimisation
02-2
02-1
1.3
1.3 1.2 1.3 1.4 1.6 1.5 1.3
1.2 0.9 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 0.9
01-1 0.8 0.9 1.0 0.8 1.0 0.8 1.0 0.7 0.9 0.8
1.2
2.2 2.1 2.5 2.3 2.8 2.9 2.3 2.9 2.3 3.1
01-2
7.0 -8.7 10.1 64.1 16.1 19.3 7.3 -46.3
8.8 13.1 -40.8 9.9 9.1 14.5 15.4 14.6 15.3 -6.9 34.4 -7.2
03-2 03-1
0.5 0.4 0.6 0.9 0.4 0.5
01
0.4 0.4 0.4 0.4
2.5 2.7 3.3 2.7 3.9 4.0 3.0 4.2 2.9 3.3
02
1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.0 1.0
03
3.1 3.2 3.4 3.5 3.6 3.6 3.6 3.5 3.3
3.2
5.4 5.5 5.5
-5.6
7.1 12.9 8.1 5.6 9.1 5.5
6.0
-5.8 -5.9 -6.1 6.0 6.9 6.1 10.6 7.8 6.1
0.5 0.4 0.6 0 .9 0 0.5 .4
0.4 0.4 0.4 0.4
Areas of Compression Areas of Stretching
Deformation: Preserve boundary lengths settings: BndStretch=10 BndCompress=10 InteriorStretch=1 InteriorCompress=1
3.3
2.5 3.9
1.0 2.7
1.0 1.1
2.7
4.0 3 4.2 2 .0 .9 3.3
1.1 1.1 1.0
Material: Floppy Limits geometric distortion as much as possible when a pliable material will be used for manufacture. 3.1 3.2 3.4 3.5 3.6 3.6 3.5 3.3 3.2
5.4
5.5
The Squish command flattens a non-developable (curved in two directions) 3-D mesh or NURBS surface into a flat 2-D pattern.
-5.8
5.5
-5.9
6.0
Wing Grid Flat Mat -5.6
8.1 7.1 12 5.6 9. .9 1 5.5
-6.1
6.0 6.1 6.9 10.6 7.8 6.1
Areas of Compression Areas of Stretching
Deformation: Preserve boundary lengths settings: BndStretch=10 BndCompress=10 InteriorStretch=1 InteriorCompress=1 Material: Floppy Limits geometric distortion as much as possible when a pliable material will be used for manufacture.
1.3
1.2 1.3 1.4 1.6 1.5 1.3
0.9 1.0 1.0 1.0
1.2
1.1
Ln0
1
1.1 1.1 1.1 0.9
2.5 2.8
4.0 4.0 4.1
2.8 2.9
3.9
4.0
5.3
1
Ln0
3.6 6.2 4.1 2.6
3.3
0.8
7.2
0.9 0.8 0.7 1.0 1.0 0.9 0.8
4.7
8.5 15.9
1.2
7.5
Ln02
2.2 2.5 2.1 2.8 2.3 2.9 2.3 3.1
10.7
Main Ribbed Grid Flat Mat
8.5 5.3
3.9 4.7 5.1 5.2 4.9 4.5 4.3
3.4
6.0
3.2
2.4 2.8 2.9 2.9 2.7 2.5
02 Ln
在建造Full-Scale gridshell pavilion 之前, 進行了1:10 scale的模型。此模型是為了再次 確認幾何的準確性。 Before the construction of Full-Scale gridshell pavilion, a 1:10 scale model was carried out.This model is to reconfirm the accuracy of the geometry.
Gridshell Erection Assembly Methodology_
Flat Mat Seg.Merge_5.1/5.2 Degree of Assembly Completion 2/12
Flat Mat Seg.Merge_4.1/4.2 Degree of Assembly Completion 4/12
Flat Mat Seg.Merge_3.1/3.2 Degree of Assembly Completion 6/12
Flat Mat Seg.Merge_2.1/2.2 Degree of Assembly Completion 8/12
Degree of Assembly Completion 12/12
_ (#5) 10mm (#3) 8mm (#2) 6mm (#1) 4mm
強調重點: 價值: 當代拱形建造上層以澆灌水泥為主形成完整的應 力結構,當中的建造架構會使用到需裝卸的假設 工程(Falsework)以及模具(Framework)。本設計藉 由這Gridshell製造流程與技術,日後不管是澆灌 水泥或FRP工法皆可以以此作為拱形建造當中階 段性的Falsework與Framework架構。 數位技術的加入可以達到更準確性的放樣,製造 更複雜的曲面型態。現階段是屬於人工放樣的製 造流程,但是這項技術亦可以使用機械手臂達到 更有效率與精準的放樣。 1不須使用傳統模板工法。 2:透過平面放樣準確的曲面成型。 3:拆模後可重複製作。 4:此方法將可發展更大尺度的拱頂建造。 5:假設工程可與上部結構一體成形增加結構強度。 Key points: value: The mold framework and falsework of previous pouring cement.By adopting this manufacturing process and technology, no matter whether it is pouring cement or FRP construction methods, it can be turned to Falsework and framework under construction in the future Architecture. The addition of digital technology can achieve more precise lofting and create more complex curved surfaces.At this stage it is a manual layout manufacturing process, but this technology can also use a robotic arm to achieve the best efficiency and accurate layout.