InternationalJournalofCivilEngineering (IJCE)
ISSN(P):2278–9987;ISSN(E):2278–9995
Vol.11,Issue2,Jul–Dec2022;1–14
©IASET
THESTRUCTURALPOTENTIALOFBAMBOO:ASTUDYOFTHE COMPRESSIVEANDTENSILESTRENGTHOFBAMBUSATULDASPECIES
Dr.RROOchiengABSTRACT
Theincreasingconsumptionofsteelandtimberasmajorstructuralconstructionmaterialshasledtoadverseenvironmental consequencesworldover.Processingofsteelproductsisknowntobeassociatedwithemissionofcertaingasesthatdegrade theenvironmentandcontinueduseofsteelwillcertainlyleadtodepletionoftheexistingrawmaterialsforthemanufactureof steel.Harvestingoftreesforthemanufactureoftimberproductsappliedinconstructionhascontributedtowanton destructionofourforestsatunprecedentedrate.Theforegoingsuggestsinvestigationsofalternativestructuralconstruction materialsthatareenvironmentallysustainable.Thisstudythereforefocusedonmakinganenquiryonthecompressiveand tensilestrengthofBambusatuldabamboowhichisarenewablefast-growingwoodplant.Specimensforcompressiveand tensilestrengthtestswerepreparedandsubjectedtolaboratoryteststhroughuseofINSTON300DXUniversalhydraulic TestingMachine.Thefindingsofthestudyshowedtheaveragecompressivestrengthachievedwas40.0N/mm2whichwas reasonablecomparedwiththosefromtheconventionalstructuralconstructionmaterialsandthereforeappropriateforuseas compressivestructuralmaterials.Ontheotherhand,theaveragetensilestrengthobtainedfromtheexperimentwas58.9 N/mm2whichismarginallylowimplyingbamboocannotbeappliedasatensilematerialinstructuressubjectedtoheavy loadingbutminorstructuralelementssuchaslintelsandworktopsaswellaslowrisestructures.
KEYWORDS:BambusaTuldaBamboo,CompressiveStrength,Structural,TensileStrength
ArticleHistory
Received:23Aug2022|Revised:26Aug2022|Accepted:03Sep2022
INTRODUCTION
WiththebigfouragendacraftedbytheKenyanGovernmentcoupledwiththehighdemandofsustainableconstruction materialsforthefast-growingKenyanconstructionindustry,findingasolutiontothisproblemwillmakeitpossibleto facilitateaffordableconstructionmaterialsandtechnology.Bambooasanalternativeconstructionmaterialishoweveracheaper sustainablefast-growingplantcomparedtotimberandsteel;andcouldbeappliedasareplacementoftimberorsteel(RepublicofKenya, 2019;SwapnilandSmita,2017;ChineseBambooResearchCouncil,2009;Kibwage,2010andBethany,2010)
Thestudythereforeevaluatedthestructuralpotentialofbambooasasustainableconstructionmaterial.Theresearchpaper consistsoftheabstract,theoryonbambooasasustainableconstructionmaterial,experimentalmethodologicalapproachthatwasadopted aswellasresultsanddiscussionsection.Itfinallyconcludesonthekeyfindingsofthestudy.Listingofthereferencesandappendices appearattheendofthepaper.
THEORYONBAMBOOASASUTAINABLECONSTRUCTIONMATERIAL
Theuniquepropertiesofbamboo,coupledwithitscosteffectivenesshaspromptedanumberofresearchinitiatesonhowit couldbeappliedasareinforcementmaterialinconstruction.Ghavami(2005)believesthatbamboocouldsatisfactorily substitutesteelasareinforcementmaterialandconsequentlyfranticeffortsshouldbemadebyresearcherstoestablishits potentialstrengthinstructuraldesign.Thisiscoupledwiththefactthereisneedtoensurethesustainabilityofthefuture generationthroughexploitationofsustainablematerialsinconstructionforwhichbambooisamongthem.IndeedVyas (2020),Hebel(2015),Kibwage(2008)and;BalaguruandShah(1985)emphasizethepotentialofbambooasrenewable resourcethatinfactcouldbeutilizedasareinforcementmaterialintheconstructionofruralstructures.Kenyashouldnot beleftbehindinthismatter.IRIN(2010)suggeststhatbamboohasthepotentialofprovidingaffordablehousingfor60% ofKenyanswholiveinslumsandothersquattersettlementsundersqualidconditions.
Thisargumenthasopeneddoorsforsustainedresearchinthisareatobetterunderstandwhetherbamboocouldbe acheaperenvironmentallysustainablereplacementofsteelinconstruction.Gichohi(2014),Bethany(2010)andKibwage (2010)agreewiththisthoughtbyexpressingthatahouseconstructedwithbamboocouldlastforapproximately50years whiletheenergyconsumedtoproducebambooaboutis1/2forwood,1/8thatforconcreteand1/5thatforsteel.
AccordingtoSwapnilandSmita(2017)bambooreinforcementisthreetimescheaperthansteelandinadditionitisa versatilematerialwithahighstrength-to-weightmakingitappropriateforapplicableinaffordablehousingandin particularinstructuresofnomorethanonesuspendedfloorwhileKarthik,RaoandAwoyera(2017),Kibwage(2010), ChineseBambooResearchCouncil(2009)andSteinfied(2001)indicatethatbamboohasstrongmechanics,good adaptabilityandeasilyprocessedtraitsthatgivesitawiderangeofarchitecturalandindustrialapplications.Somestudies haveexploredwaysofusingbambooreinforcedconcretebeamswhicharesimpleandstructurallyeffectiveaswellascost effective.Abdullah(1983)inhisstudyconcludesthatthestrengthofbambooanditsrelativecosteffectivenesscouldbe exploitedtofacilitatelow-costhousinginitiativesinthethirdworldnationsriddledwithhousingdilemmaforthepoor (Abdullah,1983).AstudybyAdomandAfrifa(2011),inanefforttoestablishacost-effectivesolutionforreinforcedbeam constructionforapplicationinaffordableconstructioninRuralGhanarevealedthatthetensilestrengthofbambooreaches upto370N/mm2.Khare(2005)reinforcesthisargumentbyexpressingthatbambooreinforcementenhancestheload carryingcapacitybyabout250%ascomparedtotheinitialcrackloadinun-reinforcedconcretebeam.AccordingtoGlen (1950)loadcapacityofbambooreinforcedconcretebeamincreaseswithincreasingpercentagesofbambooreinforcement uptoanoptimumvalue.Ontheotherhand,axialtensileyoungmodulusvariesfrom5–25Gpaandaxialtensilestrength variesfromabout100
800Mpaforspecimenstakenfrominnerandouterculmrespectively(Shaoetal,2010).The implicationofthesefindingsisthatbamboocouldthereforebeappliedasanalternativereinforcementmaterialin affordableconstructionasareplacementofsteelwhichiscomparativelyexpensive.Thephysicalandmechanical propertiesthatmakesitfavourableinawiderangeofapplicationshowevervarywithrespecttodiameter,length,age, type/species,positionalongculmandmoisturecontent(Lo,CuiandLeung,2004)Theforegoingargumentsindicatethat theuseofbambootoprovidetensioninstructuraldesignisthereforenotindoubt.
Inadditiontotensilestrength,somestudieshavealsobeendirectedtobendingandcompressivestresses.Espiloy (1987)establishedanincreaseincompressiveandbendingstrengthstowardsthetopportionoftheculmasfibrovascular bundlefrequencyanddimensionofthefibrevesselincreases.Thisfindingisexplainedbysignificantincreaseinrelative densityandfibrovasculardensity.ComparedtoconventionalspeciescommoninNorthAmerica,alongaxialdirection,
Mosobambooissubstantiallystiffaswellasstrongerinbothflexuralandcompressivestrengths(DixonandGibson, 2014)FurtherfindingsinthisstudyrevealedthataxialpropertiesofMosobambooincreaselinearlywithdensitywhereas thetransversecompressivestrengthindicatedminorvariation.Again,bambooasacompressionmemberhasgood elasticityintensegritystructures(Jagadesh,2014).AccordingtoLee,BaiandPeralta(1994);Lo,CuiandLeung(2004); andChungandYu(2002)thecompressiveandflexuralpropertiesofbambooalongthegrainincreaseswiththeheightof theculmanddecreasingmoisturecontent.Moisturecontentandheightofthebambooculmthereforeinfluencesits strength.Acomparisonofbiggertubestoslimmeronesshowsslimmeroneshaveahighercompressivestrength (Jagadesh,2014).Itcantherebeconcludedthatpastresearchhasconsequentlyrevealedthepotentialapplicationof bambootowithrespecttocompressiveforcesinstructuraldesign.
Despiteanumberofpreviousresearchesconfirmingtheapplicabilityofbamboointensionandcompressionin construction,ithassomelimitation.Oneofthekeyconstraintsisassociatedwithitsstructurallimitationforapplicationin widespansandhigh-riseconstructions.Previousresearchindicatesstiffnessandweightrequirementsaspossiblelimiting factorsinthestructuraldesignanduseofbambooespeciallytheMosospecies(DixonandGibson,2014).Inaddition,its lowbreakingforceandelasticitymodulusmakesitnotappropriateforuseasmainstructuralmembersbutcouldbeapplied forotherstructuralworksthatarenotsubjectedtoheavyloadingandinparticularlow-risestructures(Ogunbiyietal, 2015;SouthEastAsianCommunityAccessProgramme,2008;Adewuyi,OtukoyaandOlaniyi,2015and;Ketter,Nyomboi andAbuodha,2014).Theotherkeydrawbacksinapplyingbambooasareinforcementmaterialinconcretecomponents includebondingconstraintswithconcreteandhigh-waterabsorptioncapability(Mumero,2020;SouthEastAsian CommunityAccessProgramme,2008;Constructor,2020andSteinfied,2001).Constructor(2020),Limbe(2013),Vyas (2020),Chu(2014),Gibson(2014)andGlen(1950)arguethatbamboohashighshrinkagerequiringpreservationandalso lessdurableifnottreatedforinsectandfungiattack.Researchershavehoweverestablishedbetterwaysofpreserving bambootolimititsshrinkage.Sonti(1990)inventedanASCUmethodofpreservingbamboothatiseffectivewhichneither reducesstructuralstrengthincompression/bendingnorfacilitatinglossofpreservativebetweenthesepta.Lastly,theother constraintisthelimitationofbambooasatensegritystructurefocusingonhowtotransferthestructuralforcesinwiresinto wholesectionofbamboobutthiscouldbeaddressedthroughpre-tensioningandwindingprocessthatinvolvesapplying additionalclipatthewireconnectionsanduseofplateswithmechanismtoattachrigiditywiththebamboowall (Widyowijatnoko,AditraandWiduri;2015).
Byandlargethesuitabilityofbambooasareinforcementmaterialoutweighsitslimitationsomeofwhichsuchas high-waterabsorption,susceptibilitytoinsect/fungalattacksanditslimitationasatensegritystructurecannowbe addressed,thankstorecentresearchfindingshighlightedabove.Thelowstructuralcapacityindeedconfinesitsapplication tostructureswhereloadingrequirementsarenotveryheavysuchaslow-risebuildingsandscaffolding.
Withthecostofconventionalreinforcementmaterialssuchsteelandtimberreachingunprecedentedlevelscoupled withtheiradverseenvironmentalimpacts,itcertainlymakessensetospecifybambooasanalternativestructuralmaterial sinceitisalsoenvironmentallysustainable.Fromtheabovesolicitedliteraturereviewthereisscantyresearchundertakento investigatestructuralsuitabilityofBambusatulda,aspeciesthatisprevalentinKenya.Thisstudytherefore,focusedonan enquiryintothesuitabilityofBambusatuldabambooasanalternativesustainablestructuralconstructionmaterial.
RESEARCHMETHODOLOGY
BambusatuldaisoneofthedominantbamboospecieinKenyaandisprevalentinmostpartsofKenya.Aninvestigation ofitsstructuralstrengthcouldopenupavenuesforitseconomicalexploitationasastructuralmaterialinplaceofsteel whosecosthasrecentlybecomeunbearable.Inaddition,steelwhichisaheavilyconsumedconstructionmaterialhas provedtobeenvironmentallyun-sustainable.Inaddition,timberproductshaveequallybecomeexpensivewhilenatural forestshavebeenexploitedtothelevelthathasbecomeenvironmentallyun-sustainable.Theforegoingjustifiestheneedto researchonalternativestructuralconstructionmaterials.Thestudythereforeintendedtodeterminethecompressiveand tensilestrengthofBambusatuldatoestablishitsstructuraladequacyinconstruction.
Theresearchdesignwasexperimentalinvolvinglaboratorytestsofcompressiveandtensilestrengthsof adequatelydriedBambusatuldaspecimensobtainedfromaprivateplantationinthesuburbsofKisumuCityalongLake Victoria’sshores.Accordingly,descriptivestatisticalanalysiswasadopted.MatureBambusatuldawaspurposively selectedbytheauthortoensureculmsfreefromdefectswereselectedanddriedundercontrolledconditionstoamoisture contentofapproximately15%.Scientifically,toomuchmoistureinbamboounderminesitsstructuralstrengthwhiletoo muchdryingcausesthefibrestocrackandhenceweakensit.Thesampleswerehotdriedat103ocfor24hoursinanoven inlinewithmoisturecontrolprocedureadoptedbyAwalludinetal(2017).Thespecimenswerebothweighedpriorand afterdryingtoensuretheyhadacceptablemoisturecontent
Specimensforcompressivetestswereselectedfromtop,middleandlowerbamboostemwithanaveragediameter of43mmandheightof102mmandpreparedasshowninFigure1.
ImpactFactor(JCC):8.1928
NAASRating3.04
Specimensfortensilestrengthtestsweresplitfrombambooculmwallsintoaveragesizeof10mmwidthand 3mmthickness.Thelengthsofthespecimensaveraged100mm.Theadequatelydriedspecimenswerethenroughenedat theendstoensurefirmgripbythetestingmachine.ThespecimensweremountedonINSTRON300DXuniversal hydraulictester.AtensileloadwasapplieduniformlyuptofailureTheloadatfailurewasrecordedandusedtocalculate thetensilestrengthusingthisformula;
Where;
Ft=tensionstrength(N/mm2)
Fmax=maximumload(N)
A=Cross-sectionalarea(mm2)
RESULTSANDDISCUSSIONS
Thissectionlaysoutresultsbasedoncompressiveandtensilestrengthreadingsobtainedfromlaboratorytestswherebythe specimensweremountedonINSTRON300DXuniversaltester.Theresultsweretabulatedandlaterdiscussedby comparingwithpreviousrelatedstudiesobtainedfromcriticalreviewofliteratureunderthesubjectofstudy.
CompressiveTestResults
AppendixIshowsgraphsthatindicatetherelationshipbetweenloadingandextensionwhenthefivespecimenswerebeing subjectedtocompression.Thegraphsindicatetheloading(compression)(N)versusthechangeinlength(mm),asthe specimensaresubjectedtoloadingThespecimensextendedunderincreasedloadinguptoacertainyieldorfailurepoint whenitcrumblesundercompression.Therequiredloadingbeforefailurewasdirectlyproportionaltothesizeofthe sample.ThecompressivetestresultsobtainedfromtestingthespecimensareshowninTable1whichalsocapturesthe specimens’dimensions.
Table1:Samples’DimensionsandCompressiveTestResults
FromtheresultsinTable1,itisnotedthatthereadingsobtainedfromtestscarriedonspecimen1onloadingat failureandcompressivestrengthvariedsignificantlyfromthoseobtainedfromtheother4specimensimplyingtheseare outliers.Thesignificantvariationcouldbeattributedtosomestructuraldefectsonspecimen1whichmightnothavebeen discoveredpriortotestingoralternativelyitcouldbeimproperpositioningofspecimen1onthetestermachineByand large,thereadingsonspecimens2to5showsomelevelofconsistency.Fromtheexperiment,theloadingsatfailureand
ImpactFactor(JCC):8.1928
NAASRating3.04
compressivestrengthsvariedfrom53.6to64.3KNand34.3to44.3N/mm2respectivelyTheaverageloadingatfailurefor Bambusatuldabamboospecieswastherefore57.9KN.Ontheotherhand,theaveragecompressivestrengthforBambusa tuldabamboowas40N/mm2.Inaddition,asshowninAppendixI,astheloadingincreasedextensionalsoincreased proportionallyuntilfailureafterwhichtherewasnomoreextensionofthevariousspecimens.
Therangeofcompressivestrengthsofapproximately34.3to44.3N/mm2obtainedfromtestsisquitegoodandis withintherangeofcompressivestrengthsofvariouscommonclassesofconcreteusedinconstructionasdefinedintheBS Standards.Further,accordingtoAwalludin(2017),compressivestrengthofBambusatuldaishigherthanthatofsoftwood whileitisatparwiththestrengthofmosthardwood.SincetherearenoknownsimilarstudiesconductedonBambusatulda, comparisonsofthefindingswithpreviousresearchjustfocusedonstudiesconcerningotherspeciesofbamboo.Most previousresearchrevealsfindingsthatmirrorthefindingsfromthisstudywithafewthataredivergent.Bambusatulda accordinglyhasahighercompressivestrengththanbambooJawa(18.2–30.6N/mm2)butitscompressivestrengthfalls withinarangeof34.2–60.5N/mm2forBambooApus(Rochimetal,2020).Itscompressivestrengthisnotfarfromthatof Bambusavulgariswhichrangesfrom49.9to51.7N/mm2(MbugeandGumbe,2022).ThefindingsbyCandelariaand Hernandez(2019)onBambusablumeanaspeciesindicatehighercompressivestrengthsthatrangefrom63–77N/mm2which alsodonotagreewithreadingsobtainedfromthisstudy.Thevariationsincompressivestrengthsmaybeattributedto species/type,age,length,diameterandmoisturecontent(Loetal,2004).Byandlargethefindingscomparewellwithrelated previousresearchwork.Thefindingstherefore,indicatesuitabilityofapplicationofBambusatuldabambooasanalternative compressiveconstructionmaterial.Limbe(2013),Steinfied(2001)and;SwapnilandSmith(2017)howeverarguethat bamboohasotherdisadvantagessuchasstrongwaterabsorption,lowresistancetofire,weakbondingwithconcreteand susceptibilitytoattackbyinsects.Withincreasedresearchinthisarea,mostoftheselimitationscannowbecomfortably addressed(Sevaliaetal,2013andAgarwaletal,2014).Itsfastergrowth,lowcostandhighcompressivestrengthcoupled withitsenvironmentalsustainabilityenhancesitspotentialasanalternativeconstructionmaterial.
TensileTestResults
AppendixIIshowsgraphsthatindicatetherelationshipbetweenloadingandextensionwhenthefivespecimenswerebeing subjectedtotension.Thegraphsindicatetheloading(tensile)(N)versusthechangeinlength(mm),asthespecimensare subjectedtoloadingThespecimensextendedunderincreasedloadinguptoacertainyieldorfailurepointwhenitsnaps undertension.Therequiredloadingbeforefailurewasdirectlyproportionaltothesizeofthesample.Forexample, specimenno.4withthelargestcross-sectionalareaextendedthemostandrequiresthehighesttensileloadingbefore failure.ThetensiletestresultsobtainedfromtestingthespecimensareshowninTable2whichalsocapturesthespecimens’ dimensions
FromtheresultsinTable2,itisnotedthatthereadingsobtainedfromtestscarriedonspecimens2and5on loadingatfailureandtensilestrengthvariedsignificantlyfromthoseobtainedfromtheother3specimensimplyingthese areoutliers.Thesignificantvariationcouldbeattributedtosomestructuraldefectsonspecimen2and5whichmightnot havebeendiscoveredpriortotestingoralternativelyitcouldbeimpropergripofthespecimensbythetestermachineBy andlarge,thereadingsonspecimens1,3and4showsomelevelofconsistency.Fromtheexperiment,theloadingsat failureandtensilestrengthsvariedfrom1.72to2.3KNand57.4to61.7N/mm2respectivelyTheaverageloadingat failureforBambusatuldabamboospecieswastherefore1.96KN.Ontheotherhand,theaveragetensilestrengthfor Bambusatuldabamboowas58.9N/mm2.Inaddition,asshowninAppendixII,astheloadingincreasedextensionalso increasedproportionallyuntilfailureafterwhichtherewasnomoreextensionofthevariousspecimens.
Therangeoftensilestrengthsofapproximately57.4to61.7N/mm2obtainedfromtestswasrelativelylow comparedwiththosefrommildsteel.AccordingtoOgunbiyietal(2015)thetensilestrengthofmildsteelwithsimilar dimensionsrangesfrom290to509N/mm2whileforbambooitrangesfrom31to94N/mm2MbugeandGumbe(2022) indicatethetensileofBambusavulgarisbamboorangesfrom94to118N/mm2implyingitisstructurallystrongerthan Bambusatuldawhichwasinvestigated.BambooApusandBambooJawaareequallystrongerandpossesstensilestrengths thatrangefrom101to232N/mm2and73to214N/mm2(Rochim,LatifaandSupriyadi,2020).Thefindingsby CandelariaandHernandez(2019)onBambusablumeanaspeciesequallyindicateshighertensilestrengthsthatrangefrom 180
600N/mm2whichalsodonotagreewithreadingsobtainedfromthisstudy.Ontheotherhand,Loetal(2004)argue thatthetensileofMosobamboorangesfrom45to65N/mm2whichcompareswellwiththereadingsobtainedfromthis study.OmalikoandUbani(2021)howeverviewthatstructuralstrengthofbamboocangreatlybeinfluencedbyvariations inage,density,moisturecontentandsizeofspecimensinadditiontotypeorspecies.Thespecimenstestedunderwent sharpbrittlefailureasopposedtosteelthatundergoesplasticdeformationbeforefailure.Thisfindingissupportedby Ogunbiyietal(2015)
CONCLUSION
Thefindingsfromthestudyshowcompressivestrengthsthatrangefrom34.3to44.3N/mm2.Itcanthereforebestatedthat bamboohasadequatecompressivestrengthmakingitsuitableforconstructioninsituationswherecompressiveforcesare atplay.Ontheotherhand,thetensilestrengthsofbamboorangedfrom57.4to61.7N/mm2indicatingthatthetensile strengthofbambooislowcomparedtotheconventionalreinforcementmaterialssuchassteel.Despitethis,bamboocanbe appliedtoconstructionworkswithminorstructuralelementssuchaslintels,worktops,roofingstructureandscaffolding.It couldalsobeidealforvariouselementsoflow-riseresidentialbuildingsjustasthecaseoflow-costhousingconstruction intheFarEast.InKenyaitisnotedthatwhilethereisadraftlegislationinplaceconcerningbamboofarmingindustry,no codeofstandardshasbeendevelopedthatcouldguidetheapplicationofbambooasastructuralmaterial.Itistherefore, recommendedthattherelevantinstitution(s)put(s)inplacemechanismsfordevelopingacodeforprovidingstandardsto guideuseofbambooasastructuralelement.Finally,thisstudyonlyfocusedoninvestigatingthecompressiveand structuralstrengthofBambusatuldabamboo,furtherstudiesshouldfocusonothermechanicalpropertiessuchasflexural orbendingstrength.
REFERENCES
1.Abdullah,A.A.A.,(1983)UtilizationofBambooasaLow-CostStructuralMaterial,ConferencePaperPresented totheSymposiumonAppropriateBuildingMaterialsHeldon14thJuly1983inNairobi,Kenya.
2.Adom,A.K.andAfrifa,O.R.,(2011)AComparativeStudyofBambooReinforcedConcreteBeamsUsingDifferent StirrupMaterialsforRuralConstruction,InternationalJournalofCivilEngineering,Vol.2(1),Pp1420
1436.
3.Agarwal,A.,Nanda,B.andMaity,D.,(2014)ExperimentalInvestigationonChemicallyTreatedBamboo ReinforcementBeamsandColumns,Constr.Mater.Vol.71,Pp610
617.
4.Awalludin,D.,Arrifin,M.,Osman,M.H.,Hussein,M.W.,Lee,H.andLim,A.S.,(2017)MechanicalPropertiesof DifferentBambooSpecies,Citedathttps://creativecommons.org/licenses/by/4.0.Accessedon10thAugust2022.
5.Balaguru,P.N.andShah,S.P.,(1985)AlternativeReinforcingMaterialsforLessDevelopedCountries, InternationalJournalforDevelopmentTechnology,Vol.3(2),Pp87–105.
6.Bethany,A.,(2020)VillageVolunteers:Bamboo,BambooInternationalNetworkforBambooandRattan,Beijing, China.
7.Candelaria,M.E.andHernandez,J.Y.,(2019)CompressiveTestsandLayeredTensileTestsforFiniteElement ModelSimulationUsingOrthotropicMaterialModeling,ASEANEngineeringJournal,Vol.9(1),Pp54–71.
8.ChineseBambooResearchCouncil,(2009)CultivationofBamboo,Books1&2,Beijing,China.
9.Chung,K.F.AndYu,W.K.,(2002)MechanicalPropertiesofStructuralBambooforBambooScaffolding, EngineeringStructures,Vol.24,Pp429–442.
10.Constructor,(2020)BambooasABuildingMaterial:ItsUsesandAdvantagesinConstructionWorksCitedAt Https://Theconstructor.OrgOn14thJuly2020.
11.Dixon,P.G.andGibson,L.J.,(2014)TheStructureandMechanicsofMosoBambooMaterial,Departmentof MaterialScienceandTechnology,MassachusettsInstituteofTechnology,Cambridge,UnitedKingdom.
12.Espiloy,Z.B.,(1987)Physio-MechanicalPropertiesandAnatomicalRelationshipofSomePhilippineBamboos InRao,A.N.,Dhanarajan,G.AndSastry,C.B.,(1985)RecentResearchonBamboo,ConferencePaperPresented toInternationalBambooWorkshopHeldBetween6–14thOctober1985,AtHangzhou,China.
13.Ghavani,K.,(2005)BambooasReinforcementinStructuralConcreteElements,CementandConcrete Composites,Vol.27,Pp637–649.
14.Gichohi,R.N.,(2014)FactorsInfluencingtheUseofBambooasAFlooringConstructionMaterial:ACaseStudy ofGardenCityProject,Nairobi,UnpublishedMaster’sDegreeinProjectPlanningandManagement,University ofNairobi,Kenya.
15.Glenn,H.E.,(1950)BambooReinforcementinPortlandCementConcrete,EngineeringExperimentStation, ClemsonAgriculturalCollege,Clemson,SouthCarolineBulletinNo.4
16.Hebel,D.,(2015)BambooFiberIsStrongerandCheaperThanSteel,ConferencePaperPresentedtoTheWorld ArchitectureFestivalHeldon4thNovember2015inZurich,Switzerland.
17.IRIN(2010)KenyaBambooProjecttoExpandRuralHousingCitedathttps://reliefweb.int/organization/tnh Accessedon14thJuly2020.
18.Jagdesh,A.,(2014)SustainableMaterialScience,MITNews,Dated23rdJuly2014.
19.Karthik,K.S.,Rao,R.M.andAwoyera,P.O.,(2017)StrengthPropertiesofBambooandSteelReinforcement ConcreteContainingManufacturedSandandMineralAdmixture,JournalofKingSaudiUniversity
EngineeringScience,Vol.29,Pp400–406.
20.Ketter,M.,Nyomboi,T.andAbuodha,S.O.(2014)StructuralPerformanceEvaluationofLandolphiaBuchananii ConcreteBeams,InternationalJournalofEngineeringSciencesandEmergingTechnologiesVol.7(2),Pp622
630.
21.Khare,L.,(2005)PerformanceEvaluationofBambooReinforcedConcreteBeams,M.Sc.Thesis,Facultyof GraduateSchooloftheUniversityofTexas,Arlington.
22.Kibwage,J.K.,(2010)PotentialofBambooinGreenBuildingsinAfrica,ConferencePaperPresentedtoUN HabitatGreenBuildingRatinginAfricaConferenceHeldBetween4–6thMay2010inNairobi,Kenya.
23.Kibwage,J.K.,Odondo,A.J.AndMomanyi,G.M.,(2008)StructureandPerformanceofFormalRetailMarketfor BambooProductsinKenya,ScientificResearchandEssay,Vol.3(6),Pp229–239.
24.Lee,A.W.C.,Bai,X.andPeralta,P.N,(1994)SelectedPhysicalandMechanicalPropertiesofGiantTimber BambooGrowninSouthCarolina,Prod.Journal,Vol.44,Pp40–46.
25.Limbe,L.,(2013)BambooBuildingsCatchoninKenya,StandardNewspaper,Dated15thAugust2013.
26.Lo,T.Y.,Cui,H.Z.andLeung,H.C.,(2004)EffectofFiberDensityonStrengthCapacityofBamboo,Mater. Letter,Vol.44(4),Pp655
666.
27.Mbuge,D.O.AndGumbe,L.O.,(2022)MechanicalPropertiesofBamboo(BambusaVulgaris),Journalof EngineeringinAgricultureandtheEnvironment,Vol.8(1),Pp14–28.
28.Mumero,M.,(2020)WhyBambooisBecomingaViableAlternativeWood,MediaMaxNetworkLtd.,Dated30th January2020.
29.Ogunbiyi,M.A.,Olawale,S.O.,Tudjegbe,O.E.andAkinola,S.R.,(2015)ComparativeAnalysisofTensile StrengthsofBambooandReinforcementSteelBarsasStructuralMemberinBuildingConstruction,International JournalofScientificandTechnologyResearch,Vol.4(11),Pp47
52.
30.Omaliko,I.K.andUbani,O.U.,(2021)EvaluationofTheCompressiveStrengthofBambooCulmsUnderNote andInternodeConditions,SaudiJournalofCivilEngineering,Vol.5(8)Pp251
258.
31.RepublicofKenya,(2019)DraftNationalBambooPolicy-2019,MinistryofEnvironmentandForestry,Nairobi, Kenya.
32.Rochim,A.,Latifah,K.andSupriyady,B.,(2020)CharacterizationofCompressiveandTensilePropertiesof BambooJawaandBambooApusforApplicationasSoilReinforcement,IOPConf.SeriesandEarthSciences, 498(2020)012040.
33.Sevalia,J.K.,Siddhpura,N.B.,Agarwal,C.S.,Shah,D.P.andKapadia,J.V.,(2013)StudyonBambooas ReinforcementinCementConcrete,InternationalJournalofEngineeringResearchAppl.,Vol.3(2),Pp1181
1190.
34.Shao,Z.F.,Fang,C.H.,Huang,S.X.AndTian,G.H.(2010)WoodScienceTechnology,Vol.44(4),Pp655–666.
35.Sonti,V.R.,(1990)AWorkableSolutionforProcessingRoundBamboowithASCU(CCASaltTypes)InRao, I.V.R.,Gnanaharan,R.andSastry,C.B.,(1988)Bamboos–CurrentResearchConferencePaperPresentedtothe InternationalBambooWorkshopHeldBetween14–18thNovember1988inCochin,India.
36.SoutheastAsianCommunityAccessProgramme,(2008)TechnicalPaperNo.1,DevelopmentofLocalResources BasedStandards,RoyalGovernmentofCambodia.
37.Stenfied,(2001)ABambooFuture:EnvironmentalDesignandConstruction,TextureandMechanicallyGraded StructureofBamboo,Composites,PartB,28B,Pp13–20.
38.Swapnil,L.D.andSmita,V.P.,(2017)CostandDesignAnalysisofSteelandBambooReinforcement, InternationalJournalofInnovativeResearchinScienceandTechnology,Vol.6(12),Pp22465–22477.
39.Vyas,K.,(2020)BambooasaReplacementofSteelCitedathttps://interestingengineering.comAccessedon14th July2020.
40.Widyowijatnoko,A.,Aditra,R.F.andWiduri,R.I.,(2015)ProposingJointsforBambooTensegrity,Conference PaperPresentedtothe10thWorldCongressHeldBetween17th–22ndSeptember,2015inDamyang,South Korea.
APPENDICES:LOADINGVSEXTENSIONGRAPHS
APPENDIXI:COMPRESSIONTESTS-LOADVSEXTENSIONGRAPHS
Specimen1.
Specimen2
Specimen3.
Specimen4.
Specimen5.
APPENDIXII:TENSILETESTS-LOADVSEXTENSIONGRAPHS
SpecimenNo01.
SpecimenNo02.
SpecimenNo03.
SpecimenNo04.
SpecimenNo05.