The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata -

Page 1

1 Research Scholar,Department of Civil Engineering, Tadulako University, Palu, Indonesia

KEYWORDS: Expansive

www.iaset.us editor@iaset.us

Ruslan1, Syamsul Arifin2 & Sukiman Nurdin3

2 Associate Professor, Department of Civil Engineering, Tadulako University, Palu, Indonesia

THEUSEOFLIMESTONE(DOMATO)ASEXPANSIVEMATERIALFORSOIL STUDY:ROADTOMATA-BETELEME)

IMPROVEMENT(CASE

3Lecturer, Department of Civil Engineering, Tadulako University, Palu, Indonesia

ABSTRACT

The phenomenon of expansive soil is a serious problem in geotechnical engineering that must be addressed immediately. The losses that must be borne by the community are in the form of material and non-material losses. Expansive land in the Tomata - Beteleme location often experiences shrinkage, which can cause minor damage to buildings and pavement. This study aims to determine the effect of lime stone on the bearing capacity of expansive subgrade through testing the physical and mechanical properties of the soil. The method used was to mix lime stone with variations of 3 %, 6 %, 9 %, 12 % and 15 %. Free compressive strength test and triaxial test were reviewed at curing time of 1, 7, 4, and 28 days. The results of the physical properties test showed that the clay soil of Taliwan Village, Tomata Subdistrict, North Morowali Regency in the USCS classification system was classified as CL soil type with a plasticity index value of 14.82 %. The highest free compressive strength test was variation lime stone 15 % with 28 days of ripening. The highest triaxial test was variation lime stone 15 % with 28 days of ripening. Soil, Lime Stone, Free Compressive Strength, Triaxial

Article Received:History30Oct 2021 | Revised: 01 Nov 2021 | Accepted: 08 Nov 2021 INTRODUCTION Roaddevelopmentasa formoftransportationinfrastructurehasanimportantroleinthe socio-economicdevelopmentof SulawesiBasedthatProvince,defencetheregion.Inaddition,roadsalsoplayanimportantroleinformingandstrengtheningnationalunitytostrengthennationalandsecurity.StreetTomata–BetelemeisanationalroadsectionacrossthemiddleofSulawesi,partofCentralSulawesiwhichconnectsSouthSulawesiProvinceandSoutheastSulawesiProvince.ThisroadsectionisthemainroadconnectsNorthMorowaliRegency,Morowali,withthecityofPaluasthecapitalcityofCentralSulawesiProvince.onthis,themiddlecausewayisthemainroutethatactsasthebackboneoftheroadnetworksystemontheislandof(TransSulawesi). InternationalJournalof CivilEngineering(IJCE) ISSN(P):2278–9987;ISSN(E):2278–9995 Vol.10,Issue2,Jul–Dec2021;45–62 ©IASET

46 Ruslan, Syamsul Arifin & Sukiman Nurdin Impact Factor (JCC): 8.1928 NAAS Rating 3.04 ThelengthofstreetTomata –Betelemeis50.94km,ittakes±1hourtopassthisroadsectionbecause mostof ofinInthislandslides.pavementthatthissectionisinastableconditionbutthereareseveralpointswherelandslidesoccurontheroad.ThetypicalroaddamageoccursontheTomata–Betelemeroadsegmentgenerallyconsistsofsoilmovement/landslidesanddamagetothesurface.Thetopographyofthissectionconsistsof3(three)types,namely:flatareas,ravines,andravines,andpronetoMostofthelandslides/soilmovementsoccuronthesideoftheslopeandthesideoftheravine.Theimpactofslopemovementcausesthepavementtocracksothatwaterentersthepavementanddamagesthepavementstructure.atypicalflatareathedamagethatoccursisintheformofawavypavementsurfacewhichresultsinlongitudinalcracksthepavement.Thehandlingcarriedoutonthisroadsegmentisthereconstructionoftheresurfacedroad,theinstallationgeomembranesandtheinstallationofconcretepiles. LITERATUREREVIEW Accordingto Sukirman(1992) flexible pavement construction consistsoflayers thatare placed ontopofthe compacted constructionsubgrade.Theselayersfunctiontoreceivethetrafficloadandspreadittothelayersbelowit.Ingeneral,theroadpavementlayerconsistsof:  SurfaceCourse  BaseCourse  SubbaseCourse  AccordingSubgradetoSilviaSukirman(1995)intermsoftheoriginalsoilsurface,thesubgradelayersaredividedinto:  Subgrade,excavatedsoil.  Subsoil,embankmentsoil.  Subsoil,nativesoil.  RoadConstructionSubgrade otherdensityembankmenttheThesubgradelayerisalayerofsoilthatservesasaplaceforlayingthepavementlayerandsupportstheconstructionofroadpavementaboveit.AccordingtotheBinaMargaspecificationstandard,subgradeisthetoplayeroftheroadwithathicknessof30cmwhichhascertainrequirementsaccordingtoitsfunction,namely,withregardtoandcarryingcapacity(CBR).Thesubgradecanbeintheformofcompactedoriginalsoiliftheoriginalsoilisgoodorfillsoilimportedfromplacesorstabilizedsoilandothers.Judgingfromtheoriginalsoilsurface,thesubgradelayersaredividedinto:  Subgrade,NativeSoil (At-Grade).  Subgrade,Backfill(At-Fill).  Subgrade,ExcavatedSoil(At-Cut)

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata - Beteleme) 47 www.iaset.us editor@iaset.us Figure1:TypesofSubgradeasSeenfromtheOriginalSubsurface Elevation. SoilClassification The classification systems commonly used in civil engineering are the AASHTO classification system and the Unified classification system (USCS). In general, classification is based on particle size obtained from sieve analysis for sandy soils.Fromatechnicalpointofview(LD.Wesley,1997),soilscanbeclassifiedinto:gravel,sand,siltandclay. Table1:SoilClassificationBasedonGrainSize No. Kind of Soil Size Limits 1 Boulder >8inch(20cm) 2 Cobblestone 3inch-8inch(8-20cm) 3 Gravel 2mm-8mm 4 CourseSand 0,6mm-2mm 5 MedSand 0,2mm-0,6mm 6 FineSand 0,06mm-0,2mm 7 Silt 0,002mm-0,06mm 8 Clay <0,002mm ExpansiveSubgrade According to the Manual for Handling Expansive Soil for Road Construction of the Ministry of Public Works in 2005, shrinkagebearingpoorcontent.whatismeantbyexpansivesoilissoilorrockwithclaycontentthathasthepotentialforshrinkageduetochangesinwaterAnumberofproblemswithcivilengineeringbuildingsthatareoftenencounteredinthefieldaretheresultoftechnicalpropertiesofthesoil,whicharecharacterizedbyhighsoilmoisturecontent,highcompressibilityandlowcapacity.Someofthetypesofsoilthathavethesebadpropertiesaresoilsthatareeasytoexperiencelarge(Sudjianto,2012).

48 Impact Factor (JCC): 8.1928 (A)ExpansiveSoil(Smoothed)(B) ExpansiveSoil(Chunks) CharacteristicsofExpansiveSoil Expansivesoilhasdifferentcharacteristicsfromothertypesofsoil,namelyasfollow ClayMinerals expansiveClaymineralsthatcausevolumechangesgenerallycontainmontmorilliniteorvermiculite,whileilliteandkaolinitecanbeiftheparticlesizeisveryfine. SoilChemistry Mq++IncreasingtheconcentrationofcationsandincreasingcationwillgiveasmallerexpansioncomparedtoNa+. Plasticity Soilswithahighplasticityindexandliquidlimithaveagreaterpotentialforswelling. SoilStructure Flocculatedclaytendstobemoreexpansivethandispersedclay. DryFillWeight Soil that has a high drydensityshows a small distance between particles, this means a large repulsion force and a high developmentpotential. ExpansiveSoilClassification clays.particles.characteristicslesssoilscharacterexpansiveInthefield,iftherearecracksandorsurfacegapsintheclaydepositduetothedryingprocess,itisanindicationofthepotential.Fromexperienceitappearsthattheproblemofexpansiveizedbyhighplasticity,stiffnessandtherearecracksinoverinthelaboratory,severalclassificationmethodshavebeendeveloped.Generally,soilswithaplasticityindex(IP)ofthan15%willnotexhibitexpansiveTheplasticityindex(IP)istheparameterthatismostoftenusedasaninitialindicator,becausetheofplasticityandthenatureofchangesinsoilvolumearecloselyrelatedandinfluTheAtterberglimitandclaygraincontentwereusedbySkempton(1953)fortheidentificationofexpansive Ruslan, Syamsul Arifin (A) Soil (B) Soil Figure2:ExpansiveSoilMaterial particles.characteristicssoilsexpansiveSoilSoilsMq++IncreasingexpansiveClayExpansivesoilhasdifferentcharacteristicsfromothertypesofsoil,namelyasfollows:mineralsthatcausevolumechangesgenerallycontainmontmorilliniteorvermiculite,whileilliteandkaolinitecanbeiftheparticlesizeisveryfine.theconcentrationofcationsandincreasingthevalenceofcationscaninhibitsoildevelopment.Forexample,thecationwillgiveasmallerexpansioncomparedtoNa+.withahighplasticityindexandliquidlimithaveagreaterpotentialforswelling.dclaytendstobemoreexpansivethandispersedclay.thathasahighdrydensityshowsasmalldistancebetweenparticles,thismeansalargerepulsionforceandahighfield,iftherearecracksandorsurfacegapsintheclaydepositduetothedryingprocess,itisanindicationofthepotential.Fromexperienceitappearsthattheproblemofexpansivebehaviourizedbyhighplasticity,stiffnessandtherearecracksinoverconsolidatedclay.Fortheidentificationofexpansiveinthelaboratory,severalclassificationmethodshavebeendeveloped.Generally,soilswithaplasticityindex(IP)ofwillnotexhibitexpansivebehaviour.Theplasticityindex(IP)istheparameterthatismostoftenusedasaninitialindicator,becausetheofplasticityandthenatureofchangesinsoilvolumearecloselyrelatedandinfluTheAtterberglimitandclaygraincontentwereusedbySkempton(1953)fortheidentificationofexpansive & Sukiman Nurdin NAAS Rating 3.04 on the surface of the soil is enced by colloid-sized

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata www.iaset.us ChemicalContent(Minerals) Accordingto Chen (1975), clayparticles are in the formof sheetsthat hav through a complex process from a variety of materials or parent rocks, including: feldspar, mica and limestone. The process of change includes disintegration, oxidation, hydration and melting. Clay particles ar havingagraindiameterof< 0.002mm.Withsucha small particle size,theelectricalforcesactingonthesurfaceofthe particlesparticlesaremuchlargerthanthegravitationalforces.Theseparticlesaresaidtobeinacolloidalpoaremainlycomposedofclaymineralsderivedfromweatheringrocks. MaterialLimestone(Domato) theclayas(MGCO3)otherlimestone,marineDoDomato/limestoneisapartofcarbonaterockwhichiscomposedbydominantcarbonateminerals(Kusumadinata,1983).mato/limestoneitselfconsistsofnonanimals,includingCoelementrata,Molluscs,ProtozoaandFosaminiferaorthislimestoneisoftenalsocalledcoralbecausethemainconstituentiscoral.Themainconstituentoflimestoneisthemineralcalcite(CaCO3),whilecarbonatemineralsthatcanbepresentaredolomite(CaMg(CO3)2),aragonite(CaCO3),magnesiteandsiderite(FeCO3)..Othermineralscanalsobepresentasimpuritymineralsformedduringdepositionsuchmagnesite,clay,andsandminerals.Thepresenceoftheseimpuritymineralscanbethebasisforclassifyinglimestone.Ifthelimestoneisheavilypollutedbymagnesilimestoneandiftheimpurityisquartz,itiscalledquartzlimestone.Thepresentationofthedominantconstituentmineral LimeStoneasExpansiveSoilStabilizingMaterial The use of lime as a soil stabilizing agent has been widely used for subbase buildings or subgrade im highways.Generallythereare2mainpurposesofusinglimeforsoilstabilization,namely:  Lime to modify soil properties, namely to reduce plasticity, reduce or eliminate swelling increaseeaseofwork,increasegraindia  Lime is intended for permanent soil stabilization for this matter, the criteria are based on bearing capacity, durabilityandsoon. Use Stone Expansive Material Soil Improvement - Beteleme) formof have a certain surface. Clay minerals are formed through complex from a variety of materials parent including: feldspar, limestone. of disintegration, oxidation, hydration and melting. Clay ar theclayasothermarineDomato/limestoneparticlesaremuchlargerthanthegravitationalforces.Theseparticlesaresaidtobeinacolloidalpomainlycomposedofclaymineralsderivedfromweatheringrocks.isapartofcarbonaterockwhichiscomposedbydominantcarbonateminerals(Kusumadinata,1983).mato/limestoneitselfconsistsofnon-clasticlimestoneandclasticlimestone.Non-clasticlimestoneisacolonyofanimals,includingCoelementrata,Molluscs,ProtozoaandFosaminiferaorthislimestoneisoftenalsocalledcoralthemainconstituentiscoral.Themainconstituentoflimestoneisthemineralcalcite(CaCO3),whilecarbonatemineralsthatcanbepresentaredolomite(CaMg(CO3)2),aragonite(CaCO3),magnesitethermineralscanalsobepresentasimpuritymineralsformedduringdepositionsuchmagnesite,clay,andsandminerals.Thepresenceoftheseimpuritymineralscanbethebasisforclassifyinglimestone.Ifthelimestoneisheavilypollutedbymagnesite,itiscalleddolomite,ifthemineralimpurityisclayitiscalledlimestoneandiftheimpurityisquartz,itiscalledquartzlimestone.Thecolouroflimestoneisstronglycontrolledbypresentationofthedominantconstituentmineralsandimpurityminerals. Figure3:LimeStoneMaterial Soil The as a stabilizing agent used for or highways.Generallythereare2mainpurposesofusinglimeforsoilstabilization,namely:Limetomodifysoilproperties,namelytoreduceplasticity,reduceoreliminate Limeincreaseeaseofwork,increasegraindiameterandothers.isintendedforpermanentsoilstabilizationforthis the are based on 49 editor@iaset.us e defined as soil particles sition.Thesecolloidal-richcalciteprovementson-shrinkproperties,

50 Impact Factor (JCC): 8.1928 Table2:GradationRequirementsfo Layer (subbaseFoundation(baseLayer-Foundation–course)Layer-course) OVERVIEWOFTHERESEARCHLOCATION TheroadaccessfromPaluCity-Beteleme with and100percentpavedwitharoadwidthof7Betelemecanbereachedbylandfor approximately 8 hours drive, while the distance from Tomata (km. 346+000), Beteleme(km.397+000)is50.94km(Sk.MinisterofPUPRNo.29 Figure4:MapofNorthMorowaliRegency,CentralSulawesi OverviewoftheSubsoilConditionofTomata According to the Tomata formation, the Tomata conglomerate, claystone and tuff, with lignite insertion. The sandstone is gray,conglomeratescoarse-grainedgravel,well-layeredinsomeplaces,therearelayersoflayersupto30cmthick,lessdensetodense.Alsofoundiscoarse-grainedgreensandstonecomposedalmostentirelyofultramaticrocwithathicknessof10cm,occasionally30cmaretightlyboundbycoarsebrownsandstone.ClaystoneisbrownishtoreddishbrownwhichislimestonecontainingMolluscFossils. Ruslan, Syamsul Arifin Table RequirementsforLimeStabilizedBaseandSubbase Layer GrainSize PercentPass(% Foundation 1,5in 100 ¾in 70-100 No.4 45-70 No.40 10-40 No.200 0-20 FoundationLayer-Bottom 1,5in 100 course) No.4 45-100 No.40 10-50 No.200 0-20 Beteleme withdistance397kmisfullyconnectedbyroad,theconditionofthe roadis and100percentpavedwitharoadwidthof7metersandcanbepassedbytwo-wheeledandfourBetelemecanbereachedbylandforapproximately8hoursdrive,whilethedistancefrom (km. 346+000), Beteleme(km.397+000)is50.94km(Sk.MinisterofPUPRNo.290/ktps/m/2015). 4: of Sulawesi Province. Figure5:LocationofTomata–Beteleme. Overview Subsoil -Beteleme – Beteleme subgrade is composed of a cross between sandstone, with is brownish-grey, gray to brown, fine layeredinsomeplaces,therearelayersoflayersupto30cmthick,lessdensetodense.grainedgreensandstonecomposedalmostentirelyofultramaticroc conglomerateswitha thicknessof10cm,occasionally30cmaretightlyboundbycoarsebrownsandstone. Claystoneis gray,brownishtoreddishbrownwhichislimestonecontainingMolluscFossils. & Sukiman Nurdin NAAS Rating 3.04 ) -wheeledvehicles.PaluCity-grainedtok.Component

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata www.iaset.us Figure6:ConditionoftheTomata Tomata–Beteleme.Road sectionRegency.Province,aDecreeTheTomata-BetelemeroadsectionistheNationaloftheMinisterofPublicWorksandPublicHousingNo.248/KPTS/M/2015theTomataPrimary-1collectorroad(JKP-1)withalengthof50.94km,whichcandSoutheastSulawesiProvince,bycrossingtheRegencyPoso,NorthPriorto2015,theTomata–BetelemeroadwasoneoftheworstroadsinCentralSulawessuffereddamageonaveragereaching60percent.Theaverageroadwidthis4.50m,the side channel is not functioningyetstandard.Theroaddamageis50.70kmandittakesapproximately3.50hourstotravelbyland. RESEARCHMETHOD The sequence of the research is presented in Figure manufacture of test objects and laboratory testing of the studied material, data analysis which ends with drawing conclusionsandresearchrecommendations. MixPlanning followingTheresearchwasconductedattheSoilMechanicsLaboratory,FacultyofEngineering,TadulakoUniversity,includingthetests: Use Stone Expansive Material Soil Improvement - Beteleme) the –BetelemeRoad WhichIsHeavilyDamaged. BetelemeroadsectionistheNationalCrossEastSulawesiroadsectioninCentralSulawesi.Accordingtothe manufactureThefunctioningsectionProvince,DecreeoftheMinisterofPublicWorksandPublicHousingNo.248/KPTS/M/2015theTomata1)withalengthof50.94km,whichconnectsCentralSulawesiProvince,SouthSulawesiandSoutheastSulawesiProvince,bycrossingtheRegencyPoso,NorthMorowaliRegency,andMorowaliBetelemeroadwasoneoftheworstroadsinCentralSulawessuffereddamageonaveragereaching60percent.Theaverageroadwidthis4.50m,thesidechannelisnotyetstandard.Theroaddamageis50.70kmandittakesapproximately3.50hourstotravelbyland.sequenceoftheresearchispresentedinFigure7,whichstartsfromthepreliminarysurvey,datacollection,oftestobjectsandlaboratorytestingofthestudiedmaterial,dataanalysiswhichendswithdrawingndresearchrecommendations. Figure7:ResearchFlowchart. TheresearchwasconductedattheSoilMechanicsLaboratory,FacultyofEngineering,TadulakoUniversity,includingthe 51 editor@iaset.us –BetelemeroadsectionasiProvince.Thisroad

52 Ruslan, Syamsul Arifin & Sukiman Nurdin Impact Factor (JCC): 8.1928 NAAS Rating 3.04 OriginalLand(Expansion)andLimeStone The original soil test consists of testing the specific gravity. Sieve analysis aims to obtain the joint distribution or percentage of grains of both fines aggregate and coarse aggregate. The Atterberg limits are generally expressed as a consistency index or water content limit, including the liquid limit and the plasticity limit. Liquid limit to determine the carriedfromsoilwatercontentattheliquidlimitconditionsofthesoilsample.Theliquidlimitisthewatercontentlimitatwhichatypeofchangesfromaliquidstatetoaplasticstate.Theplasticlimitisthewatercontentlimitwhereatypeofsoilchangesaplasticstatetoasemi-solidstate,whileforLimeStonetestingonlyspecificgravitytestingandsieveanalysisareout. RealSoilMix(Expansion)withLimeStone LimemaximumcompressiveandExperimentaltestingofcompactionoftheoriginalsoilmixturewithLimeStonewithvariationsof3%,6%,9%,12%15%ofthemaximumdryweightoftheoriginalsoilwithoptimummoisturecontent.ForexaminationofthefreestrengthoftheoriginalsoilandLimeStonemixturewithvariationsof3%,6%,9%,12%and15%ofthedryweightoftheoriginalsoil.Thecuringtimewas1,7,14,and28daysforeachvariationoftheadditionofStone.FortheoriginalsoiltestsamplewithLimeStoneindetail,canbeseenastablebelow: Table3:TestSamplesforOriginalSoil No. Testing NumberofTests 1 SpecificGravity 2Testing 2 SieveAnalysisHydrometer 2Testing 3 LiquidLimit+PlasticLimit 1Testing Table4:LimeStoneTestSample No. Testing 1 SpecificGravity 2 SieveAnalysis Table5:OriginalSoilCompactionExperimentSample +LimeStone Testing MixedVariations MixTestCompression Modified VativeLand ExpansiveExpansiveExpansiveExpansiveExpansiveSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15% Table6:CBRTestSamplesUnsoakedExpansiveSoil+LimeStone Testing MixedVariations MixTestCBRCompression UnsoakedCBR ExpansiveExpansiveExpansiveExpansiveExpansiveExpansiveSoilSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15%

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata - Beteleme) 53 www.iaset.us editor@iaset.us Table7:ExpansiveSoil+Lime StoneCBRTest Samples Testing MixedVariation MixTestCBRCompression SoakedCBR ExpansiveExpansiveExpansiveExpansiveExpansiveExpansiveSoilSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15% Table8:ExpansiveSoilUnconfinedCompressiveStrengthTestSample +LimeStone Testing Curing MixedVariations UnconfinedCompressiveStrength 1day ExpansiveExpansiveExpansiveExpansiveExpansiveSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15% Table9:ExpansiveSoilUnconfinedCompressiveStrengthTestSample +LimeStone Testing Curing MixedVariations UnconfinedCompressiveStrength 7days ExpansiveExpansiveExpansiveExpansiveExpansiveSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15% Table10:ExpansiveSoilUnconfinedCompressiveStrengthTestSample+Lime Stone Testing Curing MixedVariations StrongCheckPressFree 14days ExpansiveExpansiveExpansiveExpansiveExpansiveSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15% Table11:ExpansiveSoilUnconfinedCompressiveStrengthTestSample+Lime Stone Testing Curing MixedVariations UnconfinedCompressiveStrength 28days ExpansiveExpansiveExpansiveExpansiveExpansiveSoil+LimeStone3%Soil+LimeStone6%Soil+LimeStone9%Soil+LimeStone12%Soil+LimeStone15% RESEARCHRESULTSANDDISCUSSIONS SoilPhysicalCharacteristics physicalPhysicalcharacteristicsofthesoilaretestedtodeterminethetypeofsoiltobecompacted.FromtheresultsoftestingthepropertiesofthesoilobtaineddataasshowninTable12.

54 Ruslan, Syamsul Arifin & Sukiman Nurdin Impact Factor (JCC): 8.1928 NAAS Rating 3.04 Table12:ResultsofTesting forPhysical PropertiesofSoil No TestTypes ResultTest 1 analysisExpansivesoilgrainsize No.20Pass0 40.62% 2 Granulesizeanalysis lime stone RetainedNo.200 95.84% 3 theTheaveragedensityofexpansivesoil 2.778 4 Specificgravity lime stone 2.353 5 LiquidLimit(LL) 41.22% 6 PlasticLimit(PL) 26.40% 7 SoilWaterContent 13.77% SoilGrainAnalysisTest retainedbysieve,retainedexpansivedistributionSoilgrainanalysistestscarriedoutwereexpansivesoilsieveanalysisandlimestonetests.SieveanalysistodeterminetheofgranulesthroughtheNo.10sieveandretainedNo.200usingastandardsieve.ThetestresultsofthesoilsieveanalysisareinTable13,whiletheresultsofthelimestonesieveanalysisareinTable13.FromTable13theresultsoftheexpansivesoilsieveanalysistestcanbeseenthatthepercentageofgrainsbytheNo.200sieveis59.38%andisincludedinthesandwith50%ofthecoarsefractionthatpassestheNo.4whichis100%ofthegrainsthatpass.FromTable13theresultsofthelimestonesieveanalysistestcanbeseenthatthepercentageofgrainsretainedtheNo.200sieveis95.84%andisincludedinthedivisionofcoarsegrainedsoil(sand)with50%ofthegrainsbytheNo.200sieve. Table13:ExpansiveSoilSieveAnalysisTestResults FilterNo. SieveHoleDiameter(mm) RetainedWeight(gr) Retained(gr)Cumulatife %Retained %FinerPassing 2" 50.80 0.00 0.00 0.00 100.00 1" 25.00 0.00 0.00 0.00 100.00 3/4" 19.00 0.00 0.00 0.00 100.00 3/8" 9.500 0.00 0.00 0.00 100.00 4 4.750 0.00 0.00 0.00 100.00 10 2.000 3.00 3.00 0.19 99.81 20 0.850 16.00 19.00 1.20 98.80 40 0.420 168.00 187.00 11.76 88.24 80 0.180 658.00 845.00 53.15 46.85 100 0.150 37.00 882.00 55.48 44.52 200 0.075 62.00 944.00 59.38 40.62 PAN 645.87 1589.87 100.00 0

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata - Beteleme) 55 www.iaset.us editor@iaset.us Figure8:ExpansiveSoilSieveAnalysis Figure9:SieveAnalysisofLimeStoneSieve Table14:LimeStoneSieveAnalysisTestResults FilterNo. SieveHoleDiameter(mm) Weight(gr)Stuck CumulatifeStuck(gr) Stuck% %PassFiner 2" 50.80 0.00 0.00 0.00 100.00 1" 25.00 0.00 0.00 0.00 100.00 3/4" 19.00 0.00 0.00 0.00 100.00 3/8" 9.500 10.02 10.02 0.65 99.35 4 4.750 508.82 518.84 33.85 66.15 10 2.000 303.25 822.09 53.64 46.36 20 0.850 261.25 1083.34 70.68 29.32 40 0.420 160.92 1244.26 81.18 18.82 80 0.180 176.45 1420.71 92.69 7.31 100 0.150 3.66 1424.37 92.93 7.07 200 0.075 44.61 1468.98 95.84 4.16 PAN 63.73 1532.71 100.00 0 HydrometerAnalysis Fractiondominatesgrainedwater,Hydrometeranalysisisamethodforcalculatingthegrainsizedistributionofsoilbasedonthesedimentationofthesoilinsometimesalsocalledthesedimentationtest.Thishydrometeranalysisaimstodeterminethedistributionoffine-soilgrains.TheresultsoftheexpansivesoilhydrometeranalysistestcanbeseeninFigure10.Fromtheappearanceoftheparticlesizedistributionofthesoilabove,itcanbeseenthatquantitativelySilt(silt)theproportionofthissoilsampleasmuchas84.92%,followedbyClay(Clay)asmuchas13.93%andSand(Sand)asmuchas1.14%.

56 Ruslan, Syamsul Arifin & Sukiman Nurdin Impact Factor (JCC): 8.1928 NAAS Rating 3.04 Figure10:OriginalSoilGrainSizeDistribution AtterbergConsistencyTest LiquidLimitTest(LL) determineCassagrandestateTheLLtestaimstodeterminetheliquidlimitofthesoil.LLisdefinedasthewatercontentofthesoilattheliquidlimitandtheplasticlimit(watercontentattheconditionofthesoiltransitionfromplastictoliquid)orwhentestedusingatool,whichisseparatedby3mmandreunitedby0.5inchonthe25thblow.TheliquidlimitisusedtothesizeofthegrainspassingtheNo.40sieve. PlasticLimitTest(PL) The PL test is defined as the water content at the position between the plastic and semi-solid regions, which is the percentage of water contentat whichthe soil witha cylinder diameter of3.2 mmbegins to crackwhenrolled. Plasticity resultparticlesofisIndex(PI)isthedifferencebetweentheliquidlimitandtheplasticlimitwhichisthewatercontentintervalwherethesoilstillplastic.TheresultsoftestingtheliquidlimitandplasticlimitoftheexpansivesoilcanbeseeninFigure11.TheresultsoftheliquidlimittestasshowninFigure11showthatthesmallerthevalueoftheplasticityindex(PI)thesoil,thelessthepotentialfordevelopment.IfthevalueofthePlasticityIndex(PI)isgreater,thenumberofclayinthesoilwillincrease.IfthePlasticityIndex(PI)islowinsiltsoil,aslightreductioninthewatercontentwillinthesoilbecomingdryandviceversaifthewatercontentincreasesslightly,thesoilbecomesliquid. Figure11:LiquidLimitandPlasticLimitTest Results

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata www.iaset.us TestingSoilMoisture Soil water content testing aims to determine the water content in the test soil. Moisture content is the ratio between the soilweightofwatercontainedinthesoilwiththeweightofdrysoilgrainsexpressedinpercent(watercontentcanbeseeninTableFromtheresultsoftestingthesoilwatercontent,theaveragesoilwatercontentvalueis13.77WaterWeight SoilDensityTest weightSoildensitytestingaimstodeterminethespeofthesoilgrainstotheweightofdistilled waterintheair withthe same weight atacertaintemperature,usually taken at a temperature of 27°C. The results of gravityoflimestonesoilcanbeseenin Table Use Stone Expansive Material Soil Improvement - Beteleme) Table15 LL PL PI=LL-PL 41.22 26.40 14.83 water content aims content in soil. content the ainedinthesoilwiththeweightofdrysoilgrainsexpressedinpercent( soilwatercontentcanbeseeninTable16.Fromtheresultsoftestingthesoilwatercontent,theaveragesoilwatercontentvalueis13.77 Table16:SoilMoistureTestResults UnitMoistureTest WaterContent A B Grail+WetGround gram 42.52 36.58 Cup+DrySoil gram 38.32 33.40 WaterWeight gram 4.20 3.18 CupWeight gram 9.06 9.28 DrySoilWeight gram 29.26 24.12 ContentWater % 14.35 13.18 AverageWaterContent % 13.77 gravitytakenweightSoildensitytestingaimstodeterminethespecificgravityofasoilsample.Thespecificgravityofthesoilistheratiooftheofthesoilgrainstotheweightofdistilledwaterintheairwiththesameweightatacertaintemperature,usuallyatatemperatureof27°C.TheresultsoftheexpansivesoildensitytestcanbeseeninTableoflimestonesoilcanbeseeninTable18. 17:ExpansiveSoilDensityTestResults 57 editor@iaset.us %).Theresultsoftestingthe%.17andthespecific

58 Impact Factor (JCC): 8.1928 Table MechanicalCharacteristicsofSoil SoilCompactionTest(ModifiedProctorTest) Compaction is the event of increasing dry volume weight by dy closer to each other as a result of reduced air voids. The test results of soil compaction for each grade of Lime Stone optimummixturecanbeseeninTable19.Toobtainthecorrelationbetweenthemaximummoisturecontentinthemixturevariation,itisshowninFigure Table19:MixedCompactionTestResultsTabl MixedVariations ExpansiveExpaExpansiveExpansiveExpansiveExpansiveSoilSoilSoilSoilnsiveSoilSoil Figure Ruslan, Syamsul Arifin Table18:TestResultsforLimeStoneSoilDensity (ModifiedProctor is the dynamic loads. Due to dynamic loads, the soil grains are each a result reduced voids. The for of .Toobtainthecorrelationbetweenthemaximumdryvolumeweightrelationshipandthe optimummoisturecontentinthemixturevariation,itisshowninFigure12. Table5.7MixedCompactionTestResults Wopt(%) ExpansiveSoil0% 14.99% ExpansiveSoil+LimeStone3% 15.87% ExpansiveSoil+LimeStone6% 14.99% ExpansiveSoil+LimeStone9% 11.19% nsiveSoil+LimeStone12% 6.38% ExpansiveSoil+LimeStone15% 5.45% Figure12:EffectofSoilVolumeWeightandOptimum MoistureContentofLimeStoneMix. & Sukiman Nurdin NAAS Rating 3.04 ꙋd 1.4581.4251.4011.3831.3091.383

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata www.iaset.us UnconfinedCompressiveStrengthTest This test is to determine the parameters of the shear strength of the soil. The axial stress applied over the test object is granulesexpansive.cementationpeak6the13Thegraduallyincreaseduntilthetestobjectcollapses.TheresultsofthefreecompressivestrengthtestareshowninTableincreaseinthevalueofthefreecompressivestrength(qu)canbeseeninFigureFromtheexperimentalresultsofthefreecompressivestrengthofan,itcanbeseenthatingeneralthelimestonematerialhasagreatinfluenceontheincreaseinthecompressivestrengthofsoil.However,thecuringtimealwaysaffectsthecompressivestrengthofthesoil%,9%,and12%thecompressivestrengthofthesoilshowedaconsistentincreasewithincreasingcuringtime.Theoftheincreaseincompressivestrengthwastheadditionof15phaseandthepozzolanicreactioninlimestone,wherethereactionbetweenSilicaandAluminainthesoilisLimeStonewithwaterwillproduceCalciumHydrateSilica(CSH)compounds,wherethisreactionfor(binders)inthesoilwithaslowtime,sothatthesoilbecomesdenseandhard. Table20: Figure13:Correlationbetwee ValueandCuring TimeforLimeStoneMixtureVariations LaboratoryCBRTesting(CaliforniaBearingRatio) waterCBRtestingaimstodeterminetheCBRvalueofsoilandsoilaggregatemixturcontenttobeusedforSubBase(fill)orSubGrade(subgrade)roadconstruction. The CBR test in this study was divided into two parts, namely CBR without immersion and CBR immersion, using different variat mixtures. UnsoakedCBR 17.32Figure14showsthattheoriginalCBRUnsoakedsoilof12.31%.Theadditionofthelimestonemixturevariationresulted in an inc Use Stone Expansive Material Soil Improvement - Beteleme) Test test is the parameters of the shear the stress applied test bjectcollapses.TheresultsofthefreecompressivestrengthtestareshowninTable granulesexpansive.cementationpeaktheTheincreaseinthevalueofthefreecompressivestrength(qu)canbeseeninFigure13.Fromtheexperimentalresultsofthefreecompressivestrengthofanexpansivemix,itcanbeseenthatingeneralthelimestonematerialhasagreatinfluenceontheincreaseinthecompressivestrengthofsoil.However,thecuringtimealwaysaffectsthecompressivestrengthofthesoil.Atthepercentageoflimestone3thecompressivestrengthofthesoilshowedaconsistentincreasewithincreasingcuringtime.Theoftheincreaseincompressivestrengthwastheadditionof15%limestonewith28dayscurinphaseandthepozzolanicreactioninlimestone,wherethereactionbetweenSilicaandAluminainthesoilisLimeStonewithwaterwillproduceCalciumHydrateSilica(CSH)compounds,wherethisreactionfor(binders)inthesoilwithaslowtime,sothatthesoilbecomesdenseandhard. UnconfinedCompressiveStrengthTestResults betweenUnconfinedCompressiveStrength and Time Lime Laboratory Testing Ratio) dividedwaterCBRtestingaimstodeterminetheCBRvalueofsoilandsoilaggregatemixturecompactedinthelaboratoryatacertaincontenttobeusedforSubBase(fill)orSubGrade(subgrade)roadconstruction.TheCBRtestinthisstudywasintotwoparts,namelyCBRwithoutimmersionandCBRimmersion,usingdifferentvariatshowsthattheoriginalCBRUnsoakedsoilof12.31%tendstoincreasewithavariationof3.TheadditionofthelimestonemixturevariationresultedinanincreaseinthecarryingcapacityoftheCBR 59 editor@iaset.us 20. tureoflimestoneinFigure%,g.ThisiscausedbythemsionsofLimeStone%limestoneby

60 Impact Factor (JCC): 8.1928 valuerelativelyconstantatapercentageof3withoutimmersionwaswhenthelimestonepercentagewas15 MixedVariations( CBRSoaked mixturetoTheresultsoftheCBRSoakedtestwith56collisionsinFigureincreasewithamixtureof3%limestonevariationsof11.24variation,itshowsalinearincreasingtrendofSoakedCBRvalue. MixedVariations( Figure CONCLUSIONSANDSUGGESTIONS Conclusions  original%,FromtheresultsoftheUnsoaked9%,12%and15%canincresoilCBRvalue.  original6FromtheresultsoftheCBRSoakedtestwith56collisions,itshows%,9%,12%and15%canincreasetheCBRvalueby11.24soilCBRvalue. Ruslan, Syamsul Arifin %to15%rangingfrom17.32%-26.92%.Thehighest/optimalincreaseinCBR valuewithoutimmersionwaswhenthelimestonepercentagewas15%at26.92%. Table21:UnsoakedCBRTestResults Variations %) CBRValue(%) 0 12.31 3 17.32 6 20.67 9 20.93 12 21.70 15 26.92 TheresultsoftheCBRSoakedtestwith56collisionsinFigure14showthattheoriginalCBRSoakedsoilof5.97limestonevariationsof11.24%.Withtheadditionofthepercentageoflime stone mixturevariation,itshowsalinearincreasingtrendofSoakedCBRvalue. Table22:ResultsofSoakedCBRTesting Variations %) CBRValue(%) 0 5.97 3 11.24 6 11.94 9 13.25 12 14.04 15 15.27 Figure14:RelationshipofCBRValuetoLime StoneVariation AND theUnsoakedCBRtest,56collisionsshowedthattheadditionoflimestone(domato)3canincreasetheCBRvalueby17.32%,20.67%,20.93 FromtheresultsoftheCBRSoakedtestwith56collisions,itshowsthattheadditionoflimestone(domato)3anincreasetheCBRvalueby11.24%,11.94%,13.25 & Sukiman Nurdin NAAS Rating 3.04 %tends%,6 %, 21.70 % and 26.92 %%,of %,14.04%and15.27%of

7. Holtz, W.G and Gibs, J.J (1954); 1969), Engineering Properties of Expansive Clays,

10. Krebs, R.D. and Walker, R.D. (1971), Highway Materials, McGraw Hill Book Company, New York.

6. Hetty, S. 2019, Sifat-sifat Tanah. Balai BHGK, Pusair Bandung.

4. FHWA (1975), A Review of Engineering Experiences With Expansive Soils In Highway Subgrades, Report No. FHWA-RD-75-48, Prepared for Federal Highway Administration, Washington, D.C.

The Use of Lime Stone (Domato) As Expansive Material for Soil Improvement (Case Study: Road Tomata - Beteleme) 61 www.iaset.us editor@iaset.us  From the results of Lyne Analysis of Energy Dispersive X-Ray Spectroscopy (EDS) expansive soil from Ensa Village, Tomata District, NorthMorowali Regency witha chemical content dominated bySilicate (Si) 25.64% andAluminate(Al)13.43%witharatioof2:1theoriginalsoilsamplecanbecategorizedasexpansivesoil.  (Si)dryForvariationsofexpansivesoilmixture+limestone15%optimummoisturecontentis5.45%withamaximumweightof1.458gr/cm³fromtheresultsofLyneAnalysisEDSwiththedominantchemicalcontentofSilicate22.37%andAluminate(Al)14,28%,whiletheotherelementsareonlyasmallpart. Suggestions Basedontheresearchthathasbeendone,thefollowingcanbesuggested:  Theprocessofmixingexpansivesoilvariationswithlimestone mustbeconsideredcompletelyevenlysothata moreeven/homogeneousmixtureisobtained.  canToincreasethecarryingcapacityofthesoilinexpansiveclay,stabilizationwithchemicalssuchaslimeandresinbecarriedout.  Itisnecessarytocarryouttestingwithdifferentsoiltypes. REFERENCES 1. Barron, R.A. (1948), Consolidation of Fine-Grained Soils by Drain Wells, Trans., Am. Soc. Civ. Eng., Vol. 113, p. 1719. 2. Bowles, J.E., 1993, Sifat-Sifat Fisis dan Geoteknis Tanah, Edisi Kedua, Penerbit Erlangga, Jakarta. 3. Chen, F.H. (1975); 1988), Foundation of Expansive Soils, American Elsevier, Science Publication, New York.

9. Kraynski, L. M. (1980), Expansive Soil in Highway Construction some Problem and Solutions, 4th Int. Road Fed. African Highways Conf. Nairobi, Kenya.

11. Merwe, D.H. 1964. The Prediction of heave from the Plasticity Index and percentage Clay Fraction of Soils, Civil Engineers in south Africa, 6(6):103-107.

12. Muhunthan, B., 1991, Liquid Limit and Surface Area of Clays, Geotechniques, Vol XLI, No. 1 March 1991.

13. Ndaru, F et al. 2015, Perbaikan Tanah Ekspansif Dengan Penambahan Serbuk

8. ASCE, Transactions Paper No.2814, Vol.121.

5. Hakam, A et al, 2010. Studi Pengaruh Penambahan Tanah Lempung Pada Tanah Pasir Pantai Terhadap Kekuatan Geser Tanah. Rekayasa Sipil, 6(1), 11-22.

14.

62 Ruslan, Syamsul Arifin & Sukiman Nurdin Impact Factor (JCC): 8.1928 NAAS Rating 3.04 Nelson, J.D. dan Miller, D.J.(1992), Expansive Soils – Problems and Practice in Foundation and Pavement Engineering, John Wiley and Sons, Inc. New York. P. T. Pandu Equator Prima. 2019. Stabilisasi Tanah Ekspansif Pada Jalan Dengan Menggunakan Geomembrane. March 14 2019. Rogers, C.D., Glendinning, S., 2000, Lime requirement for stabilization, Transportation research record, 1721(1), 9-18.P - 4 Rollings, M.P. and Rollings JR. R.S. (1996), Geotechnical Material in Construction, McGraw-Hill, New York Washington, DC.

15.

16.

17.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.