InternationalJournalofGeneralMedicineand Pharmacy(IJGMP)
ISSN(P):2319–3999;ISSN(E):2319–4006
Vol.11,Issue2,Jul–Dec2022;1–22 ©IASET
ABSTRACT
PriyankaBharti1&SandhyaSharma2
1ResearchScholar,Govt.ModelScienceCollege,Rewa,MadhyaPradesh,India
2AssistantProfessor,Govt.CollegePatharia,MadhyaPradesh,India
PresentstudyiscentralizeonBichhiyaRiveratRewawhichisoneofthemaintributariesofBeeharRiverTheaimofthis studywastoascertaintheimpactofseveralBiologicalparametersonwaterqualityofBichiyaRiverandtoassessfurther itsnatureintermsofmicrobialgrowth.Effectivemicrobescancompletelydegradeandoxidizestoxicorganiccompounds; arecharacterizedbylowcostandofferthepossibilityofin-situtreatment.thewaterhavebeenanalyzedatthesampling siteitself.,Dissolvedoxygen,COD,BOD,phytoplanktonandZooplanktonarestudiedfromthewatersamplein accordancewiththeproceduresdescribedinstandardmethodsfortheexaminationofwater
KEYWORDS:BichhiyaRiver,BiologicalParameters,WaterPollution,PhytoplanktonandZooplankton
ArticleHistory
Received:24Jun2022|Revised:27Jun2022|Accepted:15Jul2022
INTRODUCTION
Freshwaterresourcesareusedforvariouspurposeslike,agriculture,industrial,household,recreational,environmental activities,etc.Infactthefreshwaterresourcesareverypreciousforthelifeonourplanet.Thewaterqualityofriversmay varywiththeseasonsandgeographicalareas.Duringpresenttime,mostofriversofworldreceivemillionlitersofsewage, domesticwaste,industrialandagriculturaleffluentscontainingfromsimplenutrientstohighlytoxicsubstanceswhichare themostsignificantcausesofpollutionofaquaticecosystem.WaterresourcesinIndiahavereachedapointofcrisisdueto unplannedurbanizationandindustrialization.Theincreasinganthropogenicactivitiesinrecentyearsinaquaticecosystem andtheircatchmentareashavecontributedtoalargeextenttodeteriorationofwaterquality.Thenumberofdams, reservoirs,tanks,etc,hassignificantlyincreasedinlastfewyears.Thedevelopmentoffisheriesinthesefreshwater resourcesneedstobeincreasethroughthescientificdevelopment.Thequalityofwatershouldbecheckedatregular intervalstopreventdeteriorationofwaterqualityandtomaintainaquaticbiota.
Waterpollutionisgenerallyindicatedbythepresenceofharmfulandharmlessmicrobes.Microbialexamination ofwaterisadirectmeasurementofdeleteriouseffectsofpollution.Mostprobablenumberisthemostcommonmicrobial parameterforthesanitaryanalysisofwater.Thetestisusedtodetectcoliforms,agroupcomprisingofalltheaerobicand facultativeanaerobic,Gramnegative,non-sporeformingandrod-shapedbacteria.Theseinhabittheintestinesofallwarmbloodedanimals.Thedischargeofwastewaterfrommunicipalsewerscontaininghumanfaecalmatterishazardousto humanhealth.Faecalcontaminationwasroutinelydetectedbymicrobiologicalanalysis(Nogueiraetal.,2003).Theaimof
www.iaset.us
editor@iaset.us
“STUDYONTHEDENSITYOFPHYTOPLANKTON’SANDZOOPLANKTONS’OF BICHHIYARIVERWATER"
thisstudywastoascertaintheimpactofseveralphysico-chemicalparametersonwaterqualityofBichiyaRiverandto assessfurtheritsnatureintermsofmicrobialgrowth.Assessmentofwaterqualityisdonetoanalysesthephysical, chemicalandbiologicalcharacteristicsofwater(Kazietal.,2009).Microbiota(typically,heterotrophicbacteriaand fungi)usetodegradeortransformhazardouscontaminantstomaterialssuchascarbondioxide,water,inorganicsalts, microbialbiomass,andotherby-productsthatmaybelesshazardousthantheparentmaterials.Ontheotherhand,the bioremediationwasadvancedrapidlyfrom1990.Bioremediationisconsideredasoneofmanyadvantages,suchas reducedcost,lowenvironmentalinfluence,nosecondarypollutionorpollutantmovement,reducingpollutant concentrationbythemaximumextent,availableforthesiteswhereregularpollutiontreatmenttechnologyisdifficulttobe applied(Mingjunetal.,2009).Microorganism’senzymaticallyattacksthepollutantsandconvertsthemtoharmless productsandusesthecontaminantsasnutrientorenergysources.Bioremediationactivitythroughmicrobeisstimulatedby supplementingnutrients(nitrogenandphosphorus),electronacceptors(oxygen),andsubstrates(methane,phenol,and toluene),orbyintroducingmicroorganismswithdesiredcatalyticcapabilities.
Organicpollutantsfromindustrialwastewaterfrompulpandpapermills,textilesandleatherfactories,steel foundriesandpetrochemicalrefineriesareamajorcauseofillnessinpartsoftheworldwhereregulationsdonot necessarilyprotectthepeoplefromsuchindustrialoutflows.TheEMapproachtowaterpurificationcouldhelpin preventingdiseasesandpoisoningforpotentiallymillionsofpeople.UseofEMisconsideredtobeeconomical,energy efficientandenvironmentalfriendlywithminimaldisposalproblems.Effectivemicrobescancompletelydegradeand oxidizestoxicorganiccompounds;arecharacterizedbylowcostandofferthepossibilityofin-situtreatment.
Effectivemonitoringofphysicochemicalandmicrobiologicalparameterscanpreventriverwaterpollution (Chandraetal.2006),andthistypeofinitiativehasaspecialsignificancetoprotecthumanhealthfromwaterpollution (APHA1981).Indicatorbacteria,suchastotalcoliform(TC)andfecalcoliforms(FC),areusefulfortheassessmentof fecalpollution(APHA1995).Detailedknowledgeoffecalpollutioninaquaticenvironmentsiscrucialformaintaining healthywaterbodyforrecreationalandeconomicpurposes(Farnleitneretal.2001).Concentrationsofheterotrophic bacteriaandVibriocholeracanbeathreattogetherwithincreasingwatertemperaturesanddecompositionoforganicin BichhiyaRiveratRewa.Thatcancausecholeradiseasethroughthefastergrowthrateofthispathogeninaquatic environments(Koelleetal.2005).
StudySite
PresentstudyisgoingtocentralizeonBichhiyariverRewawhichisoneofthemaintributariesofBeeharRiver.Its locationinRewadistrictis24°10’latitudeNorthand81°15’longitudeEast.TherivertehsilvillageofGurhTehsiland joinstheBeeharriveratRajghatbehindRewafort.AttheupstreamoftheBichhiyaRiver,municipalwatertreatment stationissituated.Duringtheirflowintownship,industrial,domesticandmunicipaldischargesmergeintoitatdifferent points.Thewateroftheriverisusedbyurbanandperipheralruralpopulationdirectlyatmanystationsfordomesticand agricultureuses.
Theclimateofthisareaisseasonal.Threeseasonsnamelyrainy,winterandsummerarerecognizedinayear.The averagerainfallofthisregionwasrecorded1012mm/year.Aminimum2°Candmaximum46°Cairtemperaturewere recordedinsomedaysofJanuaryandMayrespectively.Therelativehumidityfluctuatedbetween42.0to84.0%at0830 hrsduringstudyperiod.
SamplingSite
FoursamplingstationsnamelyA,B,CandDwereselectedforthephysico-chemicalandbiologicalanalysisduringstudy period.Thesamplesofwaterwerecollectedatmonthlyintervalbetween8AMto11AM.
METHODOLOGY
WatersamplesweretakenfromthedifferentselectedsamplingstationsfromtheJanuary2018toDecember2019.Samples weretakeninthemiddlehoursoftheday.Somephysicalparametersofthewaterhavebeenanalyzedatthesamplingsite itself.Foranalysisofotherphysic-chemicalandbiologicalcharacteristicssuchaspH,Alkalinity.Turbidity,Conductivity, Dissolvedoxygen,COD,BOD,phytoplanktonandZooplanktonwereanalysisinthelaboratory.
Physico-chemicalofthewatersamplesweredoneinaccordancewiththeproceduresdescribedinstandard methodsfortheexaminationofwaterandwastewater(APHA,1985),practicalmethodsinwaterecologyand environmentalsciences(Trivedietal.,1987).Waterqualityinwarmwaterfishpond(Boyd,1981)andWorkBookon Limnology(Adonietal.,1985).
OBSERVATION
WaterTemperature
Theatmospherictemperaturewasobservedalwaystobehigherthanwatertemperature.Theairtemperaturewasrecorded between12.6°Cto42.1°CduringJanuary2018andDecember2019.Themeanvaluesofwatertemperaturewererecorded between19.35to29.43°Cduringfirstyearandbetween19.78±28.65°Cduringsecondyearofstudyperiod.Themean ±SDvaluesofwatertemperaturewerenotedas25.89±3.46°Cand25.83±3.10°Cduringfirstandsecondyearsofstudy periodrespectively.Duringthepresentstudy,therangeofwatertemperaturewasrecordedbetween19.05°C(January)to 32.60°C(May)and19.80°C(January)to32.90°C(May)duringfirstandsecondyearsofstudyperiodrespectively.The minimumtemperaturewasobservedinwinterseasonandmaximuminsummerseason.
Transparency(LightPenetration)
TransparencywasmeasuredwiththehelpofSecchidisc.Themaximumtransparencywasobservedinthemonthof NovemberandminimuminthemonthofJuly.Duringpresentstudy,themeanvaluesoftransparencyvariedbetween28.50 to72.80cmduring2018andbetween29.60to74.00cmduring2019.Theminimumtransparencywasobservedinthe monthofJuly(rainyseason)andmaximuminthemonthofNovember(winterseason)inBichhiyaRiverRewa(M.P.). Themean±SDvaluesoftransparencywererecordedas55.78±15.41cmand55.65±14.79cmduringfirstandsecondyears ofstudyperiodrespectively.Transparencywasmoreorlessconstantandhighduringwinterseasonandshowing decreasingtrendinrainyseason.
pH(HydrogenionConcentration)
pHwasdeterminedwiththehelpofpHmeter.TheBichhiyariverwaterwasobservedslightlyalkalineinnature.Themean valuesofriverwatervariedbetween7.20to8.80and7.30to8.70withamean±SDvaluesof7.81±0.41and7.83±0.38 duringfirstandsecondyearsofstudyperiodrespectively.TheminimumpHwasobservedinthemonthofJulyand maximuminthemonthofMayduringbothstudyyears.
www.iaset.us editor@iaset.us
DissolvedOxygen(mg/l)
Dissolvedoxygenwasobservedtobemaximumduringwinterseasonandminimuminsummermonths.Duringpresent study,dissolvedoxygenminimumandmaximumvaluesoffluctuatedbetween5.20to7.80mg/land5.30to7.80mg/lat differentstationsduringfirstandsecondyearsofstudytime.Theminimumvaluesofdissolvedoxygenwererecordedin themonthofMayandmaximuminthemonthofJanuaryduringstudyperiod.Dissolvedoxygenwasobservedwitha mean±SDvalueof6.41±0.72mg/lduringfirstyearbetween[160]withamean±SDvalueof6.48±0.70mg/lduring secondyearofstudyperiod.
ElectricalConductivity(μmhos/cm)
Conductivityisameasureofitsabilitytocarryanelectriccurrent.Itisalsoanindicatorofioniccompositionofwater.The rainfallandbiodiversitychangestheioniccompositionofwater.Theminimumandmaximumvaluesofelectrical conductivityvariedbetween128.00μmhos/cmto220.00μmhos/cmduringtheyear2018andbetween225.00μmhos/cm to234.00μmhos/cmduringtheyear2019ofstudyperiod.Conductivitywasobservedwithamean±SDvalueof 170.39±24.60mg/lduringfirstyearbetweenwithamean±SDvalueof170.95±25.96mg/lduringsecondyearofstudy period.TheminimumvaluesofconductivitywererecordedinthemonthofAprilandmaximuminthemonthof Septemberduringstudyperiod.
BiologicalOxygenDemand(B.O.D.)(mg/l)
BODvalueswererecordedhigherduringrainymonthsandlowerduringsummerseason.ThemeanvaluesofBODvaried between4.30to8.75mg/lduringfirstyearandbetween4.25to8.58duringsecondyearofstudyperiod.Themean±SD valuesofBODwereobserved5.40±1.21mg/land5.20±1.20mg/lduringfirstandsecondyearsofstudyperiod respectively.
ChemicalOxygenDemand(mg/l)
CODisusedtomeasurethepollutionstrengthofdomesticandindustrialwastes.ThemeanvaluesofCODhavebeen foundtofluctuatebetween18.30to39.60mg/lduring2018andbetween18.40to39.50mg/lduring2019;withamean ±SDvaluesof28.30±5.49mg/land28.30±5.36mg/lduringfirstandsecondyearsofstudyperiodrespectively.The minimumvaluesofCODwererecordedinthemonthofJanuaryandmaximuminthemonthofJulyduringstudyperiod.
1.WinterSeason(Nov2018toFebruary2018andNovember2019toFebruary2019
December2019arerepresentedin(TableNo.-1)
Chlorophyceae
ThemeandensityofChlorophyceaewererecordedbetween5.95org/lto49.50org/landbetween7.15org/lto50.70og/l duringwinterseasonoffirstandsecondyearsofstudyperiodrespectively.Theminimumdensitywasrecordedfor Geniculariasp.andmaximumforCosmariumsp.duringbothstudyyears.Somemembersofthisgroupalsoshowedbetter densityasChlorellasp.(38.75org/l),Botryococcussp.(34.28org/l)andCharasp.(31.35org/l)duringfirstyearandagain Chlorellasp.(39.95org/l),Botryococcussp.(35.48org/l)andCharasp.(32.55org/l)duringsecondyearofstudyperiod. ThetotalminimumandmaximumdensityofChlorophyceaefluctuatedbetween343.5org/l(stationB)to347.8org/l (stationA)withanaveragetotaldensityof346.31org/lduringfirstyearandbetween361.5org/l(stationB)to367.90 org/l(stationC)withanaveragetotaldensityof364.31org/lduringsecondyearofstudyperiod.
ImpactFactor(JCC):7.1589 NAASRating3.99
Cyanophyceae
Amongthe11speciesofCyanophyceae,theminimumaveragedensitywasrecordedforOscillatoriasp.(11.30org/l)and maximumaveragedensityforCoelosphaeriumsp.(36.63org/l)org/lduringfirstyear.Duringsecondyearofstudyperiod, theaverageminimumandmaximumdensityfluctuatedbetween12.50org/l(Oscillatoriasp.)to37.83org/l (Coelosphaeriumsp.).TheappreciabledensityofthisgroupwasobservedforMicrocystissp.(34.33org/land35.53org/l) followedbyAnacystissp.(27.63org/land28.83org/l)andSpirulinasp.andRivulariasp.(26.68org/land28.18org/l) duringfirstandsecondyearsofstudyperiodrespectively.Thetotaldensityofthisgroupwasrecordedas252.5org/lfor stationA,245.3org/lforstationB,241.4org/lforstationCand244.org/lforstationDwithanaveragedensityof246.05 org/lduringfirstyearand266.0org/l,258.8org/l,254.9org/land258.4org/latstationsA,B,CandDrespectivelywith anaveragedensityof259.55org/lduringwinterseasonofyear2019ofstudyperiod.
Bacillariophyceae
TheminimumandmaximumdensityofBacillariophyceaevariedbetween15.10org/l(Cyclotellasp.)to69.65org/l (Naviculaindica)duringfirstyearandbetween16.30org/l(Cyclotellasp.)to70.85org/l(Naviculaindica)duringsecond yearofstudyperiod.SomeothermembersofthisgroupalsoshowedappreciabledensityasNaviculapulpa(32.58org/l and33.78org/l)followedbyGyrosigmasp.(23.70org/land24.90org/l)andCyclobellaaffinis(21.83org/land23.03 org/l)duringfirstandsecondyearofstudyperiodrespectively.Thetotaldensityofthisgroupwasrecordedas291.60 org/l,305.5org/l,285.4org/land298.9org/latstationsA,B,CandDrespectivelywithanaveragedensityof295.37org/l duringfirstyearofstudyperiod.Duringtheyear2019ofstudyperiod,thetotaldensityofthisgroupwasrecordedas304.8 org/latstationA,318.7org/latstationB,298.6org/latstationCand312.1org/latstationDwithanaveragedensityof 308.57org/l.
Euglenophyceae
AmongthetwomembersofEuglenophyceae,theminimumdensitywasrecordedforPhacussp.(20.53org/land21.73 org/l)andmaximumforEuglenasp.(21.70org/land22.90org/l)duringfirstandsecondyearsofstudyperiod respectively.Thetotaldensityofthisgroupfluctuatedbetween36.8org/l(stationA)to53.68org/l(stationD)withan averagedensityof42.22org/lduringfirstyearandbetween36.7org/l(stationB)to53.68org/l(stationD)withanaverage densityof42.22org/lduringfirstyearandbetween39.1org/l(stationB)to56.08org/l(stationD)withanaveragedensity of44.63org/lduringwinterseasonofsecondyearofstudyperiod.
2.SummerSeason(March2018toJune2018andMarch2019toJune2019)
Thedensityofphytoplanktonobservedduringsummerseasonofbothstudyyearsarerepresentedin
Chlorophyceae
TheaveragedensitybetweendifferentmembersofChlorophyceaevariedbetween14.98org/lto43.80org/lduringoffirst yearandbetween16.48org/lto45.30org/lduringsecondyearofstudyperiod.Theminimumdensitywasrecordedfor CoelastrummicoporumandmaximumforBotryococcussp.duringbothstudyyears.Somemembersofthisgroupalso showedbetterdensityasChlamydomonassp.(33.45org/land34.95org/l)followedbyScenedesmusarmatus(32.53org/land 34.03org/l)andCrucigeniasp.(30.83org/land32.33org/l)duringfirstandsecondyearsofstudyperiodrespectively.The totaldensityofthisgroupwasrecordedas381.2org/latstationA,382.9org/latstationB,384.2org/latstationCand382.2
org/latstationDwithanaveragedensityof382.66org/lduringfirstyearand403.7org/l,405.4org/l,406.7org/land404.7 org/latstationA,B,CandDrespectivelywithanaveragedensityof405.16org/lduringsecondyearofstudyperiod.
Cyanophyceae
Merismopediasp.showeddominanceamongthemembersofCyanophyceaewithanaveragedensityof29.75org/land 31.25org/lduringfirstandsecondyearsrespectively.TheminimumdensityofthisgroupwasrecordedforGleocapsasp. (12.38org/land13.88org/l)duringsummerseasonoffirstandsecondyearsofstudyperiodrespectively.Theappreciable densitywasalsorecordedforNostocsp.(29.25org/land30.75org/l)followedbyAplanocapsasp.(28.70org/land30.20 org/l)andAnacystissp.(25.45org/land26.95org/l)duringbothstudyyears.Thetotaldensityofthisgroupvaried between211.5org/l(stationC)to220.1org/l(stationA)withanaveragedensityof216.29org/lduringfirstyearand between228.0org/l(stationC)to236.6org/l(stationA)withanaveragedensityof232.79org/lduringsecondyearof studyperiod.
Bacillariophyceae
AmongthemembersofBacillariophyceae,themaximumdensitywasrecordedforAmphorasp.(29.60org/land31.10 org/l)andminimumdensityforDiatomaelongatum(9.53org/land11.03org/l)duringfirstandsecondyearsofstudy periodrespectively.TheappreciabledensitywasrecordedforFragillariasp.(22.75org/land24.25org/l)followedby Gomphonemasp.(18.60org/land20.10org/l)andNaviculaindica(18.58org/land20.08org/l)duringbothstudyyears. Thetotaldensityofthisgroupfluctuatedbetween197.5org/l(stationD)to207.0org/l(stationB)withanaveragedensity of202.74org/lduringfirstyearandbetween215.5org/l(stationD)to225.0org/l(stationB)withanaveragedensityof 220.74org/lduringsecondyearofstudyperiod.
Euglenophycae
AmongthemembersofEuglenophyceae,theminimumdensitywasrecordedforPhacussp.(16.85org/land18.35org/l) andmaximumforEuglenasp.(18.53org/land20.03org/l)duringfirstandsecondyearsofstudyperiodrespectively.The totaldensityofthisgroupvariedbetween34.8org/l(stationD)to35.8org/l(stationA)withanaveragedensityof35.38 org/lduringfirstyearandbetween37.8org/l(stationD)to38.8org/l(stationA)withanaveragedensityof38.38org/l duringsecondyearofstudyperiod.
Table1:PhytoplanktonGeneraEncounteredatDifferentSamplingStationsof
Zooplankton
Thezooplanktonconsistsofdiverseassemblageofmajortaxonomicgroups.Manyoftheseformshavedifferent environmentalandphysiologicalassemblage.Thenumbertypeanddistributionoftheseorganismspresentinanyaquatic habitatprovideaclueontheenvironmentalconditionprevailinginthatparticularhabitat.Theoccurrenceandabundance ofzooplanktoninthewaterbodydependsonitsproductivitywhichinturnisinfluencedbythephysico-chemical parametersandlevelofnutrients.Thezooplanktonisanimportantgroupofmicro-organismswhichindicatesthetrophic statusofwaterbody.Someofthemarealsoactingasbio-indicatoroforganicandinorganicpollutionofwaterbody.
Theseasonaldensityofzooplanktonobservedduringdifferentseasonsoftwoyearsofstudyperiod(January2018 toDecember2019)arerepresentedin(TablesNo.-5.27).Theaveragedensityofeachspeciesofzooplanktonwas determinedforwinter,summerandrainyseasonsofBichhiyariver,Rewa(M.P.).Intotal38speciesofzooplanktonwere identifiedduringpresentstudy.Outof38speciesofzooplankton8speciesbelongedtoProtozoa,14speciestoRotifera,5 speciestoCopepoda,10speciestoCladoceraand1speciestoOstracodaasgivenBelow:
Group-Protozoa
Amoebasp.,Arcellasp.,Chilodonellasp.,Diffusiasp.,Epistylissp.,Euglenasp.,Euglephasp.,Parameciumsp.
Group-Rotifera
Asplanchnabrightwelli,Asplanchnasp.,Brachionusangularis,Brachionusbidentata,Brachionuscaudatus,Brachionus patulus,Brachionusquadridentatus,Brachionusrubens,Filinialongiseta,Filiniaterminalis,Keratellatropica,Lecane aculiata,Monostylasp.,Trichocercasimilis.
Group-Copepoda
Group-Cladocera
Alonaaffinis,Alonellasp.,Biaperturaaffinis,Bosminasp.,Ceriodaphniasp.,Daphniacarinata,Daphniasp.,Moinasp., Monodaphniasp.,Sidasp.
Group-Ostracoda
Rotiferaformsthemainbulkofzooplanktoncomprising36.84%ofspeciescompositionfollowedbyCladocera (26.32%),Protozoa(21.05),Copepoda13.16%andOstracoda(2.63%)duringstudyperiod.
SeasonalDensityofZooplankton
Theseasonaldensityofdifferentspeciesofzooplanktonobservedduringstudyperiodarerepresentedin(TableNo.-5.28 &5.29).
WinterSeason(Jan,Feb.,Nov.andDec.2018and2019):TablesNo.-5.28&5.29showedthedensityofdifferent speciesofzooplanktonobservedduringwinterseasonoftwoyearsofstudyperiod.
Protozoa
TheminimumandmaximumdensityofdifferentmembersofProtozoavariedbetween12.50org/lto16.50org/lduring firstyearandbetween14.75org/lto19.75org/lduringsecondyearofstudyperiod.Theminimumdensitywasrecorded forEuglenasp.duringbothstudyyearsandmaximumforParameciumsp.duringfirstyearandDiffusiasp.duringsecond yearofstudyperiod.Diffusiasp.(16.00org/l)andEpistylissp.(15.50org/l)duringfirstyearandEuglephasp.(17.00org/l) andParameciumsp.(16.50org/l)duringsecondyearofstudyperiodalsoshowedappreciabledensity.Thetotaldensityof thisgroupfluctuatedbetween115org/l(stationE)to119org/l(stationB)withanaveragedensityof116.75org/lduring firstyearandbetween128org/l(stationA)to134org/l(stationC)withanaveragedensityof131.00org/lduringwinter seasonofsecondyearofstudyperiod.
Rotifera
Amongthe14speciesofRotifera,theminimumdensitywasobservedforLecaneaculiata(14.50org/l)duringfirstyear andFiliniaterminalis(13.00org/l)duringsecondyearofstudyperiod.Themaximumdensitywasobservedfor Brachionusquadridentatus(23.50org/l)andAsplanchnasp.(23.50org/l)duringfirstandsecondyearsofstudyperiod respectively.SomeotherspeciesofthisgroupalsoshowedbetterdensityasBrachionuspatulus(23.25org/l),Asplanchna sp.(22.75org/l)andAsplanchnabrightwelli(22.50org/l)duringfirstyearandAsplanchnabrightwelli(23.00org/l), Monostylasp.(21.50org/l)andLecaneaculiata(17.50org/l)duringsecondyearofstudyperiod.Thetotaldensityofthis groupwasrecordedas295org/l,282org/l,265org/land277org/latstationsA,B,CandDrespectivelywithanaverage densityof279.75org/lduringfirstyearand240org/latstationA,242org/latstationB,242org/latstationCand238 org/latstationDwithanaveragedensityof240.50org/lduringwinterseasonofsecondyearofstudyperiod.
Copepoda
TheminimumandmaximumdensityofCopepodavariedbetween20.25org/lto35.50org/lduringfirstyearandbetween 14.75org/lto32.25duringsecondyearofstudyperiod.TheminimumdensitywasrecordedforMesocyclopssp.and maximumforNauphiduringbothstudyyearsandmaximumforNaupliiduringbothstudyyears.Thetotaldensityofthis groupfluctuatedbetween125org/l(stationD)to136org/l(stationA)withanaveragedensityof129.75org/lduringfirst yearandbetween103org/l(stationsAandC)to108org/l)stationDwithanaveragedensityof105.25org/lduring secondyearofstudyperiod.
Cladocera
AmongthetenmembersofCladocera,theminimumandmaximumdensitywasrecordedbetween11.75org/lto22.75 org/lduringfirstyearandbetween11.75org/lto19.50org/lduringsecondyearofstudyperiod.Theminimumdensitywas recordedforSidasp.duringbothstudyyearsandmaximumforBosminasp.duringfirstyearandAlonaaffinisduring secondyearofstudyperiod.Thetotaldensityofthisgroupvariedbetween156org/l(stationD)to170org/l(stationA) withanaveragedensityof163.75org/lduringfirstyearandbetween140org/l(stationD)to148org/l(stationB)withan averagedensityof143.50org/lduringsecondyearofstudyperiod.
Ostracoda
ThedensityofsinglespeciesofOstracodavariedbetween15org/l(stationD)to24org/l(stationC)withanaverage densityof20.75org/lduringfirstyearand22org/l(stationD)to26org/l(stationB)withanaveragedensityof24.25org/l duringwinterseasonofsecondyearofstudyperiod.
SummerSeason(March2018toJune2018andMarch2019toJune2019)
ThedensityofdifferentmembersofzooplanktonrecordedduringsummerseasonarerepresentedinTablesNo.5.28& 5.29.
Protozoa
Amongthe8speciesofProtozoa,theminimumdensitywasobservedforParameciumsp.(13.50org/l)duringfirstyear andAmoebasp.(15.50org/l)duringsecondyearofstudyperiod.ThemaximumdensitywasrecordedforEuglena sp.(17.25org/l)duringfirstyearandEpistylissp.(22.50org/l)duringsecondyearofstudyperiod.Euglephasp.(15.75 org/l)Arcellasp.(15.75org/l)andEpistylissp.(15.50org/l)duringfirstyearandDiffusiasp.(21.50org/l),Euglenasp.
(21.50org/l)andChilodonellasp.(19.75org/l)alsoshowedappreciabledensity.Thetotaldensityofthisgroupwas observedas128org/latstationA,118org/latstationB,125org/latstationCand116org/latstationDwithanaverage densityof121.75org/lduringfirstyearand146org/l,152org/l,157org/land147org/latstationsA,B,CandD respectivelywithameanvalueof150.50org/lduringsecondyearofstudyperiod.
Rotifera
TheminimumandmaximumdensityamongdifferentmembersofRotiferavariedbetween15.25org/lto22.75org/l duringfirstyearandbetween14.50org/lto22.25org/lduringsecondyearofstudyperiod.Theminimumdensitywas recordedforFiliniaterminalisandmaximumforBrachionusquadridentatusduringbothstudyyears.Somemembersof thisgroupalsoshowedbetterdensityasKeratellatropica(21.75org/l),Trichocercasimilis(21.00org/l)andLecane aculiata(20.25org/l)duringfirstyearandLecaneaculiata(21.75org/l),Brachionuspatulus(21.75org/l)andAsplanchna sp.(19.75org/l)duringsecondyearofstudyperiod.Thetotaldensityofthisgroupvariedbetween249org/l(stationC)to 255org/l(stationB)withanaveragedensityof252.25org/lduringfirstyearandbetween243org/l(stationA)to256org/l (stationD)withanaveragedensityof250.75org/lduringsecondyearofstudyperiod.
Copepoda
Amongthe5speciesofCopepoda,theminimumdensitywasrecordedforDiaptomussp.(14.25org/l)andMesocyclops sp.(20.75org/l)andmaximumforNauplii(34.50org/land33.00org/l)duringfirstandsecondyearsofstudyperiod respectively.Cyclopssp.alsoshowedbetterdensityduringbothstudyyears.Thetotaldensityofthisgroupfluctuated between118org/l(stationA)to126org/l(stationD)withanaveragedensityof120.75org/lduringfirstyearandbetween 120org/l(stationA)to128org/l(stationD)withanaveragedensityof124.75org/lduringsecondyearofstudyperiod.
Cladocera
AmongthemembersofCladoceratheminimumdensitywasrecordedforAlonellasp.(13.00org/l)andBiapertua affinis(13.25org/l)andmaximumforCeriodaphiasp.(24.50org/land23.25org/lduringfirstandsecondyearsofstudy periodrespectively.Alonaaffinis(23.50org/l)andDaphiniasp.(22.75org/l)duringfirstyearandMoinasp.(22.50org/l) andAlonaaffinis(22.00org/l)duringsecondyearofstudyperiodalsoshowedappreciabledensity.Thetotaldensityofthis groupwasobservedas197org/l,206org/l,208org/land194org/latstationsA,B,CandDrespectivelywithanaverage densityof201.25org/lduringfirstyearand189org/latstationA,191org/latstationB,198org/latstationCand195 org/latstationDwithanaveragedensityof193.25org/lduringsecondyearofstudyperiod.
Ostracoda
ThesinglememberofOstracodashowedtotaldensitybetween14org/l(stationA)to27org/l(stationC)withanaverage densityof22.00org/lduringfirstyearandbetween12org/l(stationA)to30org/l(stationC)withanaveragedensityof 22.50org/lduringsummerseasonofsecondyearofstudyperiod.
RainySeason(July2018toOct.2018andJuly2019toOct.2019):Thedensityofdifferentmembersofzooplankton observedduringrainyseasonofbothstudyyearsarerepresentedinTablesNo.-5.28&5.29.
Protozoa
TheminimumandmaximumdensityofProtzoavariedbetween6.75org/l(Parameciumsp.)to15.75org/l(Diffusiasp.) duringfirstyearandbetween8.25org/l(Parameciumsp.)to14.75org/l(Diffusiasp.)duringsecondyearofstudyperiod. Chilodonellasp.andArcellasp.alsoshowedbetterdensityduringbothstudyyears.Thetotaldensityofthisgroupvaried between90org/l(stationD)to102org/l(stationB)withanaveragedensityof97.25org/lduringfirstyearandbetween88 org/l(stationA)to103org/l(stationB)withanaveragedensityof94.25org/lduringsecondyearofstudyperiod.
Rotifera
AmongthemembersofRotifera,Brachionusquadridentatusexhibitedthehigherdensityof18.00org/land17.50org/l andlowerdensitywasrecordedforLecaneaculiata(9.25org/l)and(11.00org/l)duringfirstandsecondyearsofstudy periodrespectively.SomemembersofthisgroupasoshowedbetterdensityasBrachionuspatulus(16.75org/l), Asplanchnabrightwelli(16.25org/l)andAsplanchnasp.(15.25org/l)duringfirstyearandBrachionuscaudatus(17.25 org/l),Monostylasp.(17.25org/l)andAsplanchnasp.(16.25org/l)duringsecondyearofstudyperiod.Thetotaldensity ofthisgroupwasrecordedas172org/l,205org/l,191org/l,and187org/latstationsA,B,CandDwithanaverage densityof197.75org/lduringfirstyearand209org/latstationA,215org/latstationB,204org/latstationCand205 org/latstationDwithanaveragedensityof208.25org/lduringsecondyearofstudyperiod.
Copepoda
Amongthe5membersofCopepoda,theminimumdensitywasrecordedforMesocyclopssp.(17.00org/l)andmaximum forCyclopssp.(27.50org/l)duringfirstyearofstudyperiod.Duringsecondyear,theminimumdensitywasrecordedfor Cyclopssp.(13.50org/l)andmaximumforNauplii(31.50org/l).Thetotaldensityofthisgroupfluctuatedbetween127 org/l(stationA)124org/l(stationB),118org/latstationCand114org/latstationDwithanaveragedensityof120.75 org/lduringfirstyearandbetween88org/l(stationD)to96org/l(stationB)withanaveragedensityof91.00org/lduring secondyearofstudyperiod.
Cladocera
Amongthe10speciesofCladocera,theminimumdensitywasrecordedforMonodaphniasp.(10.75org/l)andSidasp. (9.75org/l)andmaximumforDaphniacarinata(16.25org/l)andDaphniasp.(17.50org/l)duringfirstandsecondyears ofstudyperiodrespectively.Bosminasp.(15.75org/l),Ceriodaphniasp.(15.25org/l)andDaphniasp.(14.50org/l) duringfirstyearandCeriodaphniasp.(16.75org/l)andBosminasp.(16.25org/l)duringsecondyearalsoshowed appreciabledensity.Thetotaldensityofthisgroupwasobservedas130org/latstationA,137org/latstationB,132org/l atstationCand127org/latstationDwithanaveragedensityof131.50org/lduringfirstyearandas140.0org/l,156.0 org/l,140.0org/land139.0org/lwithanaveragedensityof141.25org/lduringsecondyearofstudyperiod.
Ostracoda
AmongOstracoda,thesinglememberCyprissp.showeddensitybetween15org/l(stationD)to26org/l(stationB)with anaveragedensityof22.25org/lduringfirstyearandbetween12org/l(stationD)to24org/l(stationB)withanaverage densityof18.25org/lduringsecondyearofstudyperiod.
ImpactFactor(JCC):7.1589
NAASRating3.99
TotalSeasonalDensityofZooplankton
ThetotalseasonaldensitiesofzooplanktonobservedduringstudyperiodarerepresentedinTableNo.-5.28.Result revealedthathigherdensityofzooplanktonwasrecordedduringsummerseason(718.00org/land741.75org/l)followed bywinterseason(710.75org/land644.50org/l)andrainyseason(580.50org/land553.00org/l)duringfirstandsecond yearsofstudyperiodrespectively.
Table4:TotalMeanSeasonalDensity(Org/L)ofZooplanktonObservedatFourStationsof BichhiyaRiverWater,(January2018toDecember2019)
RESULTANDDISCUSSION
BiologicalCharacteristicsoftheBichhiyaRiver
Planktonaccordingtotheirqualitymaybeclassifiedintophytoplanktonandzooplankton.Thedistributionand compositionofplanktonicspeciesareconsideredasremarkablemeasurestodeterminethestatusofpollutioninwaterand varyconsiderablyfromonewaterbodytoanother.Diversity,distributionabundanceandvariationinthebioticfactors provideinformationofenergyturnoverintheaquaticsystem.
Phytoplankton
ThedetailedtaxonomicsurveywascarriedoutfromJanuary2018toDecember2019inBichhiyaRiverofRewaand averagedensityofallphytoplanktonspecieswasrecordedforwinter,summerandrainyseason.Adiniji(1977)noticedthat populationdensityofphytoplanktoniscontrolledbytheamountofnutrientnotablyphosphateandnitrateinwater.During presentstudy,40speciesofphytoplanktonwererecorded,belongingtoclassChlorophyceae,Cyanophyceae, BacillariophyceaeandEuglenophyceae.Ofthese,15speciesbelongedtoChlorophyceae,11speciestoCyanophyceae,12 speciestoBacillariophyceaeand2speciestoEuglenophyceae.Maximumdensityofphytoplanktonwasrecordedinwinter seasonfollowedsummerseasonandrainyseason.LaskarandGupta(2009)reportedminimumdensityofphytoplankton duringmonsoonseasonandmaximumduringsummerseasoninChatlalake,Assam.Theseasonalchangesinthespecies composition,distributionanddensityareduetothechangingenvironmentalconditions.BabaandPandit(2014)reported thatphytoplanktondepictedbimodalgrowthcurvewithpeaksinspringandautumnwhichmaybeasaresultof regenerationandavailabilityofmineralsasaresultofdecompositionoforganicmatterinsediments.Theseasonalityof phytoplanktonisalsoattributedtothemoderatewatertemperatureconditionsbesidesthereleaseandavailabilityofplant nutrientsduringtheseperiods.AmongthemembersofChlorophyceae,Cosmariumsp.,Chlorellasp.,Botryococcussp.and Charasp.showedbetterdensityincomparisontoothermembersofthegroup.AmongCyanophyceae,Coelospharenum sp.showeditsdominance.TheappreciabledensitywasalsorecordedforMicrosystissp.,Anacystissp.andRivulariasp.
AmongthemembersofBacilariophyceae,themaximumdensitywasrecordedforNaviculaindicaduringstudyperiod.
TheappreciabledensitywasalsorecordedforNaviculapulpa,Gyrosigmasp.andCyclotellaaffinis.Amongthetwo
www.iaset.us editor@iaset.us
speciesofEuglenophyceae,themaximumdensitywasrecordedforEuglenasp.duringbothstudyyears.Themaximum averagetotalseasonaldensityofphytoplanktonwasrecordedduringwinterseason(929.87org/land977.05org/l) followedbysummerseason(837.07org/land897.07org/l)andrainyseason(684.75org/land732.75org/l)duringfirst andsecondyearsofstudyperiodrespectively.Chlorophyceaeshowedtheirdominanceovertheothergroupsof phytoplankton.NextinorderwasCyanophyceaefollowedbyBacillariophyceaeandEuglenophyceae.Trivedietal.(1990) reportedthataspollutionincreasedinwaterChlorophyceaeisreplacedbyBacillariophyceaeandCyanophyceae.Thusthe waterofBichhiyaRivercannotbeconsideredaspollutedbecauseChlorophyceaeshoweditsdominanceduringbothstudy years.Chakrawartyetal.(1959)reportedthatChlorophyceanmembersshowedaslightdecreaseintheirgrowthwith increaseinpH,calcium,chlorideandtotalsuspendedsolids.Bacillariophyceaeshowedmaximumgrowthwithincreasing pH,temperature,phosphate,chlorideandtotalsuspendedsolids(Pearsal,1932,Patric,1948,Zafar,1967,Hegde,1983). Adiniji(1978)observedthattemperature,dissolvedoxygen,foodandavoidanceofbeingpreyedupongovernthe abundanceanddistributionofphytoplankton.Smith(1942)alsoreportedthatlight,temperatureandfreecarbondioxide werethecontrollingfactorsforthegrowthofalgae.VermaandShukla(1970)reportedthatnoindividualfactorphysicalor chemicalwassingularlyresponsiblefortheseasonalfluctuationofphytoplankton.Zafar(1964a)reportedthathigher valuesofdissolvedoxygen(6.8to9.3mg/l)wascorrelatedwithpeakpopulationofChlorophyceae.Sreenivasan(1965) observedmaximumproductionofphytoplanktoninAprilinAmaravatyreservoir.KhanandSiddiqui(1971)alsoreported highgrossprimaryproductivityfromMarchtoMay.KannanandJob(1980)observedthatprimaryproductionwashigh betweenAprilandJulyinSathiarreservoir.VyasandKumar(1968)reportedbothpositiveandinverserelationship betweenphytoplanktonanddissolvedoxygen.Pailwanetal.(2008)reportedthephytoplanktonpopulationexhibits bimodalpeak,oneinwinterandotherinsummerseasonwithinfrequentoccurrenceofDinophyceaeandEuglenophyceae. Inpresentstudyalsophytoplanktonshowedbetterdensityinwinterandsummerseason.Abdar(2013)reportedthat richnessinnitrogenandorthophosphateswerefavorableforgrowthofphytoplankton.Healsoreportedthatamong Cyanophyceae,Microcystissp.,Oscillatoriasp.andAnabaenasp.werepresentthroughouttheyear.Microcystissp.was dominantintheseason.Phytoplanktonsaretheprimaryproducersastheytrapsolarenergyandproducesorganic moleculesbyconsumingCO2.Phytoplanktonarenotonlyprimaryproducersbutalsobringsoutbiogenicoxygenationof thewaterduringdaytime(Welch,1952,Wetzel,1975,1983).
Zooplankton
Theoccurrence,distributionanddiversityofzooplanktonisrelatedwiththephysico-chemicalconditionofwater. Temperatureisthemostimportantfactorwhichdeterminesthedistributionofzooplankton.Duringpresentstudy,intotal 38speciesofzooplanktonwereidentifiedrepresenting8speciestoProtozoa,14speciestoRotifera,5speciesto Copepoda,10speciestoCladoceraandonespeciestoOstracoda.Rotiferaformsthemainbulkofzooplanktoncomprising 36.84%followedbyCladocera(26.32%),Protozoa(21.05%),Copepoda(13.16%)andOstracoda(2.63%)duringstudy period.AmongzooplanktonParameciumsp.andDiffusiasp.(Protozoa),Brachionusquadridentatus,B.angularis,B. patulus,Asplanchnasp.(Rotifera),Nauplii(Copepoda),Bosminasp.andAlonaaffinis(Cladocera)andCyrpis(Ostracoda) showeddominanceinthedamduringstudyperiod.Themaximumdensityofzooplanktonwasrecordedduringsummer seasonfollowedbywinterandrainyseasonduringstudyperiod.Rotiferashowedmaximumannualdensityfollowedby Cladocera,Copepoda,ProtozoaandOstracodaduringfirstyearandRotifera,Cladocera,Protozoa,Copepodaand Ostracodaduringsecondyearofstudyperiod.Arora(1966)reportedthatRotariarotatoriawasfoundonlyinpolluted water.TiwaryandSharma(1977)relatedtheappearanceofLecane,KeratellatropicaandPlatyaspatuluswithsemi
pollutedandpollutedwater.Arora(1966)recordedthesespeciesfromJamunaandSakardaratanksatNagpurwhichhe classifiedasmediumpollutedtanks.Duringpresentstudy,onlyKeratellatropicaandLecaneaculiatawererecorded. Adoni(1975)reportedthatdensityofrotifersandtheirspeciesdiversityisincreasedinhighereutrophicwaters.Adinijiand Ovie(1982)reportedtheabudanceofzooplanktonatsurfacewaterwheredissolvedoxygenwashighbuttheabundanceof zooplanktonreducedwiththereductionofoxygeninwater.Wetzel(1983)observedthattheprimaryfollowingfertilization usuallyresultsingreaterzooplanktonabundance.Thehighpopulationdensityoftherotiferscouldbeattributedtotheir parthenogenesisreproductivepatternsandshortdevelopmentalrateunderfavorableconditions(Wetzel,2001).The dominanceofrotiferswasduetoitspreferenceforwarmwatersashighlightedbyDumont(1983)andSegers(2003). MatsumuraTundisi(1999)reportedthedominanceofBrachionusisindicationofeutrophicwater.AlkalinepHwasalso foundtofavourzooplanktongrowth.Byars(1960)hadalsoreportedthatzooplanktonpreferalkalinewater.Khaire(2012) reportedthatdissolvedoxygenismostvitalparameterwhichinfluencestheplanktonpopulation.Itshowedsignificant positivecorrelation(r=0.9361)withzooplanktonpopulation.SimilarresultswerereportedbySalaskarandYeragi(2003) andSurveetal.(2004).Khaire(2012)reportednegativecorrelationwithalkalinity(r=-0.9260),totalhardness(r=-0.1692) andChlorides(r=-0.6292).Surveetal.(2004)observedpositivecorrelationbetweenzooplanktonandalkalinitysupports ourobservationKhalokar(2014)reportedhighpredationalsoleadstothelowspecificdiversityofzooplanktonand evidencebylowvalueofconcentrationdominance,asalsoreportedbyVermaandShukla(1970).Cladoceransformsan importantcomponentofzooplanktonsandformsthemostdominantgroupoffishfoodorganisms.Duringpresentstudy, zooplanktoncommunitycompositionoftheriveralsoshowedtobeproductiveinnatureandsupportadiversespecies.The zooplanktonassemblagewasstronglyinfluencedbythephysico-chemicalfactorsofthewatertemperature,food abundance,nutrientsweresomeoftheimportantfactorsthatcouldlimitzooplanktoncommunity.Maintenanceofgood waterqualitywillenhancethezooplanktoncommunityandthiswillbeagreatadvantageforfishproductionintheriver.
TotalPhytoplanktons&Zooplanktons
Monthlysamplingofphytoplanktonandzooplanktonweredocumentedat4SamplingstationsofBichhiyaRiverRewa (M.P.)forJanuary2018toDecember2019.
Phytoplankton
Maximumdensityofphytoplanktonwasrecordedinwinterseasonfollowedsummerseasonandrainyseason.During presentstudy,40speciesofphytoplanktonwererecorded,belongingtoclassChlorophyceae,Cyanophyceae, BacillariophyceaeandEuglenophyceae.Ofthese,15speciesbelongedtoChlorophyceae,11speciestoCyanophyceae,12 speciestoBacillariophyceaeand2speciestoEuglenophyceaeasgivenbelow:
Group-Chlorophyceae
Chlamydomonassp.,Chlorellasp,Charasp.Coelastrummicroporum,Cosmariumsp.Crucigeniasp.,Hormidiumsp., Oedogoniumsp.,Pediastrumsimplex,Scenedesmusarmatus,Spirogyrasp.,Staurastrumsp.,Volvoxsp,Ulothrixsp., Zygnemasp.
Group-Cyanophyceae
Aphanothecesp.,Arthrospirasp.,Anabaenaspiroides,Aplanocapsasp.Gleocapsasp.,Gloeotrichiasp.,Merismopedia sp.,Microcystissp.,Lyngbyasp.,Nostocsp.,Scytonemasp.
Group-Bacillariophyceae
Cyclotellasp.,Cocconeissp.,Cymbellaaffinis,Diatomaelongatum,Fragillariasp.,Melosirasp.,Naviculaindica, Naviculapulpa,Nitzschiasp,Surirellasp.,Synedracapitata.,Tabellariasp.
Group-Euglenophycea
Euglenasp.&Phacussp.
CONCLUSION
Theresultsofthepresentstudyshowedthatthemostofthephysico-chemicalparametersoftheBichhiyariverwellwithin thedesirablelimitsofWHOandBISstandards.Increaseintemperatureoftheriverwaterreducesthedissolvedoxygen whichinfluencesbiologicalactivitiessuchasfeedinghabitsandreproductivebehaviorinthefishandotheraquatic organisms.Alongwithwastedischargemanyharmfulchemicalssuchasdetergentsalgaecides,pesticidesusedinplant operationsalsofindtheirwayintotheriveraddingfuturetowaterpollution.Theanalysisforwhichshouldhavealsobe donebuttoriveroftime.Lastlythelargescaleofwaterintakefromtheriverforallabovementionedoperationsalsohas deleteriouseffectsontheaquaticlifeaffectingtheaquaticecologicalbalance.
Thepresenceoflargenumberofmacrophytesorfreefloatingvegetation,commontotropicalrivergenerally blockthewatersurfacelowerdissolvedoxygenlevelsandalsocoursenuisanceforswimming.InessencethephysicochemicalandBioticcommunityoftheriverrevealsthatitistending,fasttowards'eutrophism'particularlyatallsampling station.Thequalityofwaterisdeterioratingdaybydayduetoinflowofindustrial,domesticsewage,municipalwaste, agriculturalrunoffandeffluentsoforganicwasteofanimalandhumanoriginintotheriver.Deteriorationofwaterquality andeutrophicationareassumingalarmingstateinBichhiyaRiver,duetocasualattitudeofpeopleconcernedwith developmentofurbanpopulation.Therefore,thereisanurgentneedofregularmonitoringofwaterqualitytogovernthe statusanddivertingthecitysewageawayfromtherivertopreservethefloraandfaunaofthisecosystem.Ifwasteinputis notcheckedthenitwillseverelyimpairwaterdynamicsandwillcauseeutrophicationoftheentiresystem.Overall, coordinatedeffortsofvariousstakeholdersandpropercommunityinvolvementaretheprimaryneedstorestorethe ecologicalsubsystemoftheriverandtomakeitusefulforfurthersocialandeconomicexploration.
REFERENCES
1.Abook,K.M.andManuel,A.C.(1967):preliminaryobservationontheUpperLakeatBhopal.Environ.H1th. 9:22.
2.AdoniA.D.(1985)WorkBookonLimnology,IndianMABComm.,Govt.ofIndia.216
3.Agrawal,S.K.(1983).WaterqualityofsewagedrainsenteringChambalriveratKota.Acta.Ecol.,5:29-29.
4.Ahmad,M.S.(1989).PhysiologyofpollutedpondsofDharbhanga.Ph.D.thesis,L.N.MithilaUniversity, Dharbhanga.
5.Ambasht,R.S.(1990).Environmentandpollution(AnEcologicalApproach).Isted.,StudentsFriendsandCo. Pub.LankaVaranasi,India.
6.Anderson,J.R.(1982).Acquisitionofcognitiveskill.PsychologicalReview,89,369-406.
7.Anon.(1996).Committeetoassessagroresiduesavailability.INPAPERInternational1(1):13.
8.APHA(1975).standardsmethodsfortheExaminationofwaterandwastewater.AmericanPublicHealth Association,Washington,D.C.
9.APHA(2005).StandardMethodsfortheExaminationofWaterandwastewater.19thEds.AmericanPublic HealthAssociation,WashingtonDC.
10.APHA,(1985).StandardmethodforExaminationofwaterandwastewaterAmericanPublicHealthAssociation 16thEd.APHANewYork.
11.Araujo,J.C.,Campos,aC.,Correa,M.M.,Silva,E.C.,Matté,M.H.,Matté,G.R.,VonSperling,M.,etal. (2011).Anammoxbacteriaenrichmentandcharacterization.
12.frommunicipalactivatedsludge.Waterscienceandtechnology:ajournaloftheInternationalAssociationon WaterPollutionResearch,64(7),1428
34.
13.AroraR(2012).StudiesonPhysieo-ehemiealparameterscausingpollutionofGhodriver,India,J.Environ.Res. Develop.,7(1A),441-443.
14.Arya,S,Kumar,V,Raikwar,M,Dhaka,AandMinakshi(2011).Physico-chemicalAnalysisofSelectedSurface WaterSamplesofLaxmiTal(Pond)inJhansiCity,UP,BundelkhandRegion,CentralIndiaJournalof ExperimentalSciences2(8):01-06.
15.Asadi,S.S.,Vuppala,P.,&Anji,R.M.(2007).RemotesensingandGIStechniquesforevaluationofgroundwater qualityinmunicipalcorporationofHyderabad(Zone-V),India.InternationalJournalofEnvironmentalResearch andPublicHealth,4(1),45
52.
16.Aykulu.G.(1978).AquantitativestudyofthephytoplanktonoftheriverAvon.BristonBr.Phykal.J.,13:1-102.
17.Bagde,U.S.andVerma,A.K.:1985,'LimnologicalstudiesofJNUlake.NewDelhi,India',Proc.Natl.Symp. PureandAppld.Limnl.32,16–23.
18.Bagde,U.S.andVerma,A.K.(1985)Physico-chemicalcharacteristicsofwaterofJ.N.U.LakeatNewDelhi. IndianJournalofEcology,12,pp.251-256.
19.BanejeeU.S.andGuptaS.,(2012).Monitoringandassessmentofriverpollutant:AstudyonriverDamodarand riverBarakarofIndiausingfaetoranalysis,J.Environ.Res.Develop.,6(3A),638-644.
20.Barnabe,G.(1994).Aquaculturebiologyandecologyofculturedspecies.EllisHorwoodLtd.
21.Barry,T.H.Paulballey,RickEdwardskentH.,Kim-James,AndrewMcmahon,CharlesmeredithandSwadling,K. (1990).EffectofsalinityonriverstreamandwetlandecosysteminVictoria,Australia.WaterRes.,24(9):11031117..
22.Bhanja,K.MohantaandAjoyKu.Patra.(2000).StudiesonthewaterqualityindexofriverSanamachnakandan atKeonjherGarh,Orissa,India.Poll.Res.,19(3):377-385.
23.Bhaskaran,T.R.(1959).IndustrialwastesurveyandriverpollutionstudiesinBiharandU.P.State.Bull.Cpheri., 1:55-62.
24.Bhatnagar,G.P.(1984).LimnologyofLowerlake,BhopawithreferencetopollutionEutrophication.Tech.Rep. May1979-April1982:MABProgramme,Deptt.OfEnviron.Govt.ofIndia,NewDelhi,1-77.
25.Bhatt,S.D.andPathak,J.K.(1992).Assessmentofwaterqualityandaspectsofpollutioninastretchofriver Gomati(Kumaun)lesserHimalaya.J.Environ.Biol.,13(2):113-120.
26.BhuiyanJ.R.andGuptaS.(2007)-AcomparativehydrobiologicalstudyofafewpondsofBarakValley,Assam andtheirroleassustainablewaterresources.JournalofEnvironmentalBiologyOctober2007,28(4)799-802.
27.BiswasK.(1942).TheroleofalgaecommunitiesoftheriverHughlyinthedrinkingwaterofCalcutta.150thAnn. Vol.Roy.Bot.Gdn.,189-206.
28.Bledsoe,B.P.andShear,T.H.(2000).VegetationalonghydrologicandedaphicgradientsinanorthCarolina coastalplaincreekbottomandimplicationsforrestoration.Wetlands,20(1):126-147.
29.Blinn,D.W.andBailey,P.C.E.(2001).Land-useinfluenceonstreamwaterqualityanddiatomcommunitiesin Victoria,Australia:Aresponsetosecondarysalinization.Hydrobiologia,466:231-244.
30.Blume,J.L.(1956).Theecologyofriveralgae.Bot.Rev.,22(5):291-341.
31.Boyd,C.E.(1981).WaterQualityinWarmwaterFishPonds.AlabamaAgriculturalExperimentStation,Auburn University,Auburn,AL.
32.Brinley,F.J.(1942).Biologicalstudies,Ohioriverpollutionsurvey-II.Planktonalgaeasindicatorsofthe sanitaryconditionofastream.SewageWks.J.,14:152-159.
33.Brooker,M.P.andJohnson,P.E.(1984).Thebehaviourofphosphate,nitrate,chlorideandhardnessinTwelve Welshrivers.WaterRes.,18(9):1155-1164.
34.Bubb,J.M.,Rudd,T.&Lester,J.N.(1991)DistributionofheavymetalsintheRiverYareanditsassociated broads.I.Mecuryandmethylmercury.Sci.TotalEnviron.102:147
168.
35.Burns,C.W.,D.J.Forsyth,J.F.Haney,M.R.James,W.LampertandR.D.Pridmore1989.Coexistenceand exclusionofzooplanktonbyAnabaenaminutissimaVar.attenuateinlakeRotongaio,NewZealand.Arch Hydrobiol.,32:63-82.
36.Butcher,R.W.(1949).StudiesintheecologyofriversVIIandthealgaeoforganicallyenrichedwaters.J.Ecol., 35:186-191..
37.Chakrabarty,SandSharmaH.P.(2011).HeavymetalcontaminationofdrinkingwaterinKamrupdistrict, Assam,India.Environ.Monitor.andAssess.179:479–486.
38.Chattopadhya,S.N.,Tapan,R.,Sharma,V.P.,Arora,H.C.andGuptaR.K.(1984).Ashorttermstudyonthe pollutionstatusofriverGangainKanpurregion.IndianJ.Environ.Hlth.,26(3):244-257.
39.ChaubeUC(1988)ModelstudyofwateruseandwaterbalanceinBetwaBasin.JInstEngIndianCivilEngDiv 69:169
173.
40.ClausDandBerkleyR.C.W(1986).GenusBacillusCohn.In:SneathPHAEds.Bergey’sManualofSystematic Bacteriology,Sec13(2),Baltimore,MD,USA.Williams&WilkinsCo.1105-1139..
41.Cuffney,T.F.,Meador,M.R.,Proter,S.D.andGurtz,M.E.(2000).Responsesofphysical,chemicalandbiological indicatorsofwaterqualitytoagradientofagriculturalland-useintheYakingriverbasin,Washington.Environ. Monitoringandassessment,64:259-270.
42.CurdsCR,CockburnA(1970a).Protozoainbiologicalsewagetreatmentprocesses:Asurveyoftheprotozoan faunaofBritishfaunapercolatingfiltersandactivatedsludgeplants.WaterRes.,4:225-236.
43.Danazumi,SandBichi,M.H(2010).IndustrialpollutionandheavymetalprofileofChallawariverinNigeria,J ofAppl.Sci.inEnviron.Sani.5:23-29.
44.DarwallWRT,VieJC(2005)Identifyingimportantsitesforconservationoffreshwaterbiodiversity:extendingthe species-basedapproach.FishManagEcol12:287
293.
45.Das,S.M.andV.K.Sriastava(2003).Studiesonplanktoncomponents.ProcNat.Acad.Sci.India,29:174-189.
46.DayF.S.(1951).ThefishesofIndia.WilliamandSonsLtd.,London.
47.De.,P.K.(1939)–“ReservoirfisherymanagementanddevelopmentinAsia”.
48.DeshpandeNM(2002)BiodegradationofDimethoate-acarbamategroupoforganophosphorusinsecticides. Ph.DthesisinMicrobiology,UniversityofPune.
49.Dhote,S.(2000):ImpactofanthropogenicactivitesonlimnologicalcharacteristicsofBhojWetland.National Worshopon“BiodiversityandConservatioofAquaticResourcesW/RtothreateneFishMahseer.”26th&27 Feb.2000,P.58.
50.DudgeonD,ArthingtonAH,GessnerMO,KawabataZI,KnowlerDJ,LevequeC,NaimanRJ,Prieur-Richard AH,SotoD,StiassnyMLJ,SullivanCA(2006)Freshwaterbiodiversity:importance,threats,statusand conservationchallenges.BiolRev81:163–182.
51.Dumontet,S.andScopa,A.(2001).Theimportanceofpathogenicmicroorganismsinsewageandsewagesludge J.AirWaste.Manage.Assoc.5:848-860.
52.DuncanS.W.andD.W.Blinn(1999)–“Importanceofphysicalvariableontheseasonaldynamicsofepilithic algaeinahighlyshadedcanyonstreamjournalofphysiology25:455-461.
53.Dutta,N.,Malhotra,J.C.andBose,B.B.(1954).Hydrobiologicalandseasonalfluctuationsoftheplanktoninthe Hooghlyestuary.Symp.OnmarineandfreshwaterplanktonintheIndoPacific.Pp.1-13.
54.Dwivedi,B.K.andPandey,G.C.(2002).Physico-chemicalfactorsandalgaldiversityoftwoponds(GirijaKund andMaqubaraPond),Faizabad,India.PollutionResearch,21(3):361-369.
55.Edmondson,(1974).NutrientsandphytoplanktoninlakeWashington.InNutrientsandeutrophication.The limitingnutrientcontroversy.Lickens,G.E.(ed)Sec.Symposiumlimnol.AndOceanogSubha,r.,1:172-193.
56.EshwarlalSedamkarandAngadi,S.B.2003.PhysicochemicalparametersoftwofreshwaterbodiesofGulbargaIndiawithspecialreferencetophytoplankton.Poll.Res.,22(3):411-422.
57.FandiG.K.,I.Y.Qudsieh,S.A.Muyibi,M.Massadeh(2009)-WaterPollutionStatusAssessmentofKingTalal Dam,Jordan.AdvancesinEnvironmentalBiology,3(1):92-100.
58.Fandietal.,2009K.Fandi,I.Qudsieh,S.Mubibi,M.Massadeh(2009)-WaterpollutionassessmentofKing TalalDamAdv.Environ.Biol.,3(1),pp.92-100.
59.Fjerdingstad,E.(1950).ThemicrofloraofriverMolleaawithspecialreferencetotherelationofbenthalalgal population.FolialimnologicaCondinonca,5:79-101.
60.Gaikwad,V.B.andGunale,V.R.(2001).WaterqualitymonitoringofGodavaririverinandaroundNahsik region,Pp.1-20.
61.Galatowitsch,S.M.,McAdams,T.V.(1994).DistributionandrequirementsofplantsontheupperMississippi river:LiteratureReview.CooperativeFishandWildlifeResearchUnit,Ames,IA.
62.Ganapati,S.V.(1943).Theecologyoftempletankcontainingapermanentbloomofmicrocystisaeroginosa kuetzing,J.Bomb.Nati.Hist.Soc.,42(1):65-77.
63.Ganapati,S.V.(1972).OrganicproductioninseventypesofaquaticecosystemsinIndia.In:Anemphasison organicproduction(Ed:P.M.Golley),AthensJ.Tropica.Ecology,Pp.313-350.
64.Ganpati,S.V.(1956).HydrobiologicalinvestigationoftheHopeReserviorandoftheTamarapannaniriverat Tapanasal,TirunelveliDistrict,Madrasstate.TheInd.Geogr.,D.31:1-20.
65.Gaur,V.K.,Gupta,S.K.,Pandey,S.D.Gopal,K.,&Misra,V.(2005).Distributionofheavymetalsinsedimentand waterofriverGomti.Environ.Monitor.andAssess.102:419
433.
66.George,M.G.(1976).DiurnalvariationsintwoshallowpondsinDelhi,India.Hydrobiologia,18(3):265-273.
67.Ghabzan,N.J.,Gunale,V.R.andPisal,B.R.(2005).WaterpollutionmonitoringofMullaandPavanariverfrom Pune,Indiaurbanarea.AsianJ.Microbiol.,Biotechnol.Environ.Sci.,7(4),785-790.
68.Ghalib,H.,Yaqub,M.,&Al-Abadi,A.(2019).Hydrogeochemicalmodelingandisotopicassessmentofthe quaternaryaquiferatAlial-GarbiAreainMisaanGovernorate,SouthofIraq.InAdvancesinSustainableand EnvironmentalHydrology,Hydrogeology,HydrochemistryandWaterResources,121–124.doi:10.1007/978-3030-01572-5_30.
69.GiridharanL,VenugopalT,JayaprakashM(2010)Identificationandevaluationofhydrogeochemicalprocesses onriverCooum,SouthIndia.EnvironMonitAssess162:277
289.
70.Glaser,P.H.,Janssens,J.A.andSiegal,D.I.(1990).Theresponseofvegetationtochemicalandhydrological gradientsintheLostriverpeatland,NorthernMinnesota.J.Ecol.,78:1021-1048.
71.Goel,P.K.andAutade,V.B.(1995).EcologicalstudiesontheriverPanchagangaatKolhapurwithemphasison biologicalcomponents.RecentResearchesinAquaticEnvironment.Gautam,A.DayaPublishingHouse,Pp.4344.
72.Goel,P.K.andBhosale,M.(2001).StudiesontheriverPanchgangaatKolhapurwithspecialreferencetohuman impactonwaterquality.In:Currenttopicsinenvironmentalsciences(Eds:G.TripatiandG.C.Pandey),ABD publishers,Pp.120.
73.Joy,C.M.,Balakrishnan,K.P.andAmminiJoseph.(1990).Effectofindustrialdischargesontheecologyof phytoplanktonproductionintheriverPeriyar(India).WaterResearch,24(6):787-796.
74.KantShashi.1985.Algaeasindicatesoforganicpollutionproc.AllIndiaAppliedPhycologicalCongress, Kanpur,77-86.
75.Kant,S.andAnand,V.K.(1978).InterrelationshipsofphytoplanktonandphysicalfactorsinMansarlakeJammu (J&K).Ind.J.Ecol.,5(2):134-140[\ooo;;po;;;
76.Kumar,P.andGupta,R.K.(2002).GrowthcharacteristicofPotamogetoncrispusandElodeacanadensisin pollutedwater.Poll.Res.,21(3):305-307.
77.Kumar,S.S.andBhoopathi,C.A.(2007).Invitrostudyofmicrobiallytreatedanduntreatedsagofactoryeffluent ongrowthofVignamungoandV.radiata.J.Ecotoxicol.Environ.Monit.,17(3),263-268.
78.Kundangar,M.RandD.P.Zutshi(1985)-EnvironmentalfeaturesandplanktoncommunitiesoftwoHimalayan rurallakes,Proc.nat.Symp.PureandAppliedlimnologyeditedbyA.D.Adoni.Bull.Bot.Soc.Sagar.,32:40-47.
79.Lackey,J.B.andHupp,E.R.(1956).PlanktonpopulationinIndian’swhiteriver.J.Amer.WaterWorksAssn., 48:1024-1036.
80.LaffailleP,AcouA,GuillouetJ,LegultA(2005)TemporalchangeinEuropeaneel,Anguillaanguilla,stockina smallcatchmentafterinstallationoffishpasses.FishManagEcol12:123
129.
81.LakshminarayanJ.S.(1965-a).StudiesontheplytoplanktonofriverGangas,Varanasi,India-I.ThePhysico characteristicsofriverGangas.Hydrobiol.,25:119-137.
82.LevequeC,BalianEV,MartensK(2005)Anassessmentofanimalspeciesdiversityincontinentalwaters. Hydrobiologia542:32–67.