“STUDY ON THE DENSITY OF PHYTOPLANKTON’S AND ZOOPLANKTONS’ OF BICHHIYA RIVER WATER"

Page 1

InternationalJournalofGeneralMedicineand Pharmacy(IJGMP)

ISSN(P):2319–3999;ISSN(E):2319–4006

Vol.11,Issue2,Jul–Dec2022;1–22 ©IASET

ABSTRACT

PriyankaBharti1&SandhyaSharma2

1ResearchScholar,Govt.ModelScienceCollege,Rewa,MadhyaPradesh,India

2AssistantProfessor,Govt.CollegePatharia,MadhyaPradesh,India

PresentstudyiscentralizeonBichhiyaRiveratRewawhichisoneofthemaintributariesofBeeharRiverTheaimofthis studywastoascertaintheimpactofseveralBiologicalparametersonwaterqualityofBichiyaRiverandtoassessfurther itsnatureintermsofmicrobialgrowth.Effectivemicrobescancompletelydegradeandoxidizestoxicorganiccompounds; arecharacterizedbylowcostandofferthepossibilityofin-situtreatment.thewaterhavebeenanalyzedatthesampling siteitself.,Dissolvedoxygen,COD,BOD,phytoplanktonandZooplanktonarestudiedfromthewatersamplein accordancewiththeproceduresdescribedinstandardmethodsfortheexaminationofwater

KEYWORDS:BichhiyaRiver,BiologicalParameters,WaterPollution,PhytoplanktonandZooplankton

ArticleHistory

Received:24Jun2022|Revised:27Jun2022|Accepted:15Jul2022

INTRODUCTION

Freshwaterresourcesareusedforvariouspurposeslike,agriculture,industrial,household,recreational,environmental activities,etc.Infactthefreshwaterresourcesareverypreciousforthelifeonourplanet.Thewaterqualityofriversmay varywiththeseasonsandgeographicalareas.Duringpresenttime,mostofriversofworldreceivemillionlitersofsewage, domesticwaste,industrialandagriculturaleffluentscontainingfromsimplenutrientstohighlytoxicsubstanceswhichare themostsignificantcausesofpollutionofaquaticecosystem.WaterresourcesinIndiahavereachedapointofcrisisdueto unplannedurbanizationandindustrialization.Theincreasinganthropogenicactivitiesinrecentyearsinaquaticecosystem andtheircatchmentareashavecontributedtoalargeextenttodeteriorationofwaterquality.Thenumberofdams, reservoirs,tanks,etc,hassignificantlyincreasedinlastfewyears.Thedevelopmentoffisheriesinthesefreshwater resourcesneedstobeincreasethroughthescientificdevelopment.Thequalityofwatershouldbecheckedatregular intervalstopreventdeteriorationofwaterqualityandtomaintainaquaticbiota.

Waterpollutionisgenerallyindicatedbythepresenceofharmfulandharmlessmicrobes.Microbialexamination ofwaterisadirectmeasurementofdeleteriouseffectsofpollution.Mostprobablenumberisthemostcommonmicrobial parameterforthesanitaryanalysisofwater.Thetestisusedtodetectcoliforms,agroupcomprisingofalltheaerobicand facultativeanaerobic,Gramnegative,non-sporeformingandrod-shapedbacteria.Theseinhabittheintestinesofallwarmbloodedanimals.Thedischargeofwastewaterfrommunicipalsewerscontaininghumanfaecalmatterishazardousto humanhealth.Faecalcontaminationwasroutinelydetectedbymicrobiologicalanalysis(Nogueiraetal.,2003).Theaimof

www.iaset.us

editor@iaset.us

“STUDYONTHEDENSITYOFPHYTOPLANKTON’SANDZOOPLANKTONS’OF BICHHIYARIVERWATER"

thisstudywastoascertaintheimpactofseveralphysico-chemicalparametersonwaterqualityofBichiyaRiverandto assessfurtheritsnatureintermsofmicrobialgrowth.Assessmentofwaterqualityisdonetoanalysesthephysical, chemicalandbiologicalcharacteristicsofwater(Kazietal.,2009).Microbiota(typically,heterotrophicbacteriaand fungi)usetodegradeortransformhazardouscontaminantstomaterialssuchascarbondioxide,water,inorganicsalts, microbialbiomass,andotherby-productsthatmaybelesshazardousthantheparentmaterials.Ontheotherhand,the bioremediationwasadvancedrapidlyfrom1990.Bioremediationisconsideredasoneofmanyadvantages,suchas reducedcost,lowenvironmentalinfluence,nosecondarypollutionorpollutantmovement,reducingpollutant concentrationbythemaximumextent,availableforthesiteswhereregularpollutiontreatmenttechnologyisdifficulttobe applied(Mingjunetal.,2009).Microorganism’senzymaticallyattacksthepollutantsandconvertsthemtoharmless productsandusesthecontaminantsasnutrientorenergysources.Bioremediationactivitythroughmicrobeisstimulatedby supplementingnutrients(nitrogenandphosphorus),electronacceptors(oxygen),andsubstrates(methane,phenol,and toluene),orbyintroducingmicroorganismswithdesiredcatalyticcapabilities.

Organicpollutantsfromindustrialwastewaterfrompulpandpapermills,textilesandleatherfactories,steel foundriesandpetrochemicalrefineriesareamajorcauseofillnessinpartsoftheworldwhereregulationsdonot necessarilyprotectthepeoplefromsuchindustrialoutflows.TheEMapproachtowaterpurificationcouldhelpin preventingdiseasesandpoisoningforpotentiallymillionsofpeople.UseofEMisconsideredtobeeconomical,energy efficientandenvironmentalfriendlywithminimaldisposalproblems.Effectivemicrobescancompletelydegradeand oxidizestoxicorganiccompounds;arecharacterizedbylowcostandofferthepossibilityofin-situtreatment.

Effectivemonitoringofphysicochemicalandmicrobiologicalparameterscanpreventriverwaterpollution (Chandraetal.2006),andthistypeofinitiativehasaspecialsignificancetoprotecthumanhealthfromwaterpollution (APHA1981).Indicatorbacteria,suchastotalcoliform(TC)andfecalcoliforms(FC),areusefulfortheassessmentof fecalpollution(APHA1995).Detailedknowledgeoffecalpollutioninaquaticenvironmentsiscrucialformaintaining healthywaterbodyforrecreationalandeconomicpurposes(Farnleitneretal.2001).Concentrationsofheterotrophic bacteriaandVibriocholeracanbeathreattogetherwithincreasingwatertemperaturesanddecompositionoforganicin BichhiyaRiveratRewa.Thatcancausecholeradiseasethroughthefastergrowthrateofthispathogeninaquatic environments(Koelleetal.2005).

StudySite

PresentstudyisgoingtocentralizeonBichhiyariverRewawhichisoneofthemaintributariesofBeeharRiver.Its locationinRewadistrictis24°10’latitudeNorthand81°15’longitudeEast.TherivertehsilvillageofGurhTehsiland joinstheBeeharriveratRajghatbehindRewafort.AttheupstreamoftheBichhiyaRiver,municipalwatertreatment stationissituated.Duringtheirflowintownship,industrial,domesticandmunicipaldischargesmergeintoitatdifferent points.Thewateroftheriverisusedbyurbanandperipheralruralpopulationdirectlyatmanystationsfordomesticand agricultureuses.

Theclimateofthisareaisseasonal.Threeseasonsnamelyrainy,winterandsummerarerecognizedinayear.The averagerainfallofthisregionwasrecorded1012mm/year.Aminimum2°Candmaximum46°Cairtemperaturewere recordedinsomedaysofJanuaryandMayrespectively.Therelativehumidityfluctuatedbetween42.0to84.0%at0830 hrsduringstudyperiod.

2 PriyankaBharti&SandhyaSharma
NAASRating3.99
ImpactFactor(JCC):7.1589

SamplingSite

FoursamplingstationsnamelyA,B,CandDwereselectedforthephysico-chemicalandbiologicalanalysisduringstudy period.Thesamplesofwaterwerecollectedatmonthlyintervalbetween8AMto11AM.

METHODOLOGY

WatersamplesweretakenfromthedifferentselectedsamplingstationsfromtheJanuary2018toDecember2019.Samples weretakeninthemiddlehoursoftheday.Somephysicalparametersofthewaterhavebeenanalyzedatthesamplingsite itself.Foranalysisofotherphysic-chemicalandbiologicalcharacteristicssuchaspH,Alkalinity.Turbidity,Conductivity, Dissolvedoxygen,COD,BOD,phytoplanktonandZooplanktonwereanalysisinthelaboratory.

Physico-chemicalofthewatersamplesweredoneinaccordancewiththeproceduresdescribedinstandard methodsfortheexaminationofwaterandwastewater(APHA,1985),practicalmethodsinwaterecologyand environmentalsciences(Trivedietal.,1987).Waterqualityinwarmwaterfishpond(Boyd,1981)andWorkBookon Limnology(Adonietal.,1985).

OBSERVATION

WaterTemperature

Theatmospherictemperaturewasobservedalwaystobehigherthanwatertemperature.Theairtemperaturewasrecorded between12.6°Cto42.1°CduringJanuary2018andDecember2019.Themeanvaluesofwatertemperaturewererecorded between19.35to29.43°Cduringfirstyearandbetween19.78±28.65°Cduringsecondyearofstudyperiod.Themean ±SDvaluesofwatertemperaturewerenotedas25.89±3.46°Cand25.83±3.10°Cduringfirstandsecondyearsofstudy periodrespectively.Duringthepresentstudy,therangeofwatertemperaturewasrecordedbetween19.05°C(January)to 32.60°C(May)and19.80°C(January)to32.90°C(May)duringfirstandsecondyearsofstudyperiodrespectively.The minimumtemperaturewasobservedinwinterseasonandmaximuminsummerseason.

Transparency(LightPenetration)

TransparencywasmeasuredwiththehelpofSecchidisc.Themaximumtransparencywasobservedinthemonthof NovemberandminimuminthemonthofJuly.Duringpresentstudy,themeanvaluesoftransparencyvariedbetween28.50 to72.80cmduring2018andbetween29.60to74.00cmduring2019.Theminimumtransparencywasobservedinthe monthofJuly(rainyseason)andmaximuminthemonthofNovember(winterseason)inBichhiyaRiverRewa(M.P.). Themean±SDvaluesoftransparencywererecordedas55.78±15.41cmand55.65±14.79cmduringfirstandsecondyears ofstudyperiodrespectively.Transparencywasmoreorlessconstantandhighduringwinterseasonandshowing decreasingtrendinrainyseason.

pH(HydrogenionConcentration)

pHwasdeterminedwiththehelpofpHmeter.TheBichhiyariverwaterwasobservedslightlyalkalineinnature.Themean valuesofriverwatervariedbetween7.20to8.80and7.30to8.70withamean±SDvaluesof7.81±0.41and7.83±0.38 duringfirstandsecondyearsofstudyperiodrespectively.TheminimumpHwasobservedinthemonthofJulyand maximuminthemonthofMayduringbothstudyyears.

www.iaset.us editor@iaset.us

“StudyontheDensityo
3
fPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater"

DissolvedOxygen(mg/l)

Dissolvedoxygenwasobservedtobemaximumduringwinterseasonandminimuminsummermonths.Duringpresent study,dissolvedoxygenminimumandmaximumvaluesoffluctuatedbetween5.20to7.80mg/land5.30to7.80mg/lat differentstationsduringfirstandsecondyearsofstudytime.Theminimumvaluesofdissolvedoxygenwererecordedin themonthofMayandmaximuminthemonthofJanuaryduringstudyperiod.Dissolvedoxygenwasobservedwitha mean±SDvalueof6.41±0.72mg/lduringfirstyearbetween[160]withamean±SDvalueof6.48±0.70mg/lduring secondyearofstudyperiod.

ElectricalConductivity(μmhos/cm)

Conductivityisameasureofitsabilitytocarryanelectriccurrent.Itisalsoanindicatorofioniccompositionofwater.The rainfallandbiodiversitychangestheioniccompositionofwater.Theminimumandmaximumvaluesofelectrical conductivityvariedbetween128.00μmhos/cmto220.00μmhos/cmduringtheyear2018andbetween225.00μmhos/cm to234.00μmhos/cmduringtheyear2019ofstudyperiod.Conductivitywasobservedwithamean±SDvalueof 170.39±24.60mg/lduringfirstyearbetweenwithamean±SDvalueof170.95±25.96mg/lduringsecondyearofstudy period.TheminimumvaluesofconductivitywererecordedinthemonthofAprilandmaximuminthemonthof Septemberduringstudyperiod.

BiologicalOxygenDemand(B.O.D.)(mg/l)

BODvalueswererecordedhigherduringrainymonthsandlowerduringsummerseason.ThemeanvaluesofBODvaried between4.30to8.75mg/lduringfirstyearandbetween4.25to8.58duringsecondyearofstudyperiod.Themean±SD valuesofBODwereobserved5.40±1.21mg/land5.20±1.20mg/lduringfirstandsecondyearsofstudyperiod respectively.

ChemicalOxygenDemand(mg/l)

CODisusedtomeasurethepollutionstrengthofdomesticandindustrialwastes.ThemeanvaluesofCODhavebeen foundtofluctuatebetween18.30to39.60mg/lduring2018andbetween18.40to39.50mg/lduring2019;withamean ±SDvaluesof28.30±5.49mg/land28.30±5.36mg/lduringfirstandsecondyearsofstudyperiodrespectively.The minimumvaluesofCODwererecordedinthemonthofJanuaryandmaximuminthemonthofJulyduringstudyperiod.

1.WinterSeason(Nov2018toFebruary2018andNovember2019toFebruary2019

December2019arerepresentedin(TableNo.-1)

Chlorophyceae

ThemeandensityofChlorophyceaewererecordedbetween5.95org/lto49.50org/landbetween7.15org/lto50.70og/l duringwinterseasonoffirstandsecondyearsofstudyperiodrespectively.Theminimumdensitywasrecordedfor Geniculariasp.andmaximumforCosmariumsp.duringbothstudyyears.Somemembersofthisgroupalsoshowedbetter densityasChlorellasp.(38.75org/l),Botryococcussp.(34.28org/l)andCharasp.(31.35org/l)duringfirstyearandagain Chlorellasp.(39.95org/l),Botryococcussp.(35.48org/l)andCharasp.(32.55org/l)duringsecondyearofstudyperiod. ThetotalminimumandmaximumdensityofChlorophyceaefluctuatedbetween343.5org/l(stationB)to347.8org/l (stationA)withanaveragetotaldensityof346.31org/lduringfirstyearandbetween361.5org/l(stationB)to367.90 org/l(stationC)withanaveragetotaldensityof364.31org/lduringsecondyearofstudyperiod.

ImpactFactor(JCC):7.1589 NAASRating3.99

4 PriyankaBharti&SandhyaSharma

Cyanophyceae

Amongthe11speciesofCyanophyceae,theminimumaveragedensitywasrecordedforOscillatoriasp.(11.30org/l)and maximumaveragedensityforCoelosphaeriumsp.(36.63org/l)org/lduringfirstyear.Duringsecondyearofstudyperiod, theaverageminimumandmaximumdensityfluctuatedbetween12.50org/l(Oscillatoriasp.)to37.83org/l (Coelosphaeriumsp.).TheappreciabledensityofthisgroupwasobservedforMicrocystissp.(34.33org/land35.53org/l) followedbyAnacystissp.(27.63org/land28.83org/l)andSpirulinasp.andRivulariasp.(26.68org/land28.18org/l) duringfirstandsecondyearsofstudyperiodrespectively.Thetotaldensityofthisgroupwasrecordedas252.5org/lfor stationA,245.3org/lforstationB,241.4org/lforstationCand244.org/lforstationDwithanaveragedensityof246.05 org/lduringfirstyearand266.0org/l,258.8org/l,254.9org/land258.4org/latstationsA,B,CandDrespectivelywith anaveragedensityof259.55org/lduringwinterseasonofyear2019ofstudyperiod.

Bacillariophyceae

TheminimumandmaximumdensityofBacillariophyceaevariedbetween15.10org/l(Cyclotellasp.)to69.65org/l (Naviculaindica)duringfirstyearandbetween16.30org/l(Cyclotellasp.)to70.85org/l(Naviculaindica)duringsecond yearofstudyperiod.SomeothermembersofthisgroupalsoshowedappreciabledensityasNaviculapulpa(32.58org/l and33.78org/l)followedbyGyrosigmasp.(23.70org/land24.90org/l)andCyclobellaaffinis(21.83org/land23.03 org/l)duringfirstandsecondyearofstudyperiodrespectively.Thetotaldensityofthisgroupwasrecordedas291.60 org/l,305.5org/l,285.4org/land298.9org/latstationsA,B,CandDrespectivelywithanaveragedensityof295.37org/l duringfirstyearofstudyperiod.Duringtheyear2019ofstudyperiod,thetotaldensityofthisgroupwasrecordedas304.8 org/latstationA,318.7org/latstationB,298.6org/latstationCand312.1org/latstationDwithanaveragedensityof 308.57org/l.

Euglenophyceae

AmongthetwomembersofEuglenophyceae,theminimumdensitywasrecordedforPhacussp.(20.53org/land21.73 org/l)andmaximumforEuglenasp.(21.70org/land22.90org/l)duringfirstandsecondyearsofstudyperiod respectively.Thetotaldensityofthisgroupfluctuatedbetween36.8org/l(stationA)to53.68org/l(stationD)withan averagedensityof42.22org/lduringfirstyearandbetween36.7org/l(stationB)to53.68org/l(stationD)withanaverage densityof42.22org/lduringfirstyearandbetween39.1org/l(stationB)to56.08org/l(stationD)withanaveragedensity of44.63org/lduringwinterseasonofsecondyearofstudyperiod.

2.SummerSeason(March2018toJune2018andMarch2019toJune2019)

Thedensityofphytoplanktonobservedduringsummerseasonofbothstudyyearsarerepresentedin

Chlorophyceae

TheaveragedensitybetweendifferentmembersofChlorophyceaevariedbetween14.98org/lto43.80org/lduringoffirst yearandbetween16.48org/lto45.30org/lduringsecondyearofstudyperiod.Theminimumdensitywasrecordedfor CoelastrummicoporumandmaximumforBotryococcussp.duringbothstudyyears.Somemembersofthisgroupalso showedbetterdensityasChlamydomonassp.(33.45org/land34.95org/l)followedbyScenedesmusarmatus(32.53org/land 34.03org/l)andCrucigeniasp.(30.83org/land32.33org/l)duringfirstandsecondyearsofstudyperiodrespectively.The totaldensityofthisgroupwasrecordedas381.2org/latstationA,382.9org/latstationB,384.2org/latstationCand382.2

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 5
www.iaset.us editor@iaset.us

org/latstationDwithanaveragedensityof382.66org/lduringfirstyearand403.7org/l,405.4org/l,406.7org/land404.7 org/latstationA,B,CandDrespectivelywithanaveragedensityof405.16org/lduringsecondyearofstudyperiod.

Cyanophyceae

Merismopediasp.showeddominanceamongthemembersofCyanophyceaewithanaveragedensityof29.75org/land 31.25org/lduringfirstandsecondyearsrespectively.TheminimumdensityofthisgroupwasrecordedforGleocapsasp. (12.38org/land13.88org/l)duringsummerseasonoffirstandsecondyearsofstudyperiodrespectively.Theappreciable densitywasalsorecordedforNostocsp.(29.25org/land30.75org/l)followedbyAplanocapsasp.(28.70org/land30.20 org/l)andAnacystissp.(25.45org/land26.95org/l)duringbothstudyyears.Thetotaldensityofthisgroupvaried between211.5org/l(stationC)to220.1org/l(stationA)withanaveragedensityof216.29org/lduringfirstyearand between228.0org/l(stationC)to236.6org/l(stationA)withanaveragedensityof232.79org/lduringsecondyearof studyperiod.

Bacillariophyceae

AmongthemembersofBacillariophyceae,themaximumdensitywasrecordedforAmphorasp.(29.60org/land31.10 org/l)andminimumdensityforDiatomaelongatum(9.53org/land11.03org/l)duringfirstandsecondyearsofstudy periodrespectively.TheappreciabledensitywasrecordedforFragillariasp.(22.75org/land24.25org/l)followedby Gomphonemasp.(18.60org/land20.10org/l)andNaviculaindica(18.58org/land20.08org/l)duringbothstudyyears. Thetotaldensityofthisgroupfluctuatedbetween197.5org/l(stationD)to207.0org/l(stationB)withanaveragedensity of202.74org/lduringfirstyearandbetween215.5org/l(stationD)to225.0org/l(stationB)withanaveragedensityof 220.74org/lduringsecondyearofstudyperiod.

Euglenophycae

AmongthemembersofEuglenophyceae,theminimumdensitywasrecordedforPhacussp.(16.85org/land18.35org/l) andmaximumforEuglenasp.(18.53org/land20.03org/l)duringfirstandsecondyearsofstudyperiodrespectively.The totaldensityofthisgroupvariedbetween34.8org/l(stationD)to35.8org/l(stationA)withanaveragedensityof35.38 org/lduringfirstyearandbetween37.8org/l(stationD)to38.8org/l(stationA)withanaveragedensityof38.38org/l duringsecondyearofstudyperiod.

Table1:PhytoplanktonGeneraEncounteredatDifferentSamplingStationsof

6 PriyankaBharti&SandhyaSharma
ImpactFactor(JCC):7.1589 NAASRating3.99
BichhiyaRiverWater S.No. Phytoplanktongenera StationAStationBStationCStationD Group-Chlorophyceae 1 Chlamydomonassp. + + + + 2 Chlorellasp + + - + 3 Charasp. + + + + 4 Coelastrummicroporum, + + + + 5 Cosmariumsp. + + +6 Crucigeniasp. + + + + 7 Hormidiumsp. + + - + 8 Oedogoniumsp. + + + + 9 Pediastrumsimplex + + + + 10 Scenedesmusarmatus + + + -
“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 7 www.iaset.us editor@iaset.us
S.No. Phytoplanktongenera StationAStationBStationCStationD 11 Spirogyrasp. + + + + 12 Staurastrumsp. + + - + 13 Volvoxsp + + + + 14 Ulothrixsp. + + + + 15 Zygnemasp. + + +Group-Cyanophyceae 1 Aphanothecesp. + + + + 2 Arthrospirasp. + + - + 3 Anabaenaspiroides + + + + 4 Aplanocapsasp. + + + + 5 Gleocapsasp. + + +6 Gloeotrichiasp. + + + + 7 Merismopediasp. + + - + 8 Microcystissp. + + + + 9 Lyngbyasp. + + + + 10 Nostocsp. + + +11 Scytonemasp. + + + + Group-Bacillariophyceae 1 Cyclotellasp. + + + + 2 Cocconeissp. + + - + 3 Cymbellaaffinis + + + + 4 Diatomaelongatum + + + + 5 Fragillariasp. + + +6 Melosirasp. + + + + 7 Naviculaindica. + + - + 8 Naviculapulpa + + + + 9 Nitzschiasp. + + + + 10 Surirellasp. + + +11 Synedracapitata. + + + + 12 Tabellariasp. + + - + Group-Euglenophycea 1 Euglenasp. + + + + 2 Phacussp. + + - +
Table1:PhytoplanktonGeneraEncounteredatDifferentSamplingStationsof BichhiyaRiverWater
S.No. Groups NumberofSpecies Percentage 1 Chlorophyceae 15 37.50 2 Cyanophyceae 11 27.50 3 Bacillariophyceae 12 30.00 4 Euglenophyceae 02 05.00 Total 40 100.0
Table2:theNumberandPercentageCompositionofPhytoplanktonSpecies areGivenbelow

Zooplankton

Thezooplanktonconsistsofdiverseassemblageofmajortaxonomicgroups.Manyoftheseformshavedifferent environmentalandphysiologicalassemblage.Thenumbertypeanddistributionoftheseorganismspresentinanyaquatic habitatprovideaclueontheenvironmentalconditionprevailinginthatparticularhabitat.Theoccurrenceandabundance ofzooplanktoninthewaterbodydependsonitsproductivitywhichinturnisinfluencedbythephysico-chemical parametersandlevelofnutrients.Thezooplanktonisanimportantgroupofmicro-organismswhichindicatesthetrophic statusofwaterbody.Someofthemarealsoactingasbio-indicatoroforganicandinorganicpollutionofwaterbody.

Theseasonaldensityofzooplanktonobservedduringdifferentseasonsoftwoyearsofstudyperiod(January2018 toDecember2019)arerepresentedin(TablesNo.-5.27).Theaveragedensityofeachspeciesofzooplanktonwas determinedforwinter,summerandrainyseasonsofBichhiyariver,Rewa(M.P.).Intotal38speciesofzooplanktonwere identifiedduringpresentstudy.Outof38speciesofzooplankton8speciesbelongedtoProtozoa,14speciestoRotifera,5 speciestoCopepoda,10speciestoCladoceraand1speciestoOstracodaasgivenBelow:

Group-Protozoa

Amoebasp.,Arcellasp.,Chilodonellasp.,Diffusiasp.,Epistylissp.,Euglenasp.,Euglephasp.,Parameciumsp.

Group-Rotifera

Asplanchnabrightwelli,Asplanchnasp.,Brachionusangularis,Brachionusbidentata,Brachionuscaudatus,Brachionus patulus,Brachionusquadridentatus,Brachionusrubens,Filinialongiseta,Filiniaterminalis,Keratellatropica,Lecane aculiata,Monostylasp.,Trichocercasimilis.

Group-Copepoda

Group-Cladocera

Alonaaffinis,Alonellasp.,Biaperturaaffinis,Bosminasp.,Ceriodaphniasp.,Daphniacarinata,Daphniasp.,Moinasp., Monodaphniasp.,Sidasp.

8 PriyankaBharti&SandhyaSharma
NAASRating3.99
ImpactFactor(JCC):7.1589
Figure1. Cyclopssp.,Diaptomussp.,Gammarussp.,Mesocyclopssp.,Nauplii.

Group-Ostracoda

Rotiferaformsthemainbulkofzooplanktoncomprising36.84%ofspeciescompositionfollowedbyCladocera (26.32%),Protozoa(21.05),Copepoda13.16%andOstracoda(2.63%)duringstudyperiod.

SeasonalDensityofZooplankton

Theseasonaldensityofdifferentspeciesofzooplanktonobservedduringstudyperiodarerepresentedin(TableNo.-5.28 &5.29).

WinterSeason(Jan,Feb.,Nov.andDec.2018and2019):TablesNo.-5.28&5.29showedthedensityofdifferent speciesofzooplanktonobservedduringwinterseasonoftwoyearsofstudyperiod.

Protozoa

TheminimumandmaximumdensityofdifferentmembersofProtozoavariedbetween12.50org/lto16.50org/lduring firstyearandbetween14.75org/lto19.75org/lduringsecondyearofstudyperiod.Theminimumdensitywasrecorded forEuglenasp.duringbothstudyyearsandmaximumforParameciumsp.duringfirstyearandDiffusiasp.duringsecond yearofstudyperiod.Diffusiasp.(16.00org/l)andEpistylissp.(15.50org/l)duringfirstyearandEuglephasp.(17.00org/l) andParameciumsp.(16.50org/l)duringsecondyearofstudyperiodalsoshowedappreciabledensity.Thetotaldensityof thisgroupfluctuatedbetween115org/l(stationE)to119org/l(stationB)withanaveragedensityof116.75org/lduring firstyearandbetween128org/l(stationA)to134org/l(stationC)withanaveragedensityof131.00org/lduringwinter seasonofsecondyearofstudyperiod.

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 9 www.iaset.us editor@iaset.us
Cyprissp.
S.No. Groups NumberofSpecies Percentage 1 Protozoa 8 21.05 2 Rotifera 14 36.84 3 Copepoda 5 13.16 4 Cladocera 10 26.32 5 Ostracoda 1 2.63 Total 38 100.00
Table3:TheNumberandPercentageContributionofDifferentGroupsof ZooplanktonareasFollows
Figure2.

Rotifera

Amongthe14speciesofRotifera,theminimumdensitywasobservedforLecaneaculiata(14.50org/l)duringfirstyear andFiliniaterminalis(13.00org/l)duringsecondyearofstudyperiod.Themaximumdensitywasobservedfor Brachionusquadridentatus(23.50org/l)andAsplanchnasp.(23.50org/l)duringfirstandsecondyearsofstudyperiod respectively.SomeotherspeciesofthisgroupalsoshowedbetterdensityasBrachionuspatulus(23.25org/l),Asplanchna sp.(22.75org/l)andAsplanchnabrightwelli(22.50org/l)duringfirstyearandAsplanchnabrightwelli(23.00org/l), Monostylasp.(21.50org/l)andLecaneaculiata(17.50org/l)duringsecondyearofstudyperiod.Thetotaldensityofthis groupwasrecordedas295org/l,282org/l,265org/land277org/latstationsA,B,CandDrespectivelywithanaverage densityof279.75org/lduringfirstyearand240org/latstationA,242org/latstationB,242org/latstationCand238 org/latstationDwithanaveragedensityof240.50org/lduringwinterseasonofsecondyearofstudyperiod.

Copepoda

TheminimumandmaximumdensityofCopepodavariedbetween20.25org/lto35.50org/lduringfirstyearandbetween 14.75org/lto32.25duringsecondyearofstudyperiod.TheminimumdensitywasrecordedforMesocyclopssp.and maximumforNauphiduringbothstudyyearsandmaximumforNaupliiduringbothstudyyears.Thetotaldensityofthis groupfluctuatedbetween125org/l(stationD)to136org/l(stationA)withanaveragedensityof129.75org/lduringfirst yearandbetween103org/l(stationsAandC)to108org/l)stationDwithanaveragedensityof105.25org/lduring secondyearofstudyperiod.

Cladocera

AmongthetenmembersofCladocera,theminimumandmaximumdensitywasrecordedbetween11.75org/lto22.75 org/lduringfirstyearandbetween11.75org/lto19.50org/lduringsecondyearofstudyperiod.Theminimumdensitywas recordedforSidasp.duringbothstudyyearsandmaximumforBosminasp.duringfirstyearandAlonaaffinisduring secondyearofstudyperiod.Thetotaldensityofthisgroupvariedbetween156org/l(stationD)to170org/l(stationA) withanaveragedensityof163.75org/lduringfirstyearandbetween140org/l(stationD)to148org/l(stationB)withan averagedensityof143.50org/lduringsecondyearofstudyperiod.

Ostracoda

ThedensityofsinglespeciesofOstracodavariedbetween15org/l(stationD)to24org/l(stationC)withanaverage densityof20.75org/lduringfirstyearand22org/l(stationD)to26org/l(stationB)withanaveragedensityof24.25org/l duringwinterseasonofsecondyearofstudyperiod.

SummerSeason(March2018toJune2018andMarch2019toJune2019)

ThedensityofdifferentmembersofzooplanktonrecordedduringsummerseasonarerepresentedinTablesNo.5.28& 5.29.

Protozoa

Amongthe8speciesofProtozoa,theminimumdensitywasobservedforParameciumsp.(13.50org/l)duringfirstyear andAmoebasp.(15.50org/l)duringsecondyearofstudyperiod.ThemaximumdensitywasrecordedforEuglena sp.(17.25org/l)duringfirstyearandEpistylissp.(22.50org/l)duringsecondyearofstudyperiod.Euglephasp.(15.75 org/l)Arcellasp.(15.75org/l)andEpistylissp.(15.50org/l)duringfirstyearandDiffusiasp.(21.50org/l),Euglenasp.

10 PriyankaBharti&SandhyaSharma
ImpactFactor(JCC):7.1589 NAASRating3.99

(21.50org/l)andChilodonellasp.(19.75org/l)alsoshowedappreciabledensity.Thetotaldensityofthisgroupwas observedas128org/latstationA,118org/latstationB,125org/latstationCand116org/latstationDwithanaverage densityof121.75org/lduringfirstyearand146org/l,152org/l,157org/land147org/latstationsA,B,CandD respectivelywithameanvalueof150.50org/lduringsecondyearofstudyperiod.

Rotifera

TheminimumandmaximumdensityamongdifferentmembersofRotiferavariedbetween15.25org/lto22.75org/l duringfirstyearandbetween14.50org/lto22.25org/lduringsecondyearofstudyperiod.Theminimumdensitywas recordedforFiliniaterminalisandmaximumforBrachionusquadridentatusduringbothstudyyears.Somemembersof thisgroupalsoshowedbetterdensityasKeratellatropica(21.75org/l),Trichocercasimilis(21.00org/l)andLecane aculiata(20.25org/l)duringfirstyearandLecaneaculiata(21.75org/l),Brachionuspatulus(21.75org/l)andAsplanchna sp.(19.75org/l)duringsecondyearofstudyperiod.Thetotaldensityofthisgroupvariedbetween249org/l(stationC)to 255org/l(stationB)withanaveragedensityof252.25org/lduringfirstyearandbetween243org/l(stationA)to256org/l (stationD)withanaveragedensityof250.75org/lduringsecondyearofstudyperiod.

Copepoda

Amongthe5speciesofCopepoda,theminimumdensitywasrecordedforDiaptomussp.(14.25org/l)andMesocyclops sp.(20.75org/l)andmaximumforNauplii(34.50org/land33.00org/l)duringfirstandsecondyearsofstudyperiod respectively.Cyclopssp.alsoshowedbetterdensityduringbothstudyyears.Thetotaldensityofthisgroupfluctuated between118org/l(stationA)to126org/l(stationD)withanaveragedensityof120.75org/lduringfirstyearandbetween 120org/l(stationA)to128org/l(stationD)withanaveragedensityof124.75org/lduringsecondyearofstudyperiod.

Cladocera

AmongthemembersofCladoceratheminimumdensitywasrecordedforAlonellasp.(13.00org/l)andBiapertua affinis(13.25org/l)andmaximumforCeriodaphiasp.(24.50org/land23.25org/lduringfirstandsecondyearsofstudy periodrespectively.Alonaaffinis(23.50org/l)andDaphiniasp.(22.75org/l)duringfirstyearandMoinasp.(22.50org/l) andAlonaaffinis(22.00org/l)duringsecondyearofstudyperiodalsoshowedappreciabledensity.Thetotaldensityofthis groupwasobservedas197org/l,206org/l,208org/land194org/latstationsA,B,CandDrespectivelywithanaverage densityof201.25org/lduringfirstyearand189org/latstationA,191org/latstationB,198org/latstationCand195 org/latstationDwithanaveragedensityof193.25org/lduringsecondyearofstudyperiod.

Ostracoda

ThesinglememberofOstracodashowedtotaldensitybetween14org/l(stationA)to27org/l(stationC)withanaverage densityof22.00org/lduringfirstyearandbetween12org/l(stationA)to30org/l(stationC)withanaveragedensityof 22.50org/lduringsummerseasonofsecondyearofstudyperiod.

RainySeason(July2018toOct.2018andJuly2019toOct.2019):Thedensityofdifferentmembersofzooplankton observedduringrainyseasonofbothstudyyearsarerepresentedinTablesNo.-5.28&5.29.

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 11
editor@iaset.us
www.iaset.us

Protozoa

TheminimumandmaximumdensityofProtzoavariedbetween6.75org/l(Parameciumsp.)to15.75org/l(Diffusiasp.) duringfirstyearandbetween8.25org/l(Parameciumsp.)to14.75org/l(Diffusiasp.)duringsecondyearofstudyperiod. Chilodonellasp.andArcellasp.alsoshowedbetterdensityduringbothstudyyears.Thetotaldensityofthisgroupvaried between90org/l(stationD)to102org/l(stationB)withanaveragedensityof97.25org/lduringfirstyearandbetween88 org/l(stationA)to103org/l(stationB)withanaveragedensityof94.25org/lduringsecondyearofstudyperiod.

Rotifera

AmongthemembersofRotifera,Brachionusquadridentatusexhibitedthehigherdensityof18.00org/land17.50org/l andlowerdensitywasrecordedforLecaneaculiata(9.25org/l)and(11.00org/l)duringfirstandsecondyearsofstudy periodrespectively.SomemembersofthisgroupasoshowedbetterdensityasBrachionuspatulus(16.75org/l), Asplanchnabrightwelli(16.25org/l)andAsplanchnasp.(15.25org/l)duringfirstyearandBrachionuscaudatus(17.25 org/l),Monostylasp.(17.25org/l)andAsplanchnasp.(16.25org/l)duringsecondyearofstudyperiod.Thetotaldensity ofthisgroupwasrecordedas172org/l,205org/l,191org/l,and187org/latstationsA,B,CandDwithanaverage densityof197.75org/lduringfirstyearand209org/latstationA,215org/latstationB,204org/latstationCand205 org/latstationDwithanaveragedensityof208.25org/lduringsecondyearofstudyperiod.

Copepoda

Amongthe5membersofCopepoda,theminimumdensitywasrecordedforMesocyclopssp.(17.00org/l)andmaximum forCyclopssp.(27.50org/l)duringfirstyearofstudyperiod.Duringsecondyear,theminimumdensitywasrecordedfor Cyclopssp.(13.50org/l)andmaximumforNauplii(31.50org/l).Thetotaldensityofthisgroupfluctuatedbetween127 org/l(stationA)124org/l(stationB),118org/latstationCand114org/latstationDwithanaveragedensityof120.75 org/lduringfirstyearandbetween88org/l(stationD)to96org/l(stationB)withanaveragedensityof91.00org/lduring secondyearofstudyperiod.

Cladocera

Amongthe10speciesofCladocera,theminimumdensitywasrecordedforMonodaphniasp.(10.75org/l)andSidasp. (9.75org/l)andmaximumforDaphniacarinata(16.25org/l)andDaphniasp.(17.50org/l)duringfirstandsecondyears ofstudyperiodrespectively.Bosminasp.(15.75org/l),Ceriodaphniasp.(15.25org/l)andDaphniasp.(14.50org/l) duringfirstyearandCeriodaphniasp.(16.75org/l)andBosminasp.(16.25org/l)duringsecondyearalsoshowed appreciabledensity.Thetotaldensityofthisgroupwasobservedas130org/latstationA,137org/latstationB,132org/l atstationCand127org/latstationDwithanaveragedensityof131.50org/lduringfirstyearandas140.0org/l,156.0 org/l,140.0org/land139.0org/lwithanaveragedensityof141.25org/lduringsecondyearofstudyperiod.

Ostracoda

AmongOstracoda,thesinglememberCyprissp.showeddensitybetween15org/l(stationD)to26org/l(stationB)with anaveragedensityof22.25org/lduringfirstyearandbetween12org/l(stationD)to24org/l(stationB)withanaverage densityof18.25org/lduringsecondyearofstudyperiod.

ImpactFactor(JCC):7.1589

NAASRating3.99

12 PriyankaBharti&SandhyaSharma

TotalSeasonalDensityofZooplankton

ThetotalseasonaldensitiesofzooplanktonobservedduringstudyperiodarerepresentedinTableNo.-5.28.Result revealedthathigherdensityofzooplanktonwasrecordedduringsummerseason(718.00org/land741.75org/l)followed bywinterseason(710.75org/land644.50org/l)andrainyseason(580.50org/land553.00org/l)duringfirstandsecond yearsofstudyperiodrespectively.

Table4:TotalMeanSeasonalDensity(Org/L)ofZooplanktonObservedatFourStationsof BichhiyaRiverWater,(January2018toDecember2019)

RESULTANDDISCUSSION

BiologicalCharacteristicsoftheBichhiyaRiver

Planktonaccordingtotheirqualitymaybeclassifiedintophytoplanktonandzooplankton.Thedistributionand compositionofplanktonicspeciesareconsideredasremarkablemeasurestodeterminethestatusofpollutioninwaterand varyconsiderablyfromonewaterbodytoanother.Diversity,distributionabundanceandvariationinthebioticfactors provideinformationofenergyturnoverintheaquaticsystem.

Phytoplankton

ThedetailedtaxonomicsurveywascarriedoutfromJanuary2018toDecember2019inBichhiyaRiverofRewaand averagedensityofallphytoplanktonspecieswasrecordedforwinter,summerandrainyseason.Adiniji(1977)noticedthat populationdensityofphytoplanktoniscontrolledbytheamountofnutrientnotablyphosphateandnitrateinwater.During presentstudy,40speciesofphytoplanktonwererecorded,belongingtoclassChlorophyceae,Cyanophyceae, BacillariophyceaeandEuglenophyceae.Ofthese,15speciesbelongedtoChlorophyceae,11speciestoCyanophyceae,12 speciestoBacillariophyceaeand2speciestoEuglenophyceae.Maximumdensityofphytoplanktonwasrecordedinwinter seasonfollowedsummerseasonandrainyseason.LaskarandGupta(2009)reportedminimumdensityofphytoplankton duringmonsoonseasonandmaximumduringsummerseasoninChatlalake,Assam.Theseasonalchangesinthespecies composition,distributionanddensityareduetothechangingenvironmentalconditions.BabaandPandit(2014)reported thatphytoplanktondepictedbimodalgrowthcurvewithpeaksinspringandautumnwhichmaybeasaresultof regenerationandavailabilityofmineralsasaresultofdecompositionoforganicmatterinsediments.Theseasonalityof phytoplanktonisalsoattributedtothemoderatewatertemperatureconditionsbesidesthereleaseandavailabilityofplant nutrientsduringtheseperiods.AmongthemembersofChlorophyceae,Cosmariumsp.,Chlorellasp.,Botryococcussp.and Charasp.showedbetterdensityincomparisontoothermembersofthegroup.AmongCyanophyceae,Coelospharenum sp.showeditsdominance.TheappreciabledensitywasalsorecordedforMicrosystissp.,Anacystissp.andRivulariasp.

AmongthemembersofBacilariophyceae,themaximumdensitywasrecordedforNaviculaindicaduringstudyperiod.

TheappreciabledensitywasalsorecordedforNaviculapulpa,Gyrosigmasp.andCyclotellaaffinis.Amongthetwo

www.iaset.us editor@iaset.us

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 13
Years Seasons StationA StationB StationC StationD Average January 2018to December 2018 Winter 739 715 701 688 710.75 Summer 708 725 728 711 718.00 Rainy 547 594 560 533 558.50 January 2019to December 2019 Winter 637 655 648 638 644.50 Summer 710 744 764 749 741.75 Rainy 541 584 551 536 553.00

speciesofEuglenophyceae,themaximumdensitywasrecordedforEuglenasp.duringbothstudyyears.Themaximum averagetotalseasonaldensityofphytoplanktonwasrecordedduringwinterseason(929.87org/land977.05org/l) followedbysummerseason(837.07org/land897.07org/l)andrainyseason(684.75org/land732.75org/l)duringfirst andsecondyearsofstudyperiodrespectively.Chlorophyceaeshowedtheirdominanceovertheothergroupsof phytoplankton.NextinorderwasCyanophyceaefollowedbyBacillariophyceaeandEuglenophyceae.Trivedietal.(1990) reportedthataspollutionincreasedinwaterChlorophyceaeisreplacedbyBacillariophyceaeandCyanophyceae.Thusthe waterofBichhiyaRivercannotbeconsideredaspollutedbecauseChlorophyceaeshoweditsdominanceduringbothstudy years.Chakrawartyetal.(1959)reportedthatChlorophyceanmembersshowedaslightdecreaseintheirgrowthwith increaseinpH,calcium,chlorideandtotalsuspendedsolids.Bacillariophyceaeshowedmaximumgrowthwithincreasing pH,temperature,phosphate,chlorideandtotalsuspendedsolids(Pearsal,1932,Patric,1948,Zafar,1967,Hegde,1983). Adiniji(1978)observedthattemperature,dissolvedoxygen,foodandavoidanceofbeingpreyedupongovernthe abundanceanddistributionofphytoplankton.Smith(1942)alsoreportedthatlight,temperatureandfreecarbondioxide werethecontrollingfactorsforthegrowthofalgae.VermaandShukla(1970)reportedthatnoindividualfactorphysicalor chemicalwassingularlyresponsiblefortheseasonalfluctuationofphytoplankton.Zafar(1964a)reportedthathigher valuesofdissolvedoxygen(6.8to9.3mg/l)wascorrelatedwithpeakpopulationofChlorophyceae.Sreenivasan(1965) observedmaximumproductionofphytoplanktoninAprilinAmaravatyreservoir.KhanandSiddiqui(1971)alsoreported highgrossprimaryproductivityfromMarchtoMay.KannanandJob(1980)observedthatprimaryproductionwashigh betweenAprilandJulyinSathiarreservoir.VyasandKumar(1968)reportedbothpositiveandinverserelationship betweenphytoplanktonanddissolvedoxygen.Pailwanetal.(2008)reportedthephytoplanktonpopulationexhibits bimodalpeak,oneinwinterandotherinsummerseasonwithinfrequentoccurrenceofDinophyceaeandEuglenophyceae. Inpresentstudyalsophytoplanktonshowedbetterdensityinwinterandsummerseason.Abdar(2013)reportedthat richnessinnitrogenandorthophosphateswerefavorableforgrowthofphytoplankton.Healsoreportedthatamong Cyanophyceae,Microcystissp.,Oscillatoriasp.andAnabaenasp.werepresentthroughouttheyear.Microcystissp.was dominantintheseason.Phytoplanktonsaretheprimaryproducersastheytrapsolarenergyandproducesorganic moleculesbyconsumingCO2.Phytoplanktonarenotonlyprimaryproducersbutalsobringsoutbiogenicoxygenationof thewaterduringdaytime(Welch,1952,Wetzel,1975,1983).

Zooplankton

Theoccurrence,distributionanddiversityofzooplanktonisrelatedwiththephysico-chemicalconditionofwater. Temperatureisthemostimportantfactorwhichdeterminesthedistributionofzooplankton.Duringpresentstudy,intotal 38speciesofzooplanktonwereidentifiedrepresenting8speciestoProtozoa,14speciestoRotifera,5speciesto Copepoda,10speciestoCladoceraandonespeciestoOstracoda.Rotiferaformsthemainbulkofzooplanktoncomprising 36.84%followedbyCladocera(26.32%),Protozoa(21.05%),Copepoda(13.16%)andOstracoda(2.63%)duringstudy period.AmongzooplanktonParameciumsp.andDiffusiasp.(Protozoa),Brachionusquadridentatus,B.angularis,B. patulus,Asplanchnasp.(Rotifera),Nauplii(Copepoda),Bosminasp.andAlonaaffinis(Cladocera)andCyrpis(Ostracoda) showeddominanceinthedamduringstudyperiod.Themaximumdensityofzooplanktonwasrecordedduringsummer seasonfollowedbywinterandrainyseasonduringstudyperiod.Rotiferashowedmaximumannualdensityfollowedby Cladocera,Copepoda,ProtozoaandOstracodaduringfirstyearandRotifera,Cladocera,Protozoa,Copepodaand Ostracodaduringsecondyearofstudyperiod.Arora(1966)reportedthatRotariarotatoriawasfoundonlyinpolluted water.TiwaryandSharma(1977)relatedtheappearanceofLecane,KeratellatropicaandPlatyaspatuluswithsemi

14 PriyankaBharti&SandhyaSharma
ImpactFactor(JCC):7.1589 NAASRating3.99

pollutedandpollutedwater.Arora(1966)recordedthesespeciesfromJamunaandSakardaratanksatNagpurwhichhe classifiedasmediumpollutedtanks.Duringpresentstudy,onlyKeratellatropicaandLecaneaculiatawererecorded. Adoni(1975)reportedthatdensityofrotifersandtheirspeciesdiversityisincreasedinhighereutrophicwaters.Adinijiand Ovie(1982)reportedtheabudanceofzooplanktonatsurfacewaterwheredissolvedoxygenwashighbuttheabundanceof zooplanktonreducedwiththereductionofoxygeninwater.Wetzel(1983)observedthattheprimaryfollowingfertilization usuallyresultsingreaterzooplanktonabundance.Thehighpopulationdensityoftherotiferscouldbeattributedtotheir parthenogenesisreproductivepatternsandshortdevelopmentalrateunderfavorableconditions(Wetzel,2001).The dominanceofrotiferswasduetoitspreferenceforwarmwatersashighlightedbyDumont(1983)andSegers(2003). MatsumuraTundisi(1999)reportedthedominanceofBrachionusisindicationofeutrophicwater.AlkalinepHwasalso foundtofavourzooplanktongrowth.Byars(1960)hadalsoreportedthatzooplanktonpreferalkalinewater.Khaire(2012) reportedthatdissolvedoxygenismostvitalparameterwhichinfluencestheplanktonpopulation.Itshowedsignificant positivecorrelation(r=0.9361)withzooplanktonpopulation.SimilarresultswerereportedbySalaskarandYeragi(2003) andSurveetal.(2004).Khaire(2012)reportednegativecorrelationwithalkalinity(r=-0.9260),totalhardness(r=-0.1692) andChlorides(r=-0.6292).Surveetal.(2004)observedpositivecorrelationbetweenzooplanktonandalkalinitysupports ourobservationKhalokar(2014)reportedhighpredationalsoleadstothelowspecificdiversityofzooplanktonand evidencebylowvalueofconcentrationdominance,asalsoreportedbyVermaandShukla(1970).Cladoceransformsan importantcomponentofzooplanktonsandformsthemostdominantgroupoffishfoodorganisms.Duringpresentstudy, zooplanktoncommunitycompositionoftheriveralsoshowedtobeproductiveinnatureandsupportadiversespecies.The zooplanktonassemblagewasstronglyinfluencedbythephysico-chemicalfactorsofthewatertemperature,food abundance,nutrientsweresomeoftheimportantfactorsthatcouldlimitzooplanktoncommunity.Maintenanceofgood waterqualitywillenhancethezooplanktoncommunityandthiswillbeagreatadvantageforfishproductionintheriver.

TotalPhytoplanktons&Zooplanktons

Monthlysamplingofphytoplanktonandzooplanktonweredocumentedat4SamplingstationsofBichhiyaRiverRewa (M.P.)forJanuary2018toDecember2019.

Phytoplankton

Maximumdensityofphytoplanktonwasrecordedinwinterseasonfollowedsummerseasonandrainyseason.During presentstudy,40speciesofphytoplanktonwererecorded,belongingtoclassChlorophyceae,Cyanophyceae, BacillariophyceaeandEuglenophyceae.Ofthese,15speciesbelongedtoChlorophyceae,11speciestoCyanophyceae,12 speciestoBacillariophyceaeand2speciestoEuglenophyceaeasgivenbelow:

Group-Chlorophyceae

Chlamydomonassp.,Chlorellasp,Charasp.Coelastrummicroporum,Cosmariumsp.Crucigeniasp.,Hormidiumsp., Oedogoniumsp.,Pediastrumsimplex,Scenedesmusarmatus,Spirogyrasp.,Staurastrumsp.,Volvoxsp,Ulothrixsp., Zygnemasp.

Group-Cyanophyceae

Aphanothecesp.,Arthrospirasp.,Anabaenaspiroides,Aplanocapsasp.Gleocapsasp.,Gloeotrichiasp.,Merismopedia sp.,Microcystissp.,Lyngbyasp.,Nostocsp.,Scytonemasp.

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 15
editor@iaset.us
www.iaset.us

Group-Bacillariophyceae

Cyclotellasp.,Cocconeissp.,Cymbellaaffinis,Diatomaelongatum,Fragillariasp.,Melosirasp.,Naviculaindica, Naviculapulpa,Nitzschiasp,Surirellasp.,Synedracapitata.,Tabellariasp.

Group-Euglenophycea

Euglenasp.&Phacussp.

CONCLUSION

Theresultsofthepresentstudyshowedthatthemostofthephysico-chemicalparametersoftheBichhiyariverwellwithin thedesirablelimitsofWHOandBISstandards.Increaseintemperatureoftheriverwaterreducesthedissolvedoxygen whichinfluencesbiologicalactivitiessuchasfeedinghabitsandreproductivebehaviorinthefishandotheraquatic organisms.Alongwithwastedischargemanyharmfulchemicalssuchasdetergentsalgaecides,pesticidesusedinplant operationsalsofindtheirwayintotheriveraddingfuturetowaterpollution.Theanalysisforwhichshouldhavealsobe donebuttoriveroftime.Lastlythelargescaleofwaterintakefromtheriverforallabovementionedoperationsalsohas deleteriouseffectsontheaquaticlifeaffectingtheaquaticecologicalbalance.

Thepresenceoflargenumberofmacrophytesorfreefloatingvegetation,commontotropicalrivergenerally blockthewatersurfacelowerdissolvedoxygenlevelsandalsocoursenuisanceforswimming.InessencethephysicochemicalandBioticcommunityoftheriverrevealsthatitistending,fasttowards'eutrophism'particularlyatallsampling station.Thequalityofwaterisdeterioratingdaybydayduetoinflowofindustrial,domesticsewage,municipalwaste, agriculturalrunoffandeffluentsoforganicwasteofanimalandhumanoriginintotheriver.Deteriorationofwaterquality andeutrophicationareassumingalarmingstateinBichhiyaRiver,duetocasualattitudeofpeopleconcernedwith developmentofurbanpopulation.Therefore,thereisanurgentneedofregularmonitoringofwaterqualitytogovernthe statusanddivertingthecitysewageawayfromtherivertopreservethefloraandfaunaofthisecosystem.Ifwasteinputis notcheckedthenitwillseverelyimpairwaterdynamicsandwillcauseeutrophicationoftheentiresystem.Overall, coordinatedeffortsofvariousstakeholdersandpropercommunityinvolvementaretheprimaryneedstorestorethe ecologicalsubsystemoftheriverandtomakeitusefulforfurthersocialandeconomicexploration.

REFERENCES

1.Abook,K.M.andManuel,A.C.(1967):preliminaryobservationontheUpperLakeatBhopal.Environ.H1th. 9:22.

2.AdoniA.D.(1985)WorkBookonLimnology,IndianMABComm.,Govt.ofIndia.216

3.Agrawal,S.K.(1983).WaterqualityofsewagedrainsenteringChambalriveratKota.Acta.Ecol.,5:29-29.

4.Ahmad,M.S.(1989).PhysiologyofpollutedpondsofDharbhanga.Ph.D.thesis,L.N.MithilaUniversity, Dharbhanga.

5.Ambasht,R.S.(1990).Environmentandpollution(AnEcologicalApproach).Isted.,StudentsFriendsandCo. Pub.LankaVaranasi,India.

6.Anderson,J.R.(1982).Acquisitionofcognitiveskill.PsychologicalReview,89,369-406.

7.Anon.(1996).Committeetoassessagroresiduesavailability.INPAPERInternational1(1):13.

16 PriyankaBharti&SandhyaSharma
ImpactFactor(JCC):7.1589 NAASRating3.99

8.APHA(1975).standardsmethodsfortheExaminationofwaterandwastewater.AmericanPublicHealth Association,Washington,D.C.

9.APHA(2005).StandardMethodsfortheExaminationofWaterandwastewater.19thEds.AmericanPublic HealthAssociation,WashingtonDC.

10.APHA,(1985).StandardmethodforExaminationofwaterandwastewaterAmericanPublicHealthAssociation 16thEd.APHANewYork.

11.Araujo,J.C.,Campos,aC.,Correa,M.M.,Silva,E.C.,Matté,M.H.,Matté,G.R.,VonSperling,M.,etal. (2011).Anammoxbacteriaenrichmentandcharacterization.

12.frommunicipalactivatedsludge.Waterscienceandtechnology:ajournaloftheInternationalAssociationon WaterPollutionResearch,64(7),1428

34.

13.AroraR(2012).StudiesonPhysieo-ehemiealparameterscausingpollutionofGhodriver,India,J.Environ.Res. Develop.,7(1A),441-443.

14.Arya,S,Kumar,V,Raikwar,M,Dhaka,AandMinakshi(2011).Physico-chemicalAnalysisofSelectedSurface WaterSamplesofLaxmiTal(Pond)inJhansiCity,UP,BundelkhandRegion,CentralIndiaJournalof ExperimentalSciences2(8):01-06.

15.Asadi,S.S.,Vuppala,P.,&Anji,R.M.(2007).RemotesensingandGIStechniquesforevaluationofgroundwater qualityinmunicipalcorporationofHyderabad(Zone-V),India.InternationalJournalofEnvironmentalResearch andPublicHealth,4(1),45

52.

16.Aykulu.G.(1978).AquantitativestudyofthephytoplanktonoftheriverAvon.BristonBr.Phykal.J.,13:1-102.

17.Bagde,U.S.andVerma,A.K.:1985,'LimnologicalstudiesofJNUlake.NewDelhi,India',Proc.Natl.Symp. PureandAppld.Limnl.32,16–23.

18.Bagde,U.S.andVerma,A.K.(1985)Physico-chemicalcharacteristicsofwaterofJ.N.U.LakeatNewDelhi. IndianJournalofEcology,12,pp.251-256.

19.BanejeeU.S.andGuptaS.,(2012).Monitoringandassessmentofriverpollutant:AstudyonriverDamodarand riverBarakarofIndiausingfaetoranalysis,J.Environ.Res.Develop.,6(3A),638-644.

20.Barnabe,G.(1994).Aquaculturebiologyandecologyofculturedspecies.EllisHorwoodLtd.

21.Barry,T.H.Paulballey,RickEdwardskentH.,Kim-James,AndrewMcmahon,CharlesmeredithandSwadling,K. (1990).EffectofsalinityonriverstreamandwetlandecosysteminVictoria,Australia.WaterRes.,24(9):11031117..

22.Bhanja,K.MohantaandAjoyKu.Patra.(2000).StudiesonthewaterqualityindexofriverSanamachnakandan atKeonjherGarh,Orissa,India.Poll.Res.,19(3):377-385.

23.Bhaskaran,T.R.(1959).IndustrialwastesurveyandriverpollutionstudiesinBiharandU.P.State.Bull.Cpheri., 1:55-62.

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 17 www.iaset.us editor@iaset.us

24.Bhatnagar,G.P.(1984).LimnologyofLowerlake,BhopawithreferencetopollutionEutrophication.Tech.Rep. May1979-April1982:MABProgramme,Deptt.OfEnviron.Govt.ofIndia,NewDelhi,1-77.

25.Bhatt,S.D.andPathak,J.K.(1992).Assessmentofwaterqualityandaspectsofpollutioninastretchofriver Gomati(Kumaun)lesserHimalaya.J.Environ.Biol.,13(2):113-120.

26.BhuiyanJ.R.andGuptaS.(2007)-AcomparativehydrobiologicalstudyofafewpondsofBarakValley,Assam andtheirroleassustainablewaterresources.JournalofEnvironmentalBiologyOctober2007,28(4)799-802.

27.BiswasK.(1942).TheroleofalgaecommunitiesoftheriverHughlyinthedrinkingwaterofCalcutta.150thAnn. Vol.Roy.Bot.Gdn.,189-206.

28.Bledsoe,B.P.andShear,T.H.(2000).VegetationalonghydrologicandedaphicgradientsinanorthCarolina coastalplaincreekbottomandimplicationsforrestoration.Wetlands,20(1):126-147.

29.Blinn,D.W.andBailey,P.C.E.(2001).Land-useinfluenceonstreamwaterqualityanddiatomcommunitiesin Victoria,Australia:Aresponsetosecondarysalinization.Hydrobiologia,466:231-244.

30.Blume,J.L.(1956).Theecologyofriveralgae.Bot.Rev.,22(5):291-341.

31.Boyd,C.E.(1981).WaterQualityinWarmwaterFishPonds.AlabamaAgriculturalExperimentStation,Auburn University,Auburn,AL.

32.Brinley,F.J.(1942).Biologicalstudies,Ohioriverpollutionsurvey-II.Planktonalgaeasindicatorsofthe sanitaryconditionofastream.SewageWks.J.,14:152-159.

33.Brooker,M.P.andJohnson,P.E.(1984).Thebehaviourofphosphate,nitrate,chlorideandhardnessinTwelve Welshrivers.WaterRes.,18(9):1155-1164.

34.Bubb,J.M.,Rudd,T.&Lester,J.N.(1991)DistributionofheavymetalsintheRiverYareanditsassociated broads.I.Mecuryandmethylmercury.Sci.TotalEnviron.102:147

168.

35.Burns,C.W.,D.J.Forsyth,J.F.Haney,M.R.James,W.LampertandR.D.Pridmore1989.Coexistenceand exclusionofzooplanktonbyAnabaenaminutissimaVar.attenuateinlakeRotongaio,NewZealand.Arch Hydrobiol.,32:63-82.

36.Butcher,R.W.(1949).StudiesintheecologyofriversVIIandthealgaeoforganicallyenrichedwaters.J.Ecol., 35:186-191..

37.Chakrabarty,SandSharmaH.P.(2011).HeavymetalcontaminationofdrinkingwaterinKamrupdistrict, Assam,India.Environ.Monitor.andAssess.179:479–486.

38.Chattopadhya,S.N.,Tapan,R.,Sharma,V.P.,Arora,H.C.andGuptaR.K.(1984).Ashorttermstudyonthe pollutionstatusofriverGangainKanpurregion.IndianJ.Environ.Hlth.,26(3):244-257.

39.ChaubeUC(1988)ModelstudyofwateruseandwaterbalanceinBetwaBasin.JInstEngIndianCivilEngDiv 69:169

173.

40.ClausDandBerkleyR.C.W(1986).GenusBacillusCohn.In:SneathPHAEds.Bergey’sManualofSystematic Bacteriology,Sec13(2),Baltimore,MD,USA.Williams&WilkinsCo.1105-1139..

18 PriyankaBharti&SandhyaSharma ImpactFactor(JCC):7.1589 NAASRating3.99

41.Cuffney,T.F.,Meador,M.R.,Proter,S.D.andGurtz,M.E.(2000).Responsesofphysical,chemicalandbiological indicatorsofwaterqualitytoagradientofagriculturalland-useintheYakingriverbasin,Washington.Environ. Monitoringandassessment,64:259-270.

42.CurdsCR,CockburnA(1970a).Protozoainbiologicalsewagetreatmentprocesses:Asurveyoftheprotozoan faunaofBritishfaunapercolatingfiltersandactivatedsludgeplants.WaterRes.,4:225-236.

43.Danazumi,SandBichi,M.H(2010).IndustrialpollutionandheavymetalprofileofChallawariverinNigeria,J ofAppl.Sci.inEnviron.Sani.5:23-29.

44.DarwallWRT,VieJC(2005)Identifyingimportantsitesforconservationoffreshwaterbiodiversity:extendingthe species-basedapproach.FishManagEcol12:287

293.

45.Das,S.M.andV.K.Sriastava(2003).Studiesonplanktoncomponents.ProcNat.Acad.Sci.India,29:174-189.

46.DayF.S.(1951).ThefishesofIndia.WilliamandSonsLtd.,London.

47.De.,P.K.(1939)–“ReservoirfisherymanagementanddevelopmentinAsia”.

48.DeshpandeNM(2002)BiodegradationofDimethoate-acarbamategroupoforganophosphorusinsecticides. Ph.DthesisinMicrobiology,UniversityofPune.

49.Dhote,S.(2000):ImpactofanthropogenicactivitesonlimnologicalcharacteristicsofBhojWetland.National Worshopon“BiodiversityandConservatioofAquaticResourcesW/RtothreateneFishMahseer.”26th&27 Feb.2000,P.58.

50.DudgeonD,ArthingtonAH,GessnerMO,KawabataZI,KnowlerDJ,LevequeC,NaimanRJ,Prieur-Richard AH,SotoD,StiassnyMLJ,SullivanCA(2006)Freshwaterbiodiversity:importance,threats,statusand conservationchallenges.BiolRev81:163–182.

51.Dumontet,S.andScopa,A.(2001).Theimportanceofpathogenicmicroorganismsinsewageandsewagesludge J.AirWaste.Manage.Assoc.5:848-860.

52.DuncanS.W.andD.W.Blinn(1999)–“Importanceofphysicalvariableontheseasonaldynamicsofepilithic algaeinahighlyshadedcanyonstreamjournalofphysiology25:455-461.

53.Dutta,N.,Malhotra,J.C.andBose,B.B.(1954).Hydrobiologicalandseasonalfluctuationsoftheplanktoninthe Hooghlyestuary.Symp.OnmarineandfreshwaterplanktonintheIndoPacific.Pp.1-13.

54.Dwivedi,B.K.andPandey,G.C.(2002).Physico-chemicalfactorsandalgaldiversityoftwoponds(GirijaKund andMaqubaraPond),Faizabad,India.PollutionResearch,21(3):361-369.

55.Edmondson,(1974).NutrientsandphytoplanktoninlakeWashington.InNutrientsandeutrophication.The limitingnutrientcontroversy.Lickens,G.E.(ed)Sec.Symposiumlimnol.AndOceanogSubha,r.,1:172-193.

56.EshwarlalSedamkarandAngadi,S.B.2003.PhysicochemicalparametersoftwofreshwaterbodiesofGulbargaIndiawithspecialreferencetophytoplankton.Poll.Res.,22(3):411-422.

57.FandiG.K.,I.Y.Qudsieh,S.A.Muyibi,M.Massadeh(2009)-WaterPollutionStatusAssessmentofKingTalal Dam,Jordan.AdvancesinEnvironmentalBiology,3(1):92-100.

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 19 www.iaset.us editor@iaset.us

58.Fandietal.,2009K.Fandi,I.Qudsieh,S.Mubibi,M.Massadeh(2009)-WaterpollutionassessmentofKing TalalDamAdv.Environ.Biol.,3(1),pp.92-100.

59.Fjerdingstad,E.(1950).ThemicrofloraofriverMolleaawithspecialreferencetotherelationofbenthalalgal population.FolialimnologicaCondinonca,5:79-101.

60.Gaikwad,V.B.andGunale,V.R.(2001).WaterqualitymonitoringofGodavaririverinandaroundNahsik region,Pp.1-20.

61.Galatowitsch,S.M.,McAdams,T.V.(1994).DistributionandrequirementsofplantsontheupperMississippi river:LiteratureReview.CooperativeFishandWildlifeResearchUnit,Ames,IA.

62.Ganapati,S.V.(1943).Theecologyoftempletankcontainingapermanentbloomofmicrocystisaeroginosa kuetzing,J.Bomb.Nati.Hist.Soc.,42(1):65-77.

63.Ganapati,S.V.(1972).OrganicproductioninseventypesofaquaticecosystemsinIndia.In:Anemphasison organicproduction(Ed:P.M.Golley),AthensJ.Tropica.Ecology,Pp.313-350.

64.Ganpati,S.V.(1956).HydrobiologicalinvestigationoftheHopeReserviorandoftheTamarapannaniriverat Tapanasal,TirunelveliDistrict,Madrasstate.TheInd.Geogr.,D.31:1-20.

65.Gaur,V.K.,Gupta,S.K.,Pandey,S.D.Gopal,K.,&Misra,V.(2005).Distributionofheavymetalsinsedimentand waterofriverGomti.Environ.Monitor.andAssess.102:419

433.

66.George,M.G.(1976).DiurnalvariationsintwoshallowpondsinDelhi,India.Hydrobiologia,18(3):265-273.

67.Ghabzan,N.J.,Gunale,V.R.andPisal,B.R.(2005).WaterpollutionmonitoringofMullaandPavanariverfrom Pune,Indiaurbanarea.AsianJ.Microbiol.,Biotechnol.Environ.Sci.,7(4),785-790.

68.Ghalib,H.,Yaqub,M.,&Al-Abadi,A.(2019).Hydrogeochemicalmodelingandisotopicassessmentofthe quaternaryaquiferatAlial-GarbiAreainMisaanGovernorate,SouthofIraq.InAdvancesinSustainableand EnvironmentalHydrology,Hydrogeology,HydrochemistryandWaterResources,121–124.doi:10.1007/978-3030-01572-5_30.

69.GiridharanL,VenugopalT,JayaprakashM(2010)Identificationandevaluationofhydrogeochemicalprocesses onriverCooum,SouthIndia.EnvironMonitAssess162:277

289.

70.Glaser,P.H.,Janssens,J.A.andSiegal,D.I.(1990).Theresponseofvegetationtochemicalandhydrological gradientsintheLostriverpeatland,NorthernMinnesota.J.Ecol.,78:1021-1048.

71.Goel,P.K.andAutade,V.B.(1995).EcologicalstudiesontheriverPanchagangaatKolhapurwithemphasison biologicalcomponents.RecentResearchesinAquaticEnvironment.Gautam,A.DayaPublishingHouse,Pp.4344.

72.Goel,P.K.andBhosale,M.(2001).StudiesontheriverPanchgangaatKolhapurwithspecialreferencetohuman impactonwaterquality.In:Currenttopicsinenvironmentalsciences(Eds:G.TripatiandG.C.Pandey),ABD publishers,Pp.120.

20 PriyankaBharti&SandhyaSharma ImpactFactor(JCC):7.1589 NAASRating3.99

73.Joy,C.M.,Balakrishnan,K.P.andAmminiJoseph.(1990).Effectofindustrialdischargesontheecologyof phytoplanktonproductionintheriverPeriyar(India).WaterResearch,24(6):787-796.

74.KantShashi.1985.Algaeasindicatesoforganicpollutionproc.AllIndiaAppliedPhycologicalCongress, Kanpur,77-86.

75.Kant,S.andAnand,V.K.(1978).InterrelationshipsofphytoplanktonandphysicalfactorsinMansarlakeJammu (J&K).Ind.J.Ecol.,5(2):134-140[\ooo;;po;;;

76.Kumar,P.andGupta,R.K.(2002).GrowthcharacteristicofPotamogetoncrispusandElodeacanadensisin pollutedwater.Poll.Res.,21(3):305-307.

77.Kumar,S.S.andBhoopathi,C.A.(2007).Invitrostudyofmicrobiallytreatedanduntreatedsagofactoryeffluent ongrowthofVignamungoandV.radiata.J.Ecotoxicol.Environ.Monit.,17(3),263-268.

78.Kundangar,M.RandD.P.Zutshi(1985)-EnvironmentalfeaturesandplanktoncommunitiesoftwoHimalayan rurallakes,Proc.nat.Symp.PureandAppliedlimnologyeditedbyA.D.Adoni.Bull.Bot.Soc.Sagar.,32:40-47.

79.Lackey,J.B.andHupp,E.R.(1956).PlanktonpopulationinIndian’swhiteriver.J.Amer.WaterWorksAssn., 48:1024-1036.

80.LaffailleP,AcouA,GuillouetJ,LegultA(2005)TemporalchangeinEuropeaneel,Anguillaanguilla,stockina smallcatchmentafterinstallationoffishpasses.FishManagEcol12:123

129.

81.LakshminarayanJ.S.(1965-a).StudiesontheplytoplanktonofriverGangas,Varanasi,India-I.ThePhysico characteristicsofriverGangas.Hydrobiol.,25:119-137.

82.LevequeC,BalianEV,MartensK(2005)Anassessmentofanimalspeciesdiversityincontinentalwaters. Hydrobiologia542:32–67.

“StudyontheDensityofPhytoplankton’sAndZooplanktons’ofBichhiyaRiverWater" 21
editor@iaset.us
www.iaset.us

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.