International Journal of Applied Mathematics & Statistical Sciences (IJAMSS)
ISSN (P): 2319–3972; ISSN (E): 2319–3980
Vol. 11, Issue 2, Jul–Dec 2022; 43–50
FUNCTIONS OF BOUNDED RADIUS ROTATION OF ANALYTIC FUNCTIONS
S.Prema1 & Bhuvaneswari Raja2
1Assistant Professor, Department of Mathematics, Rajalakshmi Institute of Technology, Chennai-600124, India
ABSTRACT
The classes )( α kV , )( α kR , )( 1 α kV and )( 1 α kR of analytic function, We establish a relation between the functions of bounded boundary and bounded radius rotations
KEYWORDS: Analytic, Analytic Functions with Bounded Radius and Boundary Rotations, Starlike, Convex, Subordination
MATHEMATICS SUBJECT CLASSIFICATION: 30C45
Article History
Received: 16 Aug 2022 | Revised: 17 Aug 2022 | Accepted: 24 Aug 2022
1. INTRODUCTION
Let A be the class of functions f of the form
Which are analytic in the unit disc E = {z: |z| < 1}.
The definition of subordination is ∈ f A is subordinate to g∈A, written as gf p ,there exists Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 ( ∈ z E) such that f(z) = g(w(z)), In particular, when g is univalent, then the above subordination is equivalent to f(0)’ = g(0) and f(E) ⊆ g(E), for any two analytic functions
then convolution
We denote by )10(),(),( * <≤ α α α cs the classes of starlike and convex functions of order α,
www.iaset.us
editor@iaset.us
∑ ∞ = += 2 )( n n n zazzf (1.1)
).()(,)( 00 Ezzbzgzazf n n n n n n ∈==∑∑ ∞ = ∞ = (1.2)
)Ez())(*( 0 ∈= ∑ ∞ =n n nn zbazgf (1.3)
© IASET
2Assistant Professor, Department of Mathematics, Aalim Muhammed Salegh College of Engineering, Chennai, India.
respectively defined by
For 0 = α , we have the well know classes of starlike and convex univalent functions denoted * s and c, respectively.
Let )( α kP be the class of functions P(z) analytic in the unit disc E satisfying the properties P(0)=1 and
Where ,2,≥=krez iθ and 10 < ≤ α , using Herglotz – Stieltijes formula
Where )( α P is the class of functions with real part greater then α and ),( α PP i ∈ for i = 1, 2 we define the following classes
44 S.Prem1 & Bhuvaneswari Raja
{} EzszfzAfc Ez zf zfz Afs ∈∈ ′ ∈= ∈> ′ ∈= ),()(;)( , )( )( Re:)( * * α α α α (1.4)
, 1 )( Re 2 0 π θ α α π kd zP ≤ ∫ (1.5)
EzzP k zP k zP ∈ += ),( 2 1 4 )( 2 1 4 )(21 (1.6)
[ ] [] []0t,10),( )()()(1())()(( )()(( :)( 0>t,10),( ))()()(1())()(( )()( :)( 2 2 > <≤∈ ′ ′ ′ −+− ′′ ′′ ′ ′ + ′′ ∈= <≤∈ −−−+− ′ ′ ′ + ′′ ∈= λ α λ λ λ α λ α λ λ λ α k k k k P zfzfzfzfz zfzzfz andAffV P zfzfzfzfz zfzzfz andAffR (1.7) [] .10 ),( ))()()(1( )()(()())()((:)()()()2()( 2 23 1 <≤≤ ∈ −−+−+ ′ ′ −+− ′′ ′′ ′ + ′′ +++ ∈= γ λ α γ λ γ λ γλ λ γ γλ γλ α k k P zfzf zfzfzzfzfz andAffRzfzzfzzfz (1.8) [] [] .10 ),( )()()(1( )()(()())()((:)()()()2()( 2 23 1 <≤≤ ∈ ′ −−+−+ ′ ′ −+− ′′ ′′ ′ ′ + ′′ +++ ∈= γ λ α γ λ γ λ γλ λ γ γλ γλ α k k P zfzf zfzfzzfzfz andAffVzfzzfzzfz (1.9) We note that )()()()( 11 λ λ λ λ kkkkRfzVfRfzVf ∈ ′ ⇔ ∈ ∈ ′ ⇔ ∈ (1.10) Impact Factor (JCC): 6.6810 NAAS Rating 3.45
For 0 = = = γ λ t we obtain the well known classes Rk, Rk1, Vk, Vk1 of analytic functions with bounded radius and bounded boundary rotations, respectively. These classes are studied by Noor [3] in more details, also it can easily
result is sharp. In this paper, we prove the result of Goel [6] for the
by using convolution and Subordination techniques.
2. PRELIMINARY RESULTS
We need the following results to obtain our results.
Functions of Bounded Radius Rotation of Analytic Functions 45 www.iaset.us editor@iaset.us
seen )( )( * 2 α α S Rk = and )( )( 2 α α c V = . Goel [6]
)( α c f ∈ implies that )( * α s f ∈ and )( * α S f ∈ Where = ≠ = = + 2 1 , 2ln 2 1 2 1 , 2 4 ) 2 1(4 )( 12 α α α α β β α α and
)( α kV , )( α kR , )( 1 α kV and
1 α kR
by
proved that
the
classes
)(
Lemma 2.1: Let 2 1 2 1 , iv v v iu u u + = + = and),(vuΨ be a complex valued function satisfying the conditions (i)),(vuΨ is continuous in a domain 2C D ⊂ (ii)(1,0) D ∈ and Re)0,1( > ψ when ever 0 ) , ( 1 2 ≤ v iu when ever () 2 2 1 12 1 2 1 and ), ( u v D v iu + −≤ ∈ If ....... 1 )( 1 + + = zc zh is a function analytic in E. Such that D z zh ∈ ′ )) ( ), (( and 0 )) ( Re),(( > ′ z zhψ for ,E z ∈ then Re h(z)>0 in E.
Theorem 3.1 Let ), (α kV f ∈ then ), (α kR f ∈ where ). 1( 8 8 8 ) 4 8 ) 1( 4 4 4 ) 1( ) 2 ) 1( 4 1 2 2 22 2 2 λ λ λ λ α λ α λ α λ α α λ αλ λ α β + + + + + + + + + + + + + = Proof: Let β β λ λ λ + = + ′ + ′′ )() 1( )) ( )( )( 1( )) ( )(( )) ( )( ( 2 z P z f zf z f zfz z z fz (3.1)
3. MAIN RESULTS
46 S.Prem1 & Bhuvaneswari
= β β + +− )( 2 1 4 )( 2 1 4 )1( 21 zP k zP k (3.2) P(z) is analytic in E with P(0)=1 then [ ) [ ] [][] [] β β λ λ λ λ β λ β β λ λ λ +−−+− ′ ′ ′ +−+ ′ −+ ′ + ′′ + +−= −−−+− ′ ′ ′ ′ + ′′ )()1)(1()()( )()1( )()1()()( )()1( )()()1()()( )()( 2 2 zpzfzfz zfzz zpzfztzfz zp zfzfzfzfz zfzzfz (3.3) [ ) [ ] [][] [] [][] ++ ′ + + + = +−−+− ′ ′ ′ −−+ ′ + ′′ +−+− = −−−+− ′ ′ ′ ′ + ′′ β β β α β α α β β β λ λ β λ λ λ α β β α α λ λ λ α 1 )()(( )1()()( 1 )( 1 1 1 )()1()1()()( )1()()1()()1.()1()()( 1 )()()1()()( )()( )1( 1 2 2 zpQN zpML zp zpzfzfz zpzzfzzfz zp zfzfzfzfz zfzzfz (3.4) Where )( 2 zfzL ′′ = λ zzfzM)1()( λ λ + ′ = [ ] )()( tzfzfzN ′ ′ = λ )1( λ = Q Since )( α k Vf ∈ , it implies that () () Ezp zpQN zpML zp k ∈∈ ++ ′ + + + = , 1( )( )( 1 1 )( 1 1 1 β β β α β α α β (3.5) We define a ba z z b b z z b z + −+ + −+ = 1 , )1(1)1(1 1 )( α ϕ (3.6) with β = 1 1 a , β β = 1 b by using (3.1) with convolution,
Impact Factor (JCC): 6.6810 NAAS Rating 3.45
Raja
see [5], we have, that
and
we have
We now from functional),(vuψ by choosing )( ),( z zp v z p u i i
= = in (3.8) and note that the first two conditions of Lemma 2.1 are likely satisfied, we check the condition as follows
Functions of Bounded Radius Rotation of Analytic Functions 47 www.iaset.us editor@iaset.us + = )( * )( 2 1 4 )( * )( 2 1 4 )( * )( 2 , 1 , , z p z z k z p z z k zp z z ba ba ba ϕ ϕ ϕ Implies + + ′ + + + + + ′ + + + = + + ′ + + b z p Q N z p M L a z p k b z p Q N z p M L a z p k b zp R Q N z p M L a zp )( )( ( )( ) ( )( 2 1 4 )( )( ( )( ) ( )( 2 1 4 ) )()( ( )( ) ( )( 2 2 2 1 1 1 (3.7)
(3.5)
(3.7)
1,2 i )( )( ( )( ) ( )( ) 1( ) 1 = ∈ + + ′ + + + p b z p Q N z p M L a z p i i i α β α α β (3.8)
Thus from
[] [][] () () () () () () () )( )( )(( 1 2 1 )( )( ) 1( ) )( )( )( 1 1 )( )( ) 2 1 ) ( 1 1 )( )( ) 1( )( )( 1 )( )( )( ) ( 1 1 )( )( ) 1( )( )( ( 1 )( )( )( Re ) ( 1 1 ), ( Re 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 12 z fz zf zf u z fz zf u z fz zf zf u z fz zf u zf zf zf z fz iu zvzf pz fz zf zf tz f z fz iu zvzf pz fz v iu i i ′′ + + ′′ + ′ + = ′′ + + ′′ + ′ + ≤ ′ + ′ + ′′ + ′ + ′ ′′ + = ′ ′ ′ + ′′ ′′ + ′ + ′ + = λ β β β β λ α β λ β β β β λ α β α λ λ β β β β λ α β α λ λ β β λ α β α ψ (3.9) 2 , 2 2 2 > + = C c Bu A
′
REFERENCE
1. B.Pinchuk, “Functions of bounded boundary rotation,” Israel journal of Mathematics, vol. 10, no. 1, pp.6-16, 1971.
2. K.S.Padmanabhan and R.Parvathan, “Properties of a class of functions with bounded boundary rotation,” AnnalesPolomiciMathematici, vol.31, no.3, pp.311-323, 1975.
3. K.I. Noor, “Some properties of certain analytic function,”journal of natural geometry, vol .7, no.1, pp.11-20, 1995
4. K.I.Noor, “on some subclassesof function with bounded radius and bounded boundary rotation,”panamerican mathematical journal, vol.6, no.1, pp.75-81, 1996
5. K.L.Noor, “on analytic function related to certain family of integral operators,”journal of inequalities in pure and applied mathematics, vol.7, no.2, article 69, 6pages, 2006.
6. R.N.Goel, “functions starlike and convex of orderα ,” Journal of the London Mathematical society.Second Series, vol.s2-9, no.1, pp.128-130, 1974
7. D.A.Brannan, “on functions of bounded boundary rotation .I,” proceedings of the Edinburgh mathematical society .series II, vol.16, pp.339-347, 1969
8. D.Pinchuk, “on starlike and convex function order a,” duke mathematical journal, vol.35, pp.721-734, 1968
9. S.S.Miller, “Differential in equalities and caratheodoryfunctions,”bulletin of the American mathematical society, Impact Factor (JCC): 6.6810
NAAS Rating 3.45
48 S.Prem1 & Bhuvaneswari Raja Where [ ] ])()1()]()([()1( 1 ])()([])()]()([()1()(2[ )1( 1 )1(])()([])()]()([()(2 )1( 2 2 2 2 22 22 2 ′′′ ++−− += ′′ + ′ ′′′′ +−−− = ′′ + ′ ′′′ +−− = zfzzfzfuC zfzzfzfzzfzfB zfzzfzfzzfzfA λ λ α β β λ β λ β α β β β λ λ β α β β β (3.10) The right hand side of (3.9) is negative if 0 ≤ A we have ).1(888 )1(48)1(444)1( )2)1(2( 4 1 )( 2 22222 λ λ λ λ α λ α λ α λ α α λ αλ λ α α β β +++−+ +−++−+++ +++−== Theorem 3.2 Let ),( 1 α k Vf ∈ then ),( 1 α k Rf ∈ where ).1)(1( 12)1)(1(8)1)(1(416 )1)(1(464)1( 2)1)(1(2( 4 1 22 2 222222 λ γ γλ γ λ γ λ α λγ α λ γ α λ γ α λγ α γ λ αγλ γ λ α β +++ −+++++−+ ++−++++ ++++−= t
vol.81, pp.79-81, 1975.
10. S.S.Miller and P.T.Mocanu, “differential subordinations :theory and application ,vol.225of monographs and text bookes in pure and applied mathematicals,” marcel dekker ,new york ,NY,USA,2000
11. Z.Nahari conformal mappings, Dover, New [11] Z.Nahari conformal mappings, Dover, NewYork, NY, USA, 1952
12. I.S.Jack, “functions starlike and convex of order a,”journal of the London mathematical society .second series, vol.3, pp.469-474, 1971
13. T.H.MacGregor, “A subordination for convex function of order a,” journal of the London mathematical society second series, vol.9, pp.530-536, 1975.
Functions of Bounded Radius Rotation of Analytic Functions 49 www.iaset.us editor@iaset.us