American International Journal of Research in Science, Technology, Engineering & Mathematics
Available online at http://www.iasir.net
ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629 AIJRSTEM is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by International Association of Scientific Innovation and Research (IASIR), USA (An Association Unifying the Sciences, Engineering, and Applied Research)
Some Properties of a Subclass of Univalent Functions Related to Hypergeometric Function and its Integral V. A. Chougule1 and U. H. Naik 2 Department of Mathematics, College of Engineering, Malegaon Bk, Baramati, Pune, Maharashtra, INDIA 2 Department of Mathematics, Willingdon College, Sangli, Maharashtra, INDIA
1
Abstract: In this paper we defined class S(Îą, β, Îť) by using the class S(Îť, Îą) (see[1]) and obtained condition for hypergeometric function F(a,b;c;z)and its integral to be in this class. Keywords: univalent functions, starlike functions, convex functions, differential operator, hypergeometric function. I. Introduction Let A denotes the class of functions of the form, ∞
đ?‘“(đ?‘§) = đ?‘§ + ∑ đ?‘Žđ?‘› đ?‘§ đ?‘›
(1.1)
đ?‘›=2
which are analytic and univalent in the unit disk U = {z : |z| < 1}. Let S be subclass of A, of functions univalent in U and T be subclass of S, consisting of functions of the form, â&#x2C6;&#x17E;
đ?&#x2018;&#x201D;(đ?&#x2018;§) = đ?&#x2018;§ â&#x2C6;&#x2019; â&#x2C6;&#x2018; đ?&#x2018;?đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; (đ?&#x2018;?đ?&#x2018;&#x203A; â&#x2030;Ľ 0 )
(1.2)
đ?&#x2018;&#x203A;=2
Goodman [2] introduced classes UCV and UST of uniformly convex and uniformly starlike functions. Further Ronning studied classes UCV and UST (for more details see [3]). Among several interesting definitions given in literature (See, [4], [5], [6], [7] and many others) we recall the following, Definition 1.1 The function f(z) defined by Equation (1.1), which satisfies the condition, đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;&#x2026;đ?&#x2018;&#x2019; { â&#x2C6;&#x2019; đ?&#x203A;ź} â&#x2030;Ľ đ?&#x203A;˝ | â&#x2C6;&#x2019; 1| đ?&#x2018;&#x201C;(đ?&#x2018;§) đ?&#x2018;&#x201C;(đ?&#x2018;§) where, 0 â&#x2030;¤ đ?&#x203A;ź < 1, đ?&#x203A;˝ â&#x2030;Ľ 0 is called as β - Uniformly starlike function of order Îą. The class of β â&#x20AC;&#x201C; Uniformly starlike function of order Îą is denoted by β â&#x2C6;&#x2019;S(Îą). ď&#x201A;ˇ
đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§)
When β = 0, i.e. if đ?&#x2018;&#x2026;đ?&#x2018;&#x2019; {
} â&#x2030;Ľ đ?&#x203A;ź, the function f(z) is called starlike of order Îą.
đ?&#x2018;&#x201C;(đ?&#x2018;§)
ď&#x201A;ˇ When β = 1, the function f(z) â&#x2C6;&#x2C6; UST ď&#x201A;ˇ The function f(z) is called starlike, if both Îą and β are zero. Definition 1.2 The function f(z) defined by Equation (1.1), which satisfies the condition, đ?&#x2018;§đ?&#x2018;&#x201C; " (đ?&#x2018;§) đ?&#x2018;§đ?&#x2018;&#x201C; " (đ?&#x2018;§) đ?&#x2018;&#x2026;đ?&#x2018;&#x2019; {1 + â&#x20AC;˛ â&#x2C6;&#x2019; đ?&#x203A;ź} â&#x2030;Ľ đ?&#x203A;˝ | â&#x20AC;˛ | đ?&#x2018;&#x201C; (đ?&#x2018;§) đ?&#x2018;&#x201C; (đ?&#x2018;§) where, â&#x2C6;&#x2019;1 â&#x2030;¤ Îą < 1, β â&#x2030;Ľ 0 is called β - Uniformly Convex function of order Îą. The class of β - Uniformly convex function of order Îą is denoted by β â&#x2C6;&#x2019;K(Îą). ď&#x201A;ˇ
When β = 0, i.e. {1 +
đ?&#x2018;§đ?&#x2018;&#x201C; " (đ?&#x2018;§) đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§)
} â&#x2030;Ľ đ?&#x203A;ź , if the function f(z) is called convex of order Îą .
ď&#x201A;ˇ When β = 1, the function f(z) â&#x2C6;&#x2C6; UCV ď&#x201A;ˇ The function f(z) is called convex, if both Îą and β are zero. The classes β â&#x2C6;&#x2019;S(Îą) and β â&#x2C6;&#x2019;K(Îą) were studied by Goodman, Ronning and Minda and Ma. (see [8], [2], [3], [4]). Definition 1.3 The (Gaussian) hypergeometric function F(a,b;c;z) is defined as,
AIJRSTEM 15-726; Š 2015, AIJRSTEM All Rights Reserved
Page 21
V.A. Chougule et al., American International Journal of Research in Science, Technology, Engineering & Mathematics, 12(1), SeptemberNovember, 2015, pp. 21-26 â&#x2C6;&#x17E;
đ??š(đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§) = â&#x2C6;&#x2018; đ?&#x2018;&#x203A;=0
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; đ?&#x2018;§ (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;
(1.3)
where, c â&#x2030; 0,â&#x2C6;&#x2019;1,â&#x2C6;&#x2019;2,¡¡¡ and (x)n is the Pochhamar symbol defined using Gamma functions, Đ&#x201C;(đ?&#x2018;Ľ + đ?&#x2018;&#x203A;) 1 đ?&#x2018;&#x2013;đ?&#x2018;&#x201C; đ?&#x2018;&#x203A; = 0 (đ?&#x2018;Ľ)đ?&#x2018;&#x203A; = ={ đ?&#x2018;Ľ(đ?&#x2018;Ľ + 1)(đ?&#x2018;Ľ + 2) â&#x20AC;Ś (đ?&#x2018;Ľ + đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) đ?&#x2018;&#x2013;đ?&#x2018;&#x201C; đ?&#x2018;&#x203A;đ?&#x153;&#x2013;đ?&#x2018; = {1, 2, 3, â&#x20AC;Ś } Đ&#x201C;(đ?&#x2018;Ľ) Note: (a)n =(a+nâ&#x2C6;&#x2019;1)(a)nâ&#x2C6;&#x2019;1, (a)n = a(a+1)nâ&#x2C6;&#x2019;1 and (1)n = n! for all n â&#x2030;Ľ 1. We note that, F(a,b;c;1) converges for Re(câ&#x2C6;&#x2019;aâ&#x2C6;&#x2019;b) > 0 (see [1] [9]) and related to Gamma function defined by, â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; Đ&#x201C;(đ?&#x2018;?)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) đ??š(đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; 1) = â&#x2C6;&#x2018; = (1.4) (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) đ?&#x2018;&#x203A;=0
Ruscheweyh and Singh [10] and others used continued fractions to find sufficient conditions for zF(a, b; c; z) to be in S* (Îą) for various choices of the parameters a, b and c. Silverman [11] gave necessary and sufficient condition for zF(a,b;c;z) to be in S* (Îą), the class of functions starlike of order Îą and K(Îą), the class of functions convex of order Îą. We shall introduce a new class of univalent functions: Definition 1.4 The function f(z) defined by Equation (1.1), is said to be in class S(Îą, β, Îť), (â&#x2C6;&#x2019;1 â&#x2030;¤ Îť â&#x2030;¤ 1, Îą, β â&#x2030;Ľ 0 and z â&#x2C6;&#x2C6; U), if and only if, đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) + đ?&#x203A;źđ?&#x2018;§ 2 đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) + đ?&#x203A;˝đ?&#x2018;§ 3 đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) + đ?&#x203A;źđ?&#x2018;§ 2 đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) + đ?&#x203A;˝đ?&#x2018;§ 3 đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;&#x2026;đ?&#x2018;&#x2019; { â&#x2C6;&#x2019; đ?&#x153;&#x2020;} â&#x2030;Ľ | â&#x2C6;&#x2019; 1| (1.5) đ?&#x2018;&#x201C;(đ?&#x2018;§) đ?&#x2018;&#x201C;(đ?&#x2018;§) When β = 0 the class S(Îą, 0,Îť) â&#x2030;Ą S(Îť, Îą) as defined by B. Srutha Keerthi, B. Adolf Stephen, A. Gangadharan and S. Sivasubramanian [1]. ď&#x201A;ˇ For Îą = β = 0, the class S(0,0,Îť) is class of uniformly starlike function of order Îť, Sp(Îť). (see [9]). ď&#x201A;ˇ We let, ST(Îą, β, Îť) = S(Îą, β, Îť)â&#x2C6;Š T . II. Main Result In the present paper, we determine sufficient condition for zF(a, b; c; z) to be in the class S(Îą, β, Îť) and also give necessary and sufficient condition for zF(a, b; c; z) to be in the class ST(Îą, β ,Îť) with appropriate restrictions on a, b, c. Furthermore we consider an integral operator related to the hypergeometric function. To establish main result we need following Lemmas. LEMMA 2.1 The function f(z) defined by Equation (1.1) is in the class, S(Îą, β, Îť), (â&#x2C6;&#x2019;1 â&#x2030;¤ Îť â&#x2030;¤ 1, Îą, β â&#x2030;Ľ 0 and z â&#x2C6;&#x2C6; U), if and only if, â&#x2C6;&#x17E;
â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;)|đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;| â&#x2030;¤ 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;
(2.1)
đ?&#x2018;&#x203A;=2
PROOF: By using Equation (1.1), we can write, đ?&#x2018;§đ?&#x2018;&#x201C; â&#x20AC;˛ (đ?&#x2018;§) + đ?&#x203A;źđ?&#x2018;§ 2 đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) + đ?&#x203A;˝đ?&#x2018;§ 3 đ?&#x2018;&#x201C; â&#x20AC;˛â&#x20AC;˛â&#x20AC;˛ (đ?&#x2018;§) đ?&#x2018;? + â&#x2C6;&#x2018;(đ?&#x2018;&#x203A; + đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2))đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; = đ?&#x2018;&#x201C;(đ?&#x2018;§) đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A;
(2.2)
Substituting right hand side of above Equation (2.2) in Inequality (1.5), đ?&#x2018;? + â&#x2C6;&#x2018;(đ?&#x2018;&#x203A; + đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2))đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; đ?&#x2018;&#x2026;đ?&#x2018;&#x2019; { â&#x2C6;&#x2019; đ?&#x153;&#x2020;} đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; đ?&#x2018;? + â&#x2C6;&#x2018;(đ?&#x2018;&#x203A; + đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2))đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; â&#x2030;Ľ| â&#x2C6;&#x2019; 1| đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; that is, đ?&#x2018;? + â&#x2C6;&#x2018;(đ?&#x2018;&#x203A; + đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2))đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; đ?&#x2018;&#x2026;đ?&#x2018;&#x2019; { â&#x2C6;&#x2019; 1} + 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; đ?&#x2018;? + â&#x2C6;&#x2018;(đ?&#x2018;&#x203A; + đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2))đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; â&#x2030;Ľ| â&#x2C6;&#x2019; 1| đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; đ?&#x2018;§ đ?&#x2018;&#x203A; Using the fact that, Re(z) â&#x2030;¤ |z| and as f(z) is defined in unit disc U = {z : |z| < 1}, letting z â&#x2020;&#x2019; 1â&#x2C6;&#x2019; we get, 2 â&#x2C6;&#x2018;(đ?&#x2018;&#x203A; + đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 1)|đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; | â&#x2030;¤ 1â&#x2C6;&#x2019;đ?&#x153;&#x2020; 1 + â&#x2C6;&#x2018;|đ?&#x2018;&#x17D;đ?&#x2018;&#x203A; | Upon simplifying we get,
AIJRSTEM 15-726; Š 2015, AIJRSTEM All Rights Reserved
(2.3)
Page 22
V.A. Chougule et al., American International Journal of Research in Science, Technology, Engineering & Mathematics, 12(1), SeptemberNovember, 2015, pp. 21-26
â&#x2C6;&#x2018;â&#x2C6;&#x17E; . đ?&#x2018;&#x203A;=2(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;)|đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;| â&#x2030;¤ 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020; which is the required result. For β = 0 we get results of B. Srutha Keerthi, B. Adolf Stephen, A. Gangadharan and S. Sivasubramanian [1], [Lemma 2.1, p497]. COROLLARY 2.1 The function f(z) defined by Equation (1.1) is in the class, S(Îą, 0, Îť), (â&#x2C6;&#x2019;1 â&#x2030;¤ Îť â&#x2030;¤ 1, Îą â&#x2030;Ľ 0 and z â&#x2C6;&#x2C6;U), if and only if, â&#x2C6;&#x17E;
â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;)|đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;| â&#x2030;¤ 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x203A;=2
LEMMA 2.2 The function g(z) defined by Equation(1.2) is in the class ST(Îą, β, Îť) (â&#x2C6;&#x2019;1 â&#x2030;¤ Îť â&#x2030;¤ 1, Îą, β â&#x2030;Ľ 0 and z â&#x2C6;&#x2C6; U), if and only if, â&#x2C6;&#x17E;
â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;)đ?&#x2018;?đ?&#x2018;&#x203A; â&#x2030;¤ 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;
(2.4)
đ?&#x2018;&#x203A;=2
Prof of this Lemma is easily obtained by appropriate rearrangements in Inequality (2.1) above. As stated above, for β = 0 we get results of [1], [see Lemma 2.2, p497]. COROLLARY 2.2 The function g(z) defined by Equation (1.2) is in the class ST(Îą, 0, Îť) (â&#x2C6;&#x2019;1 â&#x2030;¤ Îť â&#x2030;¤ 1, Îą, and z â&#x2C6;&#x2C6; U), if and only if, â&#x2C6;&#x17E;
â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) â&#x2C6;&#x2019; 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;)đ?&#x2018;?đ?&#x2018;&#x203A; â&#x2030;¤ 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x203A;=2
Using Lemma 2.1 we derive the following theorem for (Gaussian) hypergeometric function. THEOREM 2.1 If a, b > 0, c > a+b+3, then the function, zF(a, b; c; z) is in the class S (Îą, β, Îť) if and only if, (đ?&#x203A;ź + 3đ?&#x203A;˝)(đ?&#x2018;&#x17D;)2 (đ?&#x2018;?)2 Đ&#x201C;(đ?&#x2018;?)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) 2 đ?&#x2018;&#x17D;đ?&#x2018;?(1 + 2đ?&#x203A;ź) đ?&#x203A;˝(đ?&#x2018;&#x17D;)3 (đ?&#x2018;?)3 [ ( + + ) + 1] â&#x2030;¤ 2 Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2)2 (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2)3 PROOF: From the Equation (1.3) â&#x2C6;&#x17E; â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A; đ??š(đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§) = â&#x2C6;&#x2018; đ?&#x2018;§ =1+â&#x2C6;&#x2018; đ?&#x2018;§ (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;=0 â&#x2C6;&#x17E;
đ?&#x2018;&#x203A;=1 â&#x2C6;&#x17E;
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;+1 (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 đ?&#x2018;&#x203A; đ?&#x2018;§đ??š(đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§) = đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;§ =đ?&#x2018;§+â&#x2C6;&#x2018; đ?&#x2018;§ (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 đ?&#x2018;&#x203A;=1
đ?&#x2018;&#x203A;=2
Therefore zF(a, b; c; z) is in the class S (Îą, β, Îť) if and only if, (using Equation (2.1)), â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;) | | â&#x2030;¤ 1â&#x2C6;&#x2019;đ?&#x153;&#x2020; (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1
(2.5)
đ?&#x2018;&#x203A;=2
L.H.S. of above Equation (2.5), â&#x2C6;&#x17E;
= â&#x2C6;&#x2018;(2(đ?&#x2018;&#x203A; + 1) + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; + 1) + 2đ?&#x203A;˝(đ?&#x2018;&#x203A; + 1)đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;) đ?&#x2018;&#x203A;=1
â&#x2C6;&#x17E;
â&#x2C6;&#x17E;
đ?&#x2018;&#x203A;=1
đ?&#x2018;&#x203A;=1
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; â&#x2030;¤ 2(1 + 2Îą) â&#x2C6;&#x2018; đ?&#x2018;&#x203A; + 2(đ?&#x203A;ź + 3đ?&#x203A;˝) â&#x2C6;&#x2018; đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; â&#x2C6;&#x17E;
â&#x2C6;&#x17E;
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; + 2đ?&#x203A;˝ â&#x2C6;&#x2018; đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) + (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020; ) â&#x2C6;&#x2018; (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;=1
đ?&#x2018;&#x203A;=1
Using Definition (1.3) and simplifying we get, Đ&#x201C;(đ?&#x2018;?)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) 2đ?&#x2018;&#x17D;đ?&#x2018;?(1 + 2đ?&#x203A;ź) 2(đ?&#x203A;ź + 3đ?&#x203A;˝)đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) â&#x2030;¤ [( + Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) 2đ?&#x203A;˝đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1)(đ?&#x2018;&#x17D; + 2)(đ?&#x2018;? + 2) + ) + 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;] â&#x2C6;&#x2019; (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 3) Which bounded above by 1â&#x2C6;&#x2019;Îť, which is true if and only if, (đ?&#x203A;ź + 3đ?&#x203A;˝)đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) Đ&#x201C;(đ?&#x2018;?)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) 2 đ?&#x2018;&#x17D;đ?&#x2018;?(1 + 2đ?&#x203A;ź) [ ( + Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) đ?&#x203A;˝đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1)(đ?&#x2018;&#x17D; + 2)(đ?&#x2018;? + 2) + ) + 1] â&#x2030;¤ 2 (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 3)
AIJRSTEM 15-726; Š 2015, AIJRSTEM All Rights Reserved
Page 23
V.A. Chougule et al., American International Journal of Research in Science, Technology, Engineering & Mathematics, 12(1), SeptemberNovember, 2015, pp. 21-26
that is, (𝛼 + 3𝛽)(𝑎)2 (𝑏)2 Г(𝑐)Г(𝑐 − 𝑎 − 𝑏) 2 𝑎𝑏(1 + 2𝛼) 𝛽(𝑎)3 (𝑏)3 [ ( + + ) + 1] ≤ 2 Г(𝑐 − 𝑎)Г(𝑐 − 𝑏) (1 − 𝜆) (𝑐 − 𝑎 − 𝑏 − 1) (𝑐 − 𝑎 − 𝑏 − 2)2 (𝑐 − 𝑎 − 𝑏 − 2)3 which proves the theorem. Clearly for β = 0 we get Theorem 2.1 of [1], p499. COROLLARY 2.3 If a, b > 0, c > a+ b+3, then the function, zF(a, b; c; z) is in the class S(α, 0, λ) if and only if Г(𝑐)Г(𝑐 − 𝑎 − 𝑏) 2𝑎𝑏(1 + 2𝛼)(𝑐 − 𝑎 − 𝑏 − 2) + 𝛼(𝑎 + 1)(𝑏 + 1) [1 + ]≤2 Г(𝑐 − 𝑎)Г(𝑐 − 𝑏) (1 − 𝜆)(𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2) Similarly using Lemma 2.2, we derive the following theorem for (Gaussian) hypergeometric function. THEOREM 2.2 If a, b > −1, ab < 0, c > a+b+3, then the function, zF(a, b; c; z) is in the class ST(α, β, λ) if and only if, Г(𝑐 + 1)Г(𝑐 − 𝑎 − 𝑏) 2(1 + 2𝛼) 2(𝛼 + 3𝛽)(𝑎 + 1)(𝑏 + 1) [ + Г(𝑐 − 𝑎)Г(𝑐 − 𝑏) (𝑐 − 𝑎 − 𝑏 − 1) (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2) 2𝛽(𝑎 + 1)(𝑏 + 1)(𝑎 + 2)(𝑏 + 2) 1−𝜆 + + ]≤0 (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2)(𝑐 − 𝑎 − 𝑏 − 3) 𝑎𝑏 that is, 𝛽(𝑎)3 (𝑏)3 + (𝛼 + 3𝛽)(𝑎)2 (𝑏)2 (𝑐 − 𝑎 − 𝑏 − 3) + 𝑎𝑏(1 + 2𝛼)(𝑐 − 𝑎 − 𝑏 − 3)2 −2 [ ] 1−𝜆 ≤ (𝑐 − 𝑎 − 𝑏 − 3)3 (2.6) PROOF: Using the conditions on a, b, c and Equation (1.3), we have, ∞ ∞ (𝑎 + 1)𝑛−2 (𝑏 + 1)𝑛−2 𝑛 (𝑎 + 1)𝑛−2 (𝑏 + 1)𝑛−2 𝑛 𝑎𝑏 𝑎𝑏 𝑧𝐹(𝑎, 𝑏; 𝑐; 𝑧) = 𝑧 + ∑ 𝑧 = 𝑧−| |∑ 𝑧 (𝑐 + 1)𝑛−2 (1)𝑛−1 (𝑐 + 1)𝑛−2 (1)𝑛−1 𝑐 𝑐 𝑛=2
𝑛=2
Therefore zF(a, b; c; z) is in the class ST(α, β, λ) if, (using Equation ( 2.4)) ∞ (𝑎 + 1)𝑛−2 (𝑏 + 1)𝑛−2 c ∑(2𝑛 + 2𝛼𝑛(𝑛 − 1) + 2𝛽𝑛(𝑛 − 1)(𝑛 − 2) − 1 − 𝜆) ≤ | | (1 − 𝜆 ) (𝑐 + 1)𝑛−2 (1)𝑛−1 ab 𝑛=2
that is, ∞
∑(2(𝑛 + 2) + 2𝛼(𝑛 + 2)(𝑛 + 1) + 2𝛽𝑛(𝑛 + 1)(𝑛 + 2) − 1 − 𝜆) 𝑛=0
that is,
(𝑎 + 1)𝑛 (𝑏 + 1)𝑛 c ≤ | | (1 − 𝜆 ) (𝑐 + 1)𝑛 (1)𝑛+1 ab
∞
∑[(2 + 4𝛼)(𝑛 + 1) + (2𝛼 + 6𝛽)𝑛(𝑛 + 1) + 2𝛽(𝑛 + 1)𝑛(𝑛 − 1) + 1 − 𝜆] 𝑛=0
(𝑎 + 1)𝑛 (𝑏 + 1)𝑛 (𝑐 + 1)𝑛 (1)𝑛+1
c | (1 − 𝜆 ) ab By using Definition 1.3 (Equation 1.4 ) and simplifying we get, Г(𝑐 + 1)Г(𝑐 − 𝑎 − 𝑏) 2(1 + 2𝛼) 2(𝛼 + 3𝛽)(𝑎 + 1)(𝑏 + 1) [ + (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2) Г(𝑐 − 𝑎)Г(𝑐 − 𝑏) (𝑐 − 𝑎 − 𝑏 − 1) 2𝛽(𝑎 + 1)(𝑏 + 1)(𝑎 + 2)(𝑏 + 2) 1−𝜆 𝑐 c (1 − 𝜆) ≤ | | (1 − 𝜆) + + ]− (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2)(𝑐 − 𝑎 − 𝑏 − 3) 𝑎𝑏 𝑎𝑏 ab that is, Г(𝑐 + 1)Г(𝑐 − 𝑎 − 𝑏) 2(1 + 2𝛼) 2(𝛼 + 3𝛽)(𝑎 + 1)(𝑏 + 1) [ + (𝑐 − 𝑎 − 𝑏 − 1) (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2) Г(𝑐 − 𝑎)Г(𝑐 − 𝑏) 2𝛽(𝑎 + 1)(𝑏 + 1)(𝑎 + 2)(𝑏 + 2) 1−𝜆 c c + + ] + | | (1 − 𝜆) ≤ | | (1 − 𝜆) (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2)(𝑐 − 𝑎 − 𝑏 − 3) 𝑎𝑏 ab ab ≤ |
that is, Г(𝑐)Г(𝑐 − 𝑎 − 𝑏) 2(1 + 2𝛼) 2(𝛼 + 3𝛽)(𝑎 + 1)(𝑏 + 1) [ + Г(𝑐 − 𝑎)Г(𝑐 − 𝑏) (𝑐 − 𝑎 − 𝑏 − 1) (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2) 2𝛽(𝑎 + 1)(𝑏 + 1)(𝑎 + 2)(𝑏 + 2) 1−𝜆 + + ]≤0 (𝑐 − 𝑎 − 𝑏 − 1)(𝑐 − 𝑎 − 𝑏 − 2)(𝑐 − 𝑎 − 𝑏 − 3) 𝑎𝑏
AIJRSTEM 15-726; © 2015, AIJRSTEM All Rights Reserved
Page 24
V.A. Chougule et al., American International Journal of Research in Science, Technology, Engineering & Mathematics, 12(1), SeptemberNovember, 2015, pp. 21-26
that is, đ?&#x203A;˝(đ?&#x2018;&#x17D;)3 (đ?&#x2018;?)3 + (đ?&#x203A;ź + 3đ?&#x203A;˝)(đ?&#x2018;&#x17D;)2 (đ?&#x2018;?)2 (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 3) + (1 + 2đ?&#x203A;ź)đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 3)2 â&#x2C6;&#x2019;2 [ ] â&#x2030;¤ (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 3)3 . 1â&#x2C6;&#x2019;đ?&#x153;&#x2020; Which proves the theorem. Clearly for β = 0 we get Theorem 2.2 of [1], p500. III. Integral Operator In this section, we obtain similar type of results in connection with a particular integral operator G(a, b; c; z) acting on F(a ,b; c; z) as follows: â&#x2C6;&#x17E; z (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 đ?&#x2018;&#x203A; (3.1) đ??ş(đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§) = â&#x2C6;Ť đ??š(đ?&#x2018;&#x17D; , đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;Ą)dt = đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;§ (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (1)đ?&#x2018;&#x203A; 0 đ?&#x2018;&#x203A;=2
THEOREM 3.1 If a, b > 1, and, c > a+ b+ 3, then the function, G(a, b; c; z) defined by Equation 3.1 is in the class S(Îą, β, Îť) if and only if, (3 â&#x2C6;&#x2019; đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) Đ&#x201C;(đ?&#x2018;?)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) 2đ?&#x203A;źđ?&#x2018;&#x17D;đ?&#x2018;? 2đ?&#x203A;˝đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) [2 + + â&#x2C6;&#x2019; ] (đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) (3 â&#x2C6;&#x2019; đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; 1) + â&#x2030;¤ 2(1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) (3.2) (đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) PROOF: By Lemma 2.1, G(a, b; c; z) defined by Equation 3.1 is in the class S(Îą, β, Îť) if and only if, â&#x2C6;&#x17E; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;) | |â&#x2030;¤ 1â&#x2C6;&#x2019;đ?&#x153;&#x2020; (3.3) (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (1)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;=2
Left Hand side of above Equation 3.3
â&#x2C6;&#x17E;
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 = â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 3 + đ?&#x153;&#x2020;) | | (đ?&#x2018;?)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (1)đ?&#x2018;&#x203A; đ?&#x2018;&#x203A;=2 â&#x2C6;&#x17E;
â&#x2C6;&#x17E;
â&#x2C6;&#x17E;
â&#x2C6;&#x17E;
đ?&#x2018;&#x203A;=1
đ?&#x2018;&#x203A;=1
đ?&#x2018;&#x203A;=0
(đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D;)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; = 2â&#x2C6;&#x2018; + 2đ?&#x203A;ź â&#x2C6;&#x2018; + 2đ?&#x203A;˝ â&#x2C6;&#x2018; â&#x2C6;&#x2019; (3 â&#x2C6;&#x2019; đ?&#x153;&#x2020; ) [â&#x2C6;&#x2018; â&#x2C6;&#x2019; 1] (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (đ?&#x2018;?)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;+1 đ?&#x2018;&#x203A;=1
(3 â&#x2C6;&#x2019; đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) Đ&#x201C;(đ?&#x2018;?)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?) 2đ?&#x203A;źđ?&#x2018;&#x17D;đ?&#x2018;? 2đ?&#x203A;˝đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) = [2 + + â&#x2C6;&#x2019; ] (đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) (3 â&#x2C6;&#x2019; đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; 1) + â&#x2C6;&#x2019; (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) (đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) Which is bounded above by (1â&#x2C6;&#x2019;Îť), hence G(a, b; c; z) is in the class S (Îą, β, Îť) if and only if, Inequality 3.2 is satisfied, that proves the theorem. THEOREM 3.2 If a, b > â&#x2C6;&#x2019;1,ab < 0, c > a+b+3, then the function, G(a, b; c; z) defined by Equation 3.1 is in the class ST(Îą, β, Îť) if and only if, Đ&#x201C;(đ?&#x2018;? + 1)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) 2 2đ?&#x203A;˝(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) (1 + đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1)2 [ (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) + 2đ?&#x203A;ź + â&#x2C6;&#x2019; ] (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) (đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)2 (đ?&#x2018;? â&#x2C6;&#x2019; 1)2 Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) đ?&#x2018;&#x17D;đ?&#x2018;? (1 + đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; 1)2 (3.4) + â&#x2030;¤ 0 (đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)2 (đ?&#x2018;? â&#x2C6;&#x2019; 1)2 PROOF: Using the conditions on a, b, c we have, â&#x2C6;&#x17E; â&#x2C6;&#x17E; (đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (đ?&#x2018;? + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (đ?&#x2018;? + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 đ?&#x2018;&#x203A; đ?&#x2018;&#x17D;đ?&#x2018;? đ?&#x2018;&#x17D;đ?&#x2018;? đ??ş(đ?&#x2018;&#x17D;, đ?&#x2018;?; đ?&#x2018;?; đ?&#x2018;§) = đ?&#x2018;§ + â&#x2C6;&#x2018; đ?&#x2018;§ = đ?&#x2018;§â&#x2C6;&#x2019;| |â&#x2C6;&#x2018; đ?&#x2018;§ (đ?&#x2018;? + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (1)đ?&#x2018;&#x203A; đ?&#x2018;? đ?&#x2018;? đ?&#x2018;&#x203A;=2
đ?&#x2018;&#x203A;=2
Therefore G(a, b; c; z) is in the class ST(Îą, β, Îť) if and only if, (using Lemma 2.2) â&#x2C6;&#x17E; (đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (đ?&#x2018;? + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 đ?&#x2018;? â&#x2C6;&#x2018;(2đ?&#x2018;&#x203A; + 2đ?&#x203A;źđ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 1)(đ?&#x2018;&#x203A; â&#x2C6;&#x2019; 2) â&#x2C6;&#x2019; 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) â&#x2030;¤ | | (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) (đ?&#x2018;? + 1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;2 (1)đ?&#x2018;&#x203A; đ?&#x2018;&#x17D;đ?&#x2018;? đ?&#x2018;&#x203A;=2
Left hand side of above inequality is â&#x2C6;&#x17E;
= â&#x2C6;&#x2018;(2(đ?&#x2018;&#x203A; + 2) + 2đ?&#x203A;ź(đ?&#x2018;&#x203A; + 2)(đ?&#x2018;&#x203A; + 1) + 2đ?&#x203A;˝đ?&#x2018;&#x203A;(đ?&#x2018;&#x203A; + 1)(đ?&#x2018;&#x203A; + 2) â&#x2C6;&#x2019; 1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) đ?&#x2018;&#x203A;=0
AIJRSTEM 15-726; Š 2015, AIJRSTEM All Rights Reserved
(đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;+2
Page 25
V.A. Chougule et al., American International Journal of Research in Science, Technology, Engineering & Mathematics, 12(1), SeptemberNovember, 2015, pp. 21-26 â&#x2C6;&#x17E;
= 2â&#x2C6;&#x2018; đ?&#x2018;&#x203A;=0
â&#x2C6;&#x17E;
â&#x2C6;&#x17E;
đ?&#x2018;&#x203A;=0
đ?&#x2018;&#x203A;=1
(đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; + 2đ?&#x203A;ź â&#x2C6;&#x2018; + 2đ?&#x203A;˝ â&#x2C6;&#x2018; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;+1 (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;â&#x2C6;&#x2019;1 â&#x2C6;&#x17E;
(đ?&#x2018;&#x17D; + 1)đ?&#x2018;&#x203A; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; â&#x2C6;&#x2019; (1 + đ?&#x153;&#x2020; ) â&#x2C6;&#x2018; (đ?&#x2018;? + 1)đ?&#x2018;&#x203A; (1)đ?&#x2018;&#x203A;+2 đ?&#x2018;&#x203A;=0
Đ&#x201C;(đ?&#x2018;? + 1)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) 2 2đ?&#x203A;˝(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) = [ (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) + 2đ?&#x203A;ź + (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) đ?&#x2018;&#x17D;đ?&#x2018;? (1 + đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (1 + đ?&#x153;&#x2020;)đ?&#x2018;?(đ?&#x2018;? â&#x2C6;&#x2019; 1) đ?&#x2018;? â&#x2C6;&#x2019; ]+ â&#x2C6;&#x2019; (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) đ?&#x2018;&#x17D;đ?&#x2018;? Đ&#x201C;(đ?&#x2018;? + 1)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) 2 2đ?&#x203A;˝(đ?&#x2018;&#x17D; + 1)(đ?&#x2018;? + 1) = [ (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) + 2đ?&#x203A;ź + (đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 2) Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D;)Đ&#x201C;(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;?) đ?&#x2018;&#x17D;đ?&#x2018;? (1 + đ?&#x153;&#x2020;)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;?)(đ?&#x2018;? â&#x2C6;&#x2019; đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;? â&#x2C6;&#x2019; 1) (1 + đ?&#x153;&#x2020;)đ?&#x2018;?(đ?&#x2018;? â&#x2C6;&#x2019; 1) đ?&#x2018;? â&#x2C6;&#x2019; ]+ + (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;) | | đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) đ?&#x2018;&#x17D;đ?&#x2018;?(đ?&#x2018;&#x17D; â&#x2C6;&#x2019; 1)(đ?&#x2018;? â&#x2C6;&#x2019; 1) đ?&#x2018;&#x17D;đ?&#x2018;? Which is bounded above by |
c
ab
| (1 â&#x2C6;&#x2019; đ?&#x153;&#x2020;), hence we get the inequality 3.4, which completes the proof.
Remarks: In above results, ď&#x201A;ˇ For β = 0, we get results of B. Srutha Keerthi, B. Adolf Stephen, A. Gangadharan and S. Sivasubramanian of [1]. ď&#x201A;ˇ For choice of Îą = β = 0, we get results of N.E. Cho, S.Y. Woo and S. Owa [9]. Acknowledgements: The authors are thankful to referees for their valuable suggestions. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
A. Gangadharan B. Srutha Keerthi, B. Adolf Stephen and S. Sivasubramanian. Some properties of hypergeometric functions for certain classes of starlike functions. Indian J. of Maths., 50(3):495â&#x20AC;&#x201C;504, 2008. A. W. Goodman. On uniformly starlike functions. J. of Mathematical Analysis and Appl., 155:364â&#x20AC;&#x201C;370, 1991. Frode Ronning. Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc., 118:189â&#x20AC;&#x201C; 196, 1993. Abdul Shakor S. Teim. On a subclasses of univalent uniformly convex functions defined by certain linear operator. Int. J. Contemp. Math. Sci., 4(24):1159â&#x20AC;&#x201C;1173, 2009. Thomas Rosy G.Muru. and Maslina Duras. A subclass of uniformly convex functions associated with certain fractional calculus operators. J. Ineq. Pure and appl. Math, 6(3):1â&#x20AC;&#x201C;10, 2005. J. M. Shenan. On subclass of β unifromly convex function. nt. Journal of Math. Analysis, 2(11):499â&#x20AC;&#x201C;512, 2008. H.M.Srivastava and S. Owa. Current topics in analytic function theory. World Scientific Publishing Company, Singapure, New Jersey, London and Hong Kong, 1992. A. W. Goodman. On uniformly convex functions. Ann. Polon. Math., 56:87â&#x20AC;&#x201C; 92, 1991. S.Y. Woo N.E. Cho and S. Owa. Uniform convexity properties for hypergeometric functions. Fract. Calc. Appl. Anal., 5(3):303â&#x20AC;&#x201C; 313, 2002. St. Ruscheweyh and V. Singh. On order of starlikeness of hypergeometric functions. J. of Mathematical Analysis and Appl., 113:1â&#x20AC;&#x201C;11, 1986. H. Silverman. Starlike and convexity properties for hypergeometric functions J. of Mathematical Analysis and Appl., 172:574â&#x20AC;&#x201C; 581, 1993.
AIJRSTEM 15-726; Š 2015, AIJRSTEM All Rights Reserved
Page 26