Realistic simulation of konar dam

Page 1

3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Numerical Modeling of Konar Dam

Mr Ankur Agarwal


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

CAD modeling

5

Geometry was created using 2D sections of all blocks

Cavities, Shafts, Galleries are modeled in 3D model

Foundation considered

Geometry was created in Abaqus/CAE and in CATIA V6


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

DAM Blocks

Non Overflow section

6

Overflow section


3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Mesh Details

7

Total number of nodes: 3028358 Total number of elements: 2672744 2489221 linear hexahedral elements of type C3D8T 36326 linear wedge elements of type C3D6T 147197 quadratic tetrahedral elements of type C3D10


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Material Properties 

Concrete

Rock

Elastic Modulus: 2.1E5 Kg/cm2

Elastic Modulus: 1.2E5 Kg/cm2

Poissons ratio: 0.2

Poissons Ratio: 0.2

Density: 2400 Kg/m3

Density: 2500 Kg/m3

Thermal Conductivity: 2.33 W/(m-K)

Cohesion: 2.5Mpa

Specific Heat: 960 J/(Kg-K) Thermal expansion: 1E-5

8

Frictional Angle: 45ᵒ


3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

3D Analysis Models


Interactions:

*Tie, name=CP-1-Block-12-1-Block-13-1, adjust=yes, type=SURFACE TO SURFACE CP-2-Block-13-1, CP-1-Block-12-1

3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Model: 3D analysis of Block 13

10

*Tie, name=CP-1-Block-13-1-Block-14-1, adjust=yes, type=SURFACE TO SURFACE CP-1-Block-14-1, CP-1-Block-13-1 *Tie, name=Constraint-3, adjust=no

Block -13

CP-2-foundation-1, CP-2-Block-12-1 *Tie, name=Constraint-4, adjust=no CP-6-foundation-1, CP-6-Block-13-1 *Tie, name=Constraint-5, adjust=no CP-11-foundation-1, CP-11-Block-14-1

In this analysis, tie constraints are used to define interaction between blocks and foundation. This restricts slipping and opening between blocks and foundation.


Air and Reservoir temp 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Reference: ZHU Bofang

11

H1=(FF6+2154)/39.37

w=(2*3.14)/(365*24*60*60)

g=exp(-0.04*H1)

c=(15-g*25)/(1-g)

Tmy=c+((25-c)*(exp(0.04*((coords(3)-FF6)/39.37))))

e=2.15-(1.3*(exp(0.085*((coords(3)-FF6)/39.37))))

b0=0.018

Ay=7.5*(exp(b0*((coords(3)-FF6)/39.37)))

tyt=Tmy+Ay*cos(w*(TIME(1)-e*24*60*60))


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Loads 

Mechanical Loads  Gravity Load  Varying water level,  Silt

load

Thermal Loads:  Convection

 Radiation to ambient  Direct

air temperature on down stream face

Solar radiation on downstream face

 Convection

to water on upstream face

 Convection

to air above water level on upstream face

 Thermal

12

to air on downstream face

Radiation to air above water surface on upstream face


Step-1: Static Analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Gravity Load is applied in step-1= 9.81m/s2

13

In the first step, gravity load is applied on the blocks and foundation. The units are converted to units: Kg, inch, sec: 386.21inch/s2


Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Horizontal and Vertical Silt Load is applied

14

In the second step, horizontal and vertical downward silt load is applied on dam blocks below 1584inch from the top of dam. Units are in Kg, inch, sec Horizontal silt load expression: (360 * 386.219 * ( 1584 + Z ) ) / (39.37 * 39.37 * 39.37), where z is measured negatively from the top of the dam downwards Vertical silt load expression: (925 * 386.219 * ( 1584 + Z ) ) / (39.37 * 39.37 * 39.37)


Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Varying hydrostatic pressure

15

In the second step, varying hydrostatic pressure is applied. Water level is varied using subroutine DLOAD and hydrostatic pressure load is applied depending on the location vertically downwards from the reservoir surface. Units is Kg, inch, sec Density=0.016387162 Gravity=386.27 Pressure=density*gravity*(H-coords(3)), where H is water head and Coords(3) gives the location of load points.


Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Convection on upstream face

16

Surface Film condition is defined on upstream face to define convection heat loss to water and air. Subroutine FILM is defined to monitor water level and heat loss to water below water surface and heat loss to air above water surface Heat coefficient water: 556 W/(m2-K) Heat coefficent air: 55.6 W/(m2-K) Water temperature and air temperature is varied as shown earlier.


Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Convection to air on downstream face

17

Surface Film condition is defined on downstream face to define convection heat loss to air. Heat coefficent air: 55.6 W/(m2-K) Air temperature is varied as shown earlier.


Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Thermal radiation heat loss to Air on downstream face

18

Surface radiation is defined on the downsteam face for the heat gained/loss to air Emissivity: 0.90 Air temperature is varied as shown earlier. Newtons law of cooling=


Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Solar radiation heat flux

19

Solar radiation is varied on the downstream face which depends on day of the month and time in day. CBRI method is used to compute heat flux. Subroutine DFLUX is written to compute total flux on surface. n= no. of days t= time in day B=(360*(n-81)/365)*3.14/180 EOT=9.87*sin(2*B)-7.53*cos(B)-1.5*sin(B) TC=4*(85.77-82.5)+EOT LST=t+TC/60 th=15*(LST-12)+360 dec=Asin(sin(23.45*3.14/180)*sin(360*(n-81)*3.14/365/180))*180/3.14 clat=cos(23.9*3.14/180) slat=sin(23.9*3.14/180) ALT=Asin(slat*sin(dec*3.14/180)+clat*cos(dec*3.14/180)*cos(th*3.14/180))*180/3.14 Azi=180+(Acos((slat*cos(dec*3.14/180)*cos(th*3.14/180)clat*sin(dec*3.14/180))/cos(ALT*3.14/180)))*180/3.14 Zd=Acos(slat*sin(dec*3.14/180)+clat*cos(dec*3.14/180)*cos(th*3.14/180))*180/3.14 B1=Azi-165


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Sun tracker

20

Jan’13

July’13

Apr’13

Oct’13


3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

2D Analysis Models


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Mesh Details

22

DAM

Total number of nodes: 1649 Total number of elements: 1381 935 linear quadrilateral elements of type CPE4RT 396 linear quadrilateral elements of type CPE4R 29 linear triangular elements of type CPE3T 21 linear triangular elements of type CPE3

Rock

DAM is modeled with coupled tempdisplacement elements Rock is modeled with displacement dof elements


3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Interaction

23

Node to Node Connectivity No relative sliding or opening allowed


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Initial Conditions

24

Initial temperature: 26.66ᵒC

Symmetric boundary condition in xdirection Symmetric boundary condition in ydirection


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Step-1: Static Analysis

25

Gravity Load: 9.8ms-2


Step-2: Coupled Temp-Displacement analysis 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Mechanical Loads

26

• •

Gravity Load: 9.8ms-2

Upstream Hydrostatic Pressure

Upstream Silt Load in vertical and horizontal direction

Water level is varied using DLOAD subroutine for three years Silt load is assumed to be at constant level


Step-2: Coupled Temp-Displacement analysis 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Thermal Loads

27

• •

Upstream convection to water below water level

Upstream convection to air above water level

Upstream radiation to air above water level

Downstream radiation to air

Downstream convection to air

Downstream solar radiation

Upstream air temperature is varied for three years Upstream water temperature is varied due to air temperature fluctuations using ZHU Bofang equations • Solar radiation is computed on a sloping surface using Radiation equations


2D Analysis Models: Block 8 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

User subroutine: 2d_block8_withfoundation_2.f

28

Model No.

Model Name

2D1

2d_Block8_withfoundation_2.inp

2D2

2d_Block8_rigidfoundation_2.inp

2D3

2d_Block8_withfoundation_2_YM3.inp

2D4

2d_Block8_withfoundation_2_YM35.inp

2D5

2d_Block8_withfoundation_2_MU18.inp

2D6

2d_Block8_withfoundation_2_MU22.inp

2D7

2d_Block8_withfoundation_2_alpha08.inp

2D8

2d_Block8_withfoundation_2_alpha12.inp

2D9

2d_Block8_withfoundation_2_withcrack.inp

2D10

2d_Block8_withfoundation_2_nogalleries.inp

2D11

2d_Block8_withfoundation_2_withcohuplift.inp


3D Analysis Models: Block 13 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

User subroutine: 3d_block13_withfoundation_2.f

29

Model No.

Model Name

1

3d_Block8_withfoundation_2.inp

2

3d_Block8_rigidfoundation_2.inp

3

3d_Block8_withfoundation_2_YM3.inp

4

3d_Block8_withfoundation_2_YM35.inp

5

3d_Block8_withfoundation_2_MU18.inp

6

3d_Block8_withfoundation_2_MU22.inp

7

3d_Block8_withfoundation_2_alpha08.inp

8

3d_Block8_withfoundation_2_alpha12.inp

9

3d_Block8_withfoundation_2_withcrack.inp

10

3d_Block8_withfoundation_2_nogalleries.inp

11

3d_Block8_withfoundation_2_withcohuplift.inp

12

3d_Block8_withfoundation_2_galleryfilm.inp


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Results: 2D Analysis


3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Air and Water Temperature Variation

31


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Model-2D1: 2d_Block8_withfoundation_2.inp Upper Gallery: S22

33


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Model-2D4: 2d_Block8_withfoundation_2_YM35.inp Upper Gallery: S22

34


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Model-2D8: 2d_Block8_withfoundation_2_alpha12.inp Upper Gallery: S22

35


3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Model-2D10: 2d_Block8_withfoundation_2_nogalleries.inp Upper Gallery: S22

36


3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015

Summary

37

Models

Max Stress S22 in Upper Gallery

2d_Block8_withfoundation_2.inp

0.411Mpa

2d_Block8_withfoundation_2_YM35.inp

0.824Mpa

2d_Block8_withfoundation_2_alpha12.inp

0.512 Mpa

2d_Block8_withfoundation_2_MU22.inp

0.413 Mpa

2d_Block8_withfoundation_2_nogalleries.inp

0.295Mpa


38

3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.