3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Numerical Modeling of Konar Dam
Mr Ankur Agarwal
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
CAD modeling
5
Geometry was created using 2D sections of all blocks
Cavities, Shafts, Galleries are modeled in 3D model
Foundation considered
Geometry was created in Abaqus/CAE and in CATIA V6
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
DAM Blocks
Non Overflow section
6
Overflow section
3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Mesh Details
7
Total number of nodes: 3028358 Total number of elements: 2672744 2489221 linear hexahedral elements of type C3D8T 36326 linear wedge elements of type C3D6T 147197 quadratic tetrahedral elements of type C3D10
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Material Properties
Concrete
Rock
Elastic Modulus: 2.1E5 Kg/cm2
Elastic Modulus: 1.2E5 Kg/cm2
Poissons ratio: 0.2
Poissons Ratio: 0.2
Density: 2400 Kg/m3
Density: 2500 Kg/m3
Thermal Conductivity: 2.33 W/(m-K)
Cohesion: 2.5Mpa
Specific Heat: 960 J/(Kg-K) Thermal expansion: 1E-5
8
Frictional Angle: 45ᵒ
3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
3D Analysis Models
Interactions:
*Tie, name=CP-1-Block-12-1-Block-13-1, adjust=yes, type=SURFACE TO SURFACE CP-2-Block-13-1, CP-1-Block-12-1
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Model: 3D analysis of Block 13
10
*Tie, name=CP-1-Block-13-1-Block-14-1, adjust=yes, type=SURFACE TO SURFACE CP-1-Block-14-1, CP-1-Block-13-1 *Tie, name=Constraint-3, adjust=no
Block -13
CP-2-foundation-1, CP-2-Block-12-1 *Tie, name=Constraint-4, adjust=no CP-6-foundation-1, CP-6-Block-13-1 *Tie, name=Constraint-5, adjust=no CP-11-foundation-1, CP-11-Block-14-1
In this analysis, tie constraints are used to define interaction between blocks and foundation. This restricts slipping and opening between blocks and foundation.
Air and Reservoir temp 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Reference: ZHU Bofang
11
H1=(FF6+2154)/39.37
w=(2*3.14)/(365*24*60*60)
g=exp(-0.04*H1)
c=(15-g*25)/(1-g)
Tmy=c+((25-c)*(exp(0.04*((coords(3)-FF6)/39.37))))
e=2.15-(1.3*(exp(0.085*((coords(3)-FF6)/39.37))))
b0=0.018
Ay=7.5*(exp(b0*((coords(3)-FF6)/39.37)))
tyt=Tmy+Ay*cos(w*(TIME(1)-e*24*60*60))
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Loads
Mechanical Loads Gravity Load Varying water level, Silt
load
Thermal Loads: Convection
Radiation to ambient Direct
air temperature on down stream face
Solar radiation on downstream face
Convection
to water on upstream face
Convection
to air above water level on upstream face
Thermal
12
to air on downstream face
Radiation to air above water surface on upstream face
Step-1: Static Analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Gravity Load is applied in step-1= 9.81m/s2
13
In the first step, gravity load is applied on the blocks and foundation. The units are converted to units: Kg, inch, sec: 386.21inch/s2
Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Horizontal and Vertical Silt Load is applied
14
In the second step, horizontal and vertical downward silt load is applied on dam blocks below 1584inch from the top of dam. Units are in Kg, inch, sec Horizontal silt load expression: (360 * 386.219 * ( 1584 + Z ) ) / (39.37 * 39.37 * 39.37), where z is measured negatively from the top of the dam downwards Vertical silt load expression: (925 * 386.219 * ( 1584 + Z ) ) / (39.37 * 39.37 * 39.37)
Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Varying hydrostatic pressure
15
In the second step, varying hydrostatic pressure is applied. Water level is varied using subroutine DLOAD and hydrostatic pressure load is applied depending on the location vertically downwards from the reservoir surface. Units is Kg, inch, sec Density=0.016387162 Gravity=386.27 Pressure=density*gravity*(H-coords(3)), where H is water head and Coords(3) gives the location of load points.
Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Convection on upstream face
16
Surface Film condition is defined on upstream face to define convection heat loss to water and air. Subroutine FILM is defined to monitor water level and heat loss to water below water surface and heat loss to air above water surface Heat coefficient water: 556 W/(m2-K) Heat coefficent air: 55.6 W/(m2-K) Water temperature and air temperature is varied as shown earlier.
Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Convection to air on downstream face
17
Surface Film condition is defined on downstream face to define convection heat loss to air. Heat coefficent air: 55.6 W/(m2-K) Air temperature is varied as shown earlier.
Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Thermal radiation heat loss to Air on downstream face
18
Surface radiation is defined on the downsteam face for the heat gained/loss to air Emissivity: 0.90 Air temperature is varied as shown earlier. Newtons law of cooling=
Step-2: Coupled thermo-structural analysis 3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Solar radiation heat flux
19
Solar radiation is varied on the downstream face which depends on day of the month and time in day. CBRI method is used to compute heat flux. Subroutine DFLUX is written to compute total flux on surface. n= no. of days t= time in day B=(360*(n-81)/365)*3.14/180 EOT=9.87*sin(2*B)-7.53*cos(B)-1.5*sin(B) TC=4*(85.77-82.5)+EOT LST=t+TC/60 th=15*(LST-12)+360 dec=Asin(sin(23.45*3.14/180)*sin(360*(n-81)*3.14/365/180))*180/3.14 clat=cos(23.9*3.14/180) slat=sin(23.9*3.14/180) ALT=Asin(slat*sin(dec*3.14/180)+clat*cos(dec*3.14/180)*cos(th*3.14/180))*180/3.14 Azi=180+(Acos((slat*cos(dec*3.14/180)*cos(th*3.14/180)clat*sin(dec*3.14/180))/cos(ALT*3.14/180)))*180/3.14 Zd=Acos(slat*sin(dec*3.14/180)+clat*cos(dec*3.14/180)*cos(th*3.14/180))*180/3.14 B1=Azi-165
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Sun tracker
20
Jan’13
July’13
Apr’13
Oct’13
3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
2D Analysis Models
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Mesh Details
22
DAM
Total number of nodes: 1649 Total number of elements: 1381 935 linear quadrilateral elements of type CPE4RT 396 linear quadrilateral elements of type CPE4R 29 linear triangular elements of type CPE3T 21 linear triangular elements of type CPE3
•
Rock
•
DAM is modeled with coupled tempdisplacement elements Rock is modeled with displacement dof elements
3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Interaction
23
Node to Node Connectivity No relative sliding or opening allowed
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Initial Conditions
24
Initial temperature: 26.66ᵒC
Symmetric boundary condition in xdirection Symmetric boundary condition in ydirection
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Step-1: Static Analysis
25
Gravity Load: 9.8ms-2
Step-2: Coupled Temp-Displacement analysis 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Mechanical Loads
26
• •
Gravity Load: 9.8ms-2
Upstream Hydrostatic Pressure
Upstream Silt Load in vertical and horizontal direction
Water level is varied using DLOAD subroutine for three years Silt load is assumed to be at constant level
Step-2: Coupled Temp-Displacement analysis 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Thermal Loads
27
• •
Upstream convection to water below water level
Upstream convection to air above water level
Upstream radiation to air above water level
Downstream radiation to air
Downstream convection to air
Downstream solar radiation
Upstream air temperature is varied for three years Upstream water temperature is varied due to air temperature fluctuations using ZHU Bofang equations • Solar radiation is computed on a sloping surface using Radiation equations
2D Analysis Models: Block 8 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
User subroutine: 2d_block8_withfoundation_2.f
28
Model No.
Model Name
2D1
2d_Block8_withfoundation_2.inp
2D2
2d_Block8_rigidfoundation_2.inp
2D3
2d_Block8_withfoundation_2_YM3.inp
2D4
2d_Block8_withfoundation_2_YM35.inp
2D5
2d_Block8_withfoundation_2_MU18.inp
2D6
2d_Block8_withfoundation_2_MU22.inp
2D7
2d_Block8_withfoundation_2_alpha08.inp
2D8
2d_Block8_withfoundation_2_alpha12.inp
2D9
2d_Block8_withfoundation_2_withcrack.inp
2D10
2d_Block8_withfoundation_2_nogalleries.inp
2D11
2d_Block8_withfoundation_2_withcohuplift.inp
3D Analysis Models: Block 13 3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
User subroutine: 3d_block13_withfoundation_2.f
29
Model No.
Model Name
1
3d_Block8_withfoundation_2.inp
2
3d_Block8_rigidfoundation_2.inp
3
3d_Block8_withfoundation_2_YM3.inp
4
3d_Block8_withfoundation_2_YM35.inp
5
3d_Block8_withfoundation_2_MU18.inp
6
3d_Block8_withfoundation_2_MU22.inp
7
3d_Block8_withfoundation_2_alpha08.inp
8
3d_Block8_withfoundation_2_alpha12.inp
9
3d_Block8_withfoundation_2_withcrack.inp
10
3d_Block8_withfoundation_2_nogalleries.inp
11
3d_Block8_withfoundation_2_withcohuplift.inp
12
3d_Block8_withfoundation_2_galleryfilm.inp
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Results: 2D Analysis
3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Air and Water Temperature Variation
31
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Model-2D1: 2d_Block8_withfoundation_2.inp Upper Gallery: S22
33
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Model-2D4: 2d_Block8_withfoundation_2_YM35.inp Upper Gallery: S22
34
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Model-2D8: 2d_Block8_withfoundation_2_alpha12.inp Upper Gallery: S22
35
3DS.COM Š Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Model-2D10: 2d_Block8_withfoundation_2_nogalleries.inp Upper Gallery: S22
36
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015
Summary
37
Models
Max Stress S22 in Upper Gallery
2d_Block8_withfoundation_2.inp
0.411Mpa
2d_Block8_withfoundation_2_YM35.inp
0.824Mpa
2d_Block8_withfoundation_2_alpha12.inp
0.512 Mpa
2d_Block8_withfoundation_2_MU22.inp
0.413 Mpa
2d_Block8_withfoundation_2_nogalleries.inp
0.295Mpa
38
3DS.COM © Dassault Systèmes | Confidential Information | 4/8/16 | ref.: 3DS_Document_2015