IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue I Ver. VI (Jan. - Feb. 2017), PP 21-24 www.iosrjournals.org
Properties (T) and (Gt) for f (T) Type Operators Adel Babbah1, Mohamed Zohry2, MohamedArrazaki3, Anass Elhaddadi4 1
(University AbdelmalekEssaadi, Faculty of sciences, Mathematics Department,B.P. 2121, Tetouan, Morocco) (University AbdelmalekEssaadi, Faculty of sciences, Mathematics Department,B.P. 2121, Tetouan, Morocco) 3 (University AbdelmalekEssaadi, Faculty of sciences, Mathematics Department,B.P. 2121, Tetouan, Morocco) 4 (DĂŠpartement of MathĂŠmatics&Informatic, ENSA Al-Hoceima, Morocco) 2
Abstract: in this paper we establish the relation with property (t) and (gt) introduced by M. H. M. RACHID in [1] and sprectrale mapping theorem. We will special establish several sufficient and necessary conditions for which f(T) verify the (t) and (gt) as f an analytic function on the T spectrum and see the validity of these results for the semi- Browder operators. Analogously we ask question about the conditions for which the spectral theory hold for generalized a-weyl’s theorem and generalized a-browder’s theorem [18]. Keywords: generalized a-weyl’s theorem. Generalized a-browder’stheorem . Semi-Browder operators. Property (t).Property (gt).Spectral theory.
I. Introduction and Preliminary Throughout this paper, X denote an infinite-dimentional complex space, L(X) the algebra of all bounded linear operators on X. For đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;), let đ?&#x2018;&#x2021; â&#x2C6;&#x2014; , ker đ?&#x2018;&#x2021; , đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; , đ?&#x153;? đ?&#x2018;&#x2021; , đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x153;?đ?&#x2018; (đ?&#x2018;&#x2021;)denote the adjoint, the null space, the range, the spectrum, the approximate point spectrum and the surjectivity spectrum of T respectively. Let đ?&#x203A;ź đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;˝(đ?&#x2018;&#x2021;)be the nullity and deficiency of T defined by đ?&#x203A;ź đ?&#x2018;&#x2021; = dim kerâ Ą (đ?&#x2018;&#x2021;) đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;˝ đ?&#x2018;&#x2021; = codim đ?&#x2018;&#x2026;(đ?&#x2018;&#x2021;). Let đ?&#x2018;&#x2020;đ??š+ đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; : đ?&#x203A;ź(đ?&#x2018;&#x2021;) < â&#x2C6;&#x17E; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;&#x2018;}and đ?&#x2018;&#x2020;đ??šâ&#x2C6;&#x2019; đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; : đ?&#x203A;˝(đ?&#x2018;&#x2021;) < â&#x2C6;&#x17E;}denote the semi-group of upper semi-Fredholm and lower semi-Fredholm operators on X respectively. If both đ?&#x203A;ź đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;˝ đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018;&#x2019; đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; , then T is called Fredholm operator. If T is semi-Fredholm then the index of T is definedby đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2021; = đ?&#x203A;ź đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x203A;˝(đ?&#x2018;&#x2021;). A bounded linear operator T acting on a Banach space X is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. Let â&#x201E;&#x201A; denote the set of complex numbers. The Weyl spectrum and Browder spectrum of T are defined by đ?&#x153;?đ?&#x2018;¤ đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; : đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ?&#x2018;&#x160;đ?&#x2018;&#x2019;đ?&#x2018;Śđ?&#x2018;&#x2122;}and đ?&#x153;?đ?&#x2018;? đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; : đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ??ľđ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;¤đ?&#x2018;&#x2018;đ?&#x2018;&#x2019;đ?&#x2018;&#x;}respectively. For T â&#x2C6;&#x2C6; L(X), SF+â&#x2C6;&#x2019; X = {T â&#x2C6;&#x2C6; SF+ X : ind(T) â&#x2030;¤ 0}. Then theupper Weyl spectrum of T is defined by đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; : đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;ż }. Let Î&#x201D; đ?&#x2018;&#x2021; = đ?&#x153;?(đ?&#x2018;&#x2021;)\đ?&#x153;?đ?&#x2018;¤ đ?&#x2018;&#x2021; and Î&#x201D;đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)\đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; . Following Cuburn [10], we say that Weylâ&#x20AC;&#x2122;s theorem holds for đ?&#x2018;ť â&#x2C6;&#x2C6; đ?&#x2018;ł(đ?&#x2018;ż)if Î&#x201D; đ?&#x2018;&#x2021; = đ??¸ 0 đ?&#x2018;&#x2021; , đ?&#x2018;¤đ?&#x2018;&#x2022; đ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;&#x2019; E 0 T = {Îť â&#x2C6;&#x2C6; iso Ď&#x192; T : 0 < đ?&#x203A;ź(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;) < â&#x2C6;&#x17E;}. Here and elsewhere in this paper, for đ??ž â&#x160;&#x201A; â&#x201E;&#x201A; , đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x153;đ??ž đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x2019; đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;Ą đ?&#x2018;&#x153;đ?&#x2018;&#x201C; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x2018; đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x201C; đ??ž. According to Rakocevic [20], an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; is said to satisfy a-Weylâ&#x20AC;&#x2122;s theorem if đ??¸đ?&#x2018;&#x17D;0 đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)\ đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; , where đ??¸đ?&#x2018;&#x17D;0 T = {Îť â&#x2C6;&#x2C6; iso Ď&#x192;a T : 0 < đ?&#x203A;ź(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;) < â&#x2C6;&#x17E;}. It is known from [20] that an operator satisfying a-Weylâ&#x20AC;&#x2122;s theorem satisfies Weylâ&#x20AC;&#x2122;s theorem, but the converse does not hold in general. For đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; and a non negative integer n define đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] to be the restrictionđ?&#x2018;&#x2021; đ?&#x2018;Ąđ?&#x2018;&#x153; đ?&#x2018;&#x2026;(đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; ) viewed as a map for đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; đ?&#x2018;Ąđ?&#x2018;&#x153; đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; (in particular đ?&#x2018;&#x2021;[0] = đ?&#x2018;&#x2021;). If for some integer n the range space đ?&#x2018;&#x2026;(đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; )is closed and đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] is an upper (resp., lower) semi-Fredholm operator, then T is called upper (resp., lower) semi-BFredholm operator. In this case index of T is defined as the index of semi-Fredholmoperator đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] . Moreover, if đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] is a Fredholm operator then T is called a B-Fredholm operator. An operator T is said to be B-Weyl operator if it is a B-Fredholm operator of index zero. Let đ?&#x153;?đ??ľđ?&#x2018;&#x160; đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A;: đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ??ľ â&#x2C6;&#x2019; đ?&#x2018;&#x160;đ?&#x2018;&#x2019;đ?&#x2018;Śđ?&#x2018;&#x2122;}.Recall that the ascent, đ?&#x2018;&#x17D;(đ?&#x2018;&#x2021;), of an operatorđ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is the smallest non negative integer p such that ker đ?&#x2018;&#x2021; đ?&#x2018;? = kerâ Ą(đ?&#x2018;&#x2021; đ?&#x2018;?+1 )and if such integer does not exist we put đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = â&#x2C6;&#x17E;. Analogously the descent, đ?&#x2018;&#x2018;(đ?&#x2018;&#x2021;), of an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is the smallest non negative integer q such that R đ?&#x2018;&#x2021; đ?&#x2018;&#x17E; = Râ Ą (đ?&#x2018;&#x2021; đ?&#x2018;&#x17E;+1 )and if such integer does exist we put đ?&#x2018;&#x2018; đ?&#x2018;&#x2021; = â&#x2C6;&#x17E;.According to Berkani [3], an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is said to be Drazin invertible if it has finite ascent and descent . The Drazin spectrum of T is defined by đ?&#x153;?đ??ˇ đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A;: đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ??ˇđ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;§đ?&#x2018;&#x2013;đ?&#x2018;&#x203A; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;}. Define the set đ??żđ??ˇ đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; : đ?&#x2018;&#x17D;(đ?&#x2018;&#x2021;) < â&#x2C6;&#x17E; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; +1 đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;&#x2018; }andđ?&#x153;?đ??żđ??ˇ đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A;: đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ??żđ??ˇ(đ?&#x2018;&#x2039;)}. Following [4], an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is said to be left Drazin invertibleif đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??żđ??ˇ(đ?&#x2018;&#x2039;). We say that đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; is a left pole of T if đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ??żđ??ˇ(đ?&#x2018;&#x2039;), and that đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; is a left pole of T of finite rank if đ?&#x153;&#x2020;is a left pole of T and đ?&#x203A;ź(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;) < â&#x2C6;&#x17E;[4, đ??ˇđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;&#x153;đ?&#x2018;&#x203A; 2.6]. Let đ?&#x153;&#x2039;đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)denotes the set of all left poles of T and let đ?&#x153;&#x2039;đ?&#x2018;&#x17D;0 (đ?&#x2018;&#x2021;)denotes set of all left poles of finite rank. It follows from [4, theorem2.8] that if đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is left Drazin invertible, then T is upper semi-BDOI: 10.9790/5728-1301062124
www.iosrjournals.org
21 | Page
Properties (t) and (gt) for f (T) type operators Fredholm of index less than or equal to 0.We say that Browderâ&#x20AC;&#x2122;s theorem holds for đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)if Î&#x201D; đ?&#x2018;&#x2021; = đ?&#x153;&#x2039; 0 đ?&#x2018;&#x2021; , where đ?&#x153;&#x2039; 0 đ?&#x2018;&#x2021; is the set of all poles of T of finite rank and that a-Browderâ&#x20AC;&#x2122;s theorem holds for T if đ?&#x203A;Ľđ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = đ?&#x153;&#x2039;đ?&#x2018;&#x17D;0 đ?&#x2018;&#x2021; . Let Î&#x201D;đ?&#x2018;&#x201D; T = Ď&#x192; T \Ď&#x192;BW (T). Following [3], we say that generalized Weylâ&#x20AC;&#x2122;s theorem holds for đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)if Î&#x201D;đ?&#x2018;&#x201D; T = E T , E T is the set of all eigenvalues of T which are isolated in đ?&#x153;?(đ?&#x2018;&#x2021;), and that generalized Browderâ&#x20AC;&#x2122;s Theorem holds for T if Î&#x201D;đ?&#x2018;&#x201D; T = đ?&#x153;&#x2039;(đ?&#x2018;&#x2021;), where đ?&#x153;&#x2039;(đ?&#x2018;&#x2021;)is the set of poles of T. It is proved in [8, theorem 2.1] that generalized Browderâ&#x20AC;&#x2122;s theorem is equivalent to Browderâ&#x20AC;&#x2122;s theorem. Let đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2039; denote the class of all upper semi-B-Fredholm operators such that đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018;(đ?&#x2018;&#x2021;) â&#x2030;¤ 0. The upper B-Weyl spectrum of T is defined by đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; â&#x2C6;ś đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2039; }. Let Î&#x201D;đ?&#x2018;&#x17D;đ?&#x2018;&#x201D; T = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)\ đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; . We say that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; satisfies generalized a-Weylâ&#x20AC;&#x2122;s theorem, if đ??¸đ?&#x2018;&#x17D; T = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)\ đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; , where đ??¸đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)is the set of all eigenvalues of T which are isolated in đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)and that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; satisfies generalized aBrowderâ&#x20AC;&#x2122;s theorem if Î&#x201D;đ?&#x2018;&#x17D;đ?&#x2018;&#x201D; T = đ?&#x153;&#x2039;đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; [4, đ??ˇđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;&#x153;đ?&#x2018;&#x203A; 2.13]. It is proved in [8, theorem 2.2] that generalized aBrowderâ&#x20AC;&#x2122;s theorem is equivalent to a-Browderâ&#x20AC;&#x2122;s theorem. Following [20], we say that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; satisfies property đ?&#x2018;¤ đ?&#x2018;&#x2013;đ?&#x2018;&#x201C; Î&#x201D;đ?&#x2018;&#x17D; T = E 0 (T). The property (w) has been studied in [1, 5, 19]. In Theorem 2.8 of [5] , it is shown that property (w) implies Weylâ&#x20AC;&#x2122;s theorem, but the đ?&#x2018;&#x201D; converse is not true in general. We say that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)satisfies property (gw)if đ?&#x203A;Ľđ?&#x2018;&#x17D; T = E(T). Property (gw) extends (w) to the context of B-Fredholm theory, and it is proved in [9] that an operator possessing property (gw) satisfies property (w) but the converse is not true in general. According to [16] , an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is đ?&#x2018;&#x201D; said to possess property (gb) if đ?&#x203A;Ľđ?&#x2018;&#x17D; T =Ď&#x20AC;(T), and is said to possess property (b) if đ?&#x203A;Ľđ?&#x2018;&#x17D; T = Ď&#x20AC;0 (T). it is shown in theorem 2.3 of [16] that an operator possessing property (gb) satisfies property (b) but the converse is not true in general. Following [10], we say an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;), is said to be satisfies property (R) if đ?&#x153;&#x2039;đ?&#x2018;&#x17D;0 T = E 0 (T). In Theorem 2.4 of [8] , it is shown that T satisfies property (w) if and only if T satisfies a-Browderâ&#x20AC;&#x2122;s theorem and T satisfies property (R) . The single valued extension property plays an importants role in local spectral theory, see the recent monograph of Laursen and Neumann [21] and Aiena [1]. In this article we shall consider the following local version of this property, which has been studied in recent papers. [5,20â&#x20AC;&#x2122;] and previously by Finch [19]. Following [19] we say that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)has the single-valued extension property (SVEP) at point â&#x2C6;&#x2C6; â&#x201E;&#x201A; , if for every open neighborhood đ?&#x2018;&#x2C6;đ?&#x153;&#x2020; of đ?&#x153;&#x2020;, the only analytic function đ?&#x2018;&#x201C;: đ?&#x2018;&#x2C6;đ?&#x153;&#x2020; â&#x;ś đ?&#x2018;&#x2039;which satisfies the equation đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2021; đ?&#x2018;&#x201C; đ?&#x153;&#x2021; = 0is the constant function đ?&#x2018;&#x201C; â&#x2030;Ą 0. It is well-known that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)has SVEP at every point of the resolvent đ?&#x153;&#x152; đ?&#x2018;&#x2021; = â&#x201E;&#x201A; \đ?&#x153;? đ?&#x2018;&#x2021; . Moreover, from the identity Theorem for analytic function it easily follow that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)has SVEP at every point of the boundary đ?&#x153;&#x2022;đ?&#x153;?(đ?&#x2018;&#x2021;)of the spectrum. In particular, T has SVEP at every isolated point of đ?&#x153;?(đ?&#x2018;&#x2021;). In [20, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP. Theorem 1.1.[18, Theorem 1.3]đ?&#x2018;&#x2013;đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ?&#x2018;&#x2020;đ??šÂą đ?&#x2018;&#x2039; đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x2019; đ?&#x2018;&#x201C;đ?&#x2018;&#x153;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018;¤đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D; đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x17D;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x161;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x; đ?&#x2018;&#x2019;đ?&#x2018;&#x17E;đ?&#x2018;˘đ?&#x2018;&#x2013;đ?&#x2018;Łđ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018; : (i) đ?&#x2018;&#x2021; đ?&#x2018;&#x2022; đ?&#x2018;&#x17D;đ?&#x2018; đ?&#x2018;&#x2020;đ?&#x2018;&#x2030;đ??¸đ?&#x2018;&#x192; đ?&#x2018;&#x17D;đ?&#x2018;Ą đ?&#x153;&#x2020;0 . (ii) đ?&#x2018;&#x17D;(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;0 đ??ź) < â&#x2C6;&#x17E;. (iii) đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; đ?&#x2018;&#x2018;đ?&#x2018;&#x153;đ?&#x2018;&#x2019;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;˘đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x; đ?&#x2018;&#x17D;đ?&#x2018;Ą đ?&#x153;&#x2020;0 . (iv) đ??ť0 đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;0 đ??ź đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x2018;đ?&#x2018;&#x2013;đ?&#x2018;&#x161;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;&#x153;đ?&#x2018;&#x203A;đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;. By duality we have Theorem 1.2.đ?&#x2018;&#x2013;đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ?&#x2018;&#x2020;đ??šÂą đ?&#x2018;&#x2039; đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x2019; đ?&#x2018;&#x201C;đ?&#x2018;&#x153;đ?&#x2018;&#x2122;đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018;¤đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x201D; đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x17D;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x161;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018; đ?&#x2018;&#x17D;đ?&#x2018;&#x; đ?&#x2018;&#x2019;đ?&#x2018;&#x17E;đ?&#x2018;˘đ?&#x2018;&#x2013;đ?&#x2018;Łđ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018; : (i) đ?&#x2018;&#x2021; â&#x2C6;&#x2014; đ?&#x2018;&#x2022; đ?&#x2018;&#x17D;đ?&#x2018; đ?&#x2018;&#x2020;đ?&#x2018;&#x2030;đ??¸đ?&#x2018;&#x192; đ?&#x2018;&#x17D;đ?&#x2018;Ą đ?&#x153;&#x2020;0 . (ii) đ?&#x2018;&#x2018;(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;0 đ??ź) < â&#x2C6;&#x17E;. (iii) đ?&#x153;?đ?&#x2018; đ?&#x2018;&#x2021; đ?&#x2018;&#x2018;đ?&#x2018;&#x153;đ?&#x2018;&#x2019;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;˘đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x; đ?&#x2018;&#x17D;đ?&#x2018;Ą đ?&#x153;&#x2020;0 . According to M. H. M. Rashid, we say that đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; satisfies property (t) if Î&#x201D;+ đ?&#x2018;&#x2021; = đ??¸ 0 (đ?&#x2018;&#x2021;), where đ?&#x2018;&#x201D; đ?&#x2018;&#x201D; Î&#x201D;+ đ?&#x2018;&#x2021; = đ?&#x153;? đ?&#x2018;&#x2021; \đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; (đ?&#x2018;&#x2021;), and T satisfies đ?&#x2018;?đ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;Ąđ?&#x2018;Ś đ?&#x2018;&#x201D;đ?&#x2018;Ą đ?&#x2018;&#x2013;đ?&#x2018;&#x201C; đ?&#x203A;Ľ+ đ?&#x2018;&#x2021; = đ??¸(đ?&#x2018;&#x2021;) , where đ?&#x203A;Ľ+ đ?&#x2018;&#x2021; = đ?&#x153;? đ?&#x2018;&#x2021; \đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; (đ?&#x2018;&#x2021;)[18, Definition 2.1]. It shown in [18, Theorem 2.2] that if T satisfies property (gt), then T satisfies property (t). the converse of this Theorem does not hold in general. In seem reference it is proved that if T satisfies property (t), then T satisfies property (w) and we have equivalence if đ?&#x153;? đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;). Analogously it is shown that if T satisfies property (gt), then T satisfies property (gw) and the equivalence hold is đ?&#x153;? đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;). As a consequence in [2] it is proved that if T possesses property (t), then T satisfies Weylâ&#x20AC;&#x2122;s Theorem also T satisfies a-Browderâ&#x20AC;&#x2122;s Theorem and đ?&#x153;&#x2039;đ?&#x2018;&#x17D;0 đ?&#x2018;&#x2021; = đ??¸ 0 (đ?&#x2018;&#x2021;). More general if T possesses property (gt), then T satisfies generalized Weylâ&#x20AC;&#x2122;s Theorem also T satisfies generalized a-Browderâ&#x20AC;&#x2122;s Theorem and đ?&#x153;&#x2039;đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = đ??¸(đ?&#x2018;&#x2021;).
II. About generalized a- Weylâ&#x20AC;&#x2122;s and a-Browderâ&#x20AC;&#x2122;s Theorems and SVEP We start this part by this consequence Corollary 2.1.if T obey generalized a-Browderâ&#x20AC;&#x2122;s Theorem then T has the SVEP at đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; (đ?&#x2018;&#x2021;) Proof. If T obey generalized a-Browderâ&#x20AC;&#x2122;s Theorem, thenÎ&#x201D;đ?&#x2018;&#x17D;đ?&#x2018;&#x201D; T = đ?&#x153;&#x2039;đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; . Let đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ?&#x153;&#x2039;đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; then đ?&#x153;&#x2020;is isolated in đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;), so đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;has SVEP en 0. (ie) T has SVEP at đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; ([19]) DOI: 10.9790/5728-1301062124
www.iosrjournals.org
22 | Page
Properties (t) and (gt) for f (T) type operators Recall that for each đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)and đ?&#x2018;&#x201C; â&#x2C6;&#x2C6; â&#x201E;&#x2039;(đ?&#x153;? đ?&#x2018;&#x2021; ), then we have đ?&#x2018;&#x201C; đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; (đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; ). We show now the relationship between the spectral mapping Theorem and generalized a-Weylâ&#x20AC;&#x2122;s Theorem. Proposition 2.2. đ??żđ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; đ?&#x2018;&#x153;đ?&#x2018;?đ?&#x2018;&#x2019;đ?&#x2018;Śđ?&#x2018;Ąđ?&#x2018;&#x153;đ?&#x2018;&#x201D;đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;đ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;&#x2122;đ?&#x2018;&#x2013;đ?&#x2018;§đ?&#x2018;&#x2019;đ?&#x2018;&#x2018;đ?&#x2018;&#x17D; â&#x2C6;&#x2019; đ?&#x2018;&#x160;đ?&#x2018;&#x2019;đ?&#x2018;Śđ?&#x2018;&#x2122; â&#x20AC;˛ đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x2019;đ?&#x2018;&#x153;đ?&#x2018;&#x;đ?&#x2018;&#x2019;đ?&#x2018;&#x161; đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x2019;đ?&#x2018;&#x203A;, đ?&#x2018;&#x201C;đ?&#x2018;&#x153;đ?&#x2018;&#x;đ?&#x2018;&#x2019;đ?&#x2018;&#x17D;đ?&#x2018;?đ?&#x2018;&#x2022; đ?&#x2018;&#x201C; â&#x2C6;&#x2C6; â&#x201E;&#x2039; đ?&#x153;? đ?&#x2018;&#x2021; : đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C;(đ?&#x2018;&#x2021;) \ đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x201C;(đ?&#x2018;&#x2021;) = đ?&#x2018;&#x201C;(đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; \đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; ). Proof.For the direct inclusion we use the argument in [18, lemma 3. 89]. To prove the inverse inclusion, let đ?&#x153;&#x2020;0 â&#x2C6;&#x2C6; đ?&#x2018;&#x201C; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; \đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; . From the equality đ?&#x2018;&#x201C; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; we know that đ?&#x153;&#x2020;0 â&#x2C6;&#x2C6; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; . Suppose that đ?&#x153;&#x2020;0 â&#x2C6;&#x2C6; đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; , so đ?&#x153;&#x2020;0 is isolated in đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; . Now we can write đ?&#x153;&#x2020;0 â&#x2C6;&#x2019; đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; = đ?&#x2018;? đ?&#x2018;&#x2021; đ?&#x2018;&#x201D; đ?&#x2018;&#x2021; , đ?&#x2018;¤đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x201D; đ?&#x2018;&#x2021; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x2019; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; 1 đ?&#x2018;? đ?&#x2018;&#x2021; = đ?&#x2018;&#x2DC;đ?&#x2018;&#x2013;=1 đ?&#x153;&#x2020;đ?&#x2018;&#x2013; â&#x2C6;&#x2019; đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; đ?&#x2018;&#x2013; . From the equality (1) and the fact that T satisfies generalized a-Weylâ&#x20AC;&#x2122;s Theorem it follows any of đ?&#x153;&#x2020;1 , â&#x20AC;Ś , đ?&#x153;&#x2020;đ?&#x2018;&#x2DC; must be an isolated point in đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; , hence an eigenvalue of T. Moreover, since đ?&#x153;&#x2020;0 is an eigenvalue isolated in đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; any đ?&#x153;&#x2020;đ?&#x2018;&#x2013; must also be an eigenvalue isolated an đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; , so đ?&#x153;&#x2020;đ?&#x2018;&#x2013; â&#x2C6;&#x2C6; đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; . This contradicts đ?&#x153;&#x2020;0 â&#x2C6;&#x2C6; đ?&#x2018;&#x201C; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; \đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; . Therefore đ?&#x153;&#x2020;0 â&#x2C6;&#x2030; đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; , so we have the equality đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C;(đ?&#x2018;&#x2021;) \ đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x201C;(đ?&#x2018;&#x2021;) = đ?&#x2018;&#x201C;(đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; \ đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; ) â&#x2C6;&#x17D;. Corollary 2.3. If đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)satisfies generalized a-Weylâ&#x20AC;&#x2122;s Theorem then đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x201C;(đ?&#x2018;&#x2021;) \ đ??¸đ?&#x2018;&#x17D; đ?&#x2018;&#x201C;(đ?&#x2018;&#x2021;) , â&#x2C6;&#x20AC; đ?&#x2018;&#x201C; â&#x2C6;&#x2C6; â&#x201E;&#x2039;(đ?&#x153;? đ?&#x2018;&#x2021; ). Proof. Itâ&#x20AC;&#x2122;s immediate from the preview result and the fact that đ?&#x2018;&#x201C; đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; (đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; ). â&#x2C6;&#x17D; We should recall some results due to [19]. Theorem 2.4 [Aiena, Theorem 1.62] If đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ?&#x2018;&#x2020;đ??šÂą (đ?&#x2018;&#x2039;) then Tis essentially semi-regular. Theorem 2.5. [Aiena, Theorem 1. 83] Suppose that T â&#x2C6;&#x2C6; L(X)is upper semi B-Fredholm. Then there exists an open disc D 0,Îľ centered at0such thatÎťI â&#x2C6;&#x2019; Tis upper semi-Fredholm for all ď Ź ď&#x192;&#x17D; D(0; ď Ľ ) \ď ť0ď ˝ andind ÎťI â&#x2C6;&#x2019; T = ind T , â&#x2C6;&#x20AC;Îť â&#x2C6;&#x2C6; D(0,Îľ). T AND GT FOR EACH f in H(ď ł (T)) Theorem 2.6[1 ,Theorem 2.10 (i)]T â&#x2C6;&#x2C6; L(X) satisfies property (gt)equivalent to Tsatisfies generalized Weylâ&#x20AC;&#x2122;s theorem and ď ł SBF (T ) ď&#x20AC;˝ ď ł BW (T ) ď&#x20AC; ď&#x20AC;Ť
Theorem 2.7 LetT â&#x2C6;&#x2C6; L(X), and Tsatisfies SVEP at ď Ź ď&#x192;?ď ł SBF ď&#x20AC; (T ) ; ď&#x20AC;Ť
T satisfies property (gt) if and only if ď ł SBFď&#x20AC; ( f (T )) ď&#x20AC;˝ ď ł ( f (T ))\ď ° ( f (T )) for each f â&#x2C6;&#x2C6; H(Ď&#x192;(T)). ď&#x20AC;Ť
Proof. Assumption ď ł SBF (T ) ď&#x20AC;˝ ď ł BW (T ) ď&#x20AC; ď&#x20AC;Ť
T satisfies property (gt) imply that T satisfies generalized Weylâ&#x20AC;&#x2122;s theorem and . Let f â&#x2C6;&#x2C6; H(Ď&#x192;(T)), when T has SVEP thenf T has the SVEP at ď Ź ď&#x192;?ď ł SBF ď&#x20AC; (T ) , so by [20, ď&#x20AC;Ť
theoerem 10] f(T) satisfies generalized Browderâ&#x20AC;&#x2122;s theorem , (i.e) ď ł BW ( f (T )) ď&#x20AC;˝ ď ł ( f (T ))\ď ° ( f (T )) then by đ?&#x2018;&#x201C; đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021;
= đ?&#x153;?đ?&#x2018;&#x2020;đ??ľđ??š+â&#x2C6;&#x2019; (đ?&#x2018;&#x201C; đ?&#x2018;&#x2021; ).we have the result â&#x2C6;&#x17D;.
Acknowledgements We are merciful for each remarks and note expressed from my supervisor Professor M. Zohry , and special appreciations for the work established by M.H.M. Rachid .
References Journal Papers: [1]. [2]. [3]. [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13].
M.H.M. Rachid, Properties (t) and (gt) for Bounded Linear Operators, Mediterr. J. Math. 11 (2014), 729-744. P.Aiena, P.Pena, Variations on Weyls theorem. J. Math. Anal. Appl. 324, 566-579 (2006). P.Aiena, M.T.Biondi, C.Carpintero, On Drazininvertibility. Proc. Amer. Math. Soc. 136 2839-2848 (2008). M.Berkani, Index of B-Fredholm operators and generalization of a Weyl Theorem. Proc. Amer. Math. Soc. 130, 1717-1723 (2001). M.Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272, 596-603 (2002). M.Berkani, J.Koliha, Weyl type theorems for bounded linears operators, Acta Sci. Math. 69, 359-376 (2003). M.Berkani, N.Castro, S.V.Djordjevic, Single valued extension property and generalized Weylâ&#x20AC;&#x2122;s theorem, Math. Bohem. 131, 29-38 (2006). M.Berkani, H.Zariouh, Extended Weyl type theorems. Math. Bohem. 34, 369-378 (2009). M.Berkani, M.Sarih, H.Zariouh, Browder-type Theorems and SVEP, Mediterr. J. Math. 8 (3), 399-409 (2011). M.Amouch, H.Zguitti, On the equivalence of Browderâ&#x20AC;&#x2122;s and generalized Browderâ&#x20AC;&#x2122;s theorem. Glasg. Math. J. 48, 179-185 (2006). M.Amouch, M.Berkani, on the property (gw). Mediterr. J. Math. 5, 371-378 (2008). L.A.Coburn, Weylâ&#x20AC;&#x2122;s theoerem for nonnormal operators. Michigan Math. J. 13, 285-288 (1966). J.K.Finch, The single valued extension property on a Banach space. Pacific J. Math. 58, 61-69 (1966).
DOI: 10.9790/5728-1301062124
www.iosrjournals.org
23 | Page
Properties (t) and (gt) for f (T) type operators [14]. [15]. [16]. [17].
K.B.Laursen, Operators with finite ascent. Pacific J. Math. 152, 323-336 (1992). M.Oudghiri, Weyls and Browders theorem for operators satisfying the SVEP. Studia Math. 163, 85-101 (2004). V.Rakocevic, Operators obeying a-Weylâ&#x20AC;&#x2122;s theorem. Rev. Roumaine Math. Pures Appl. 10, 915-919 (1986). A. Babbah M. Zohry, On generalized Weyl's type theorem, ISOR Journal of Mathematics, Vol.10, Issue 2, Ver. IV, 35-41 (Mar-Apr. 2014).
Books: [1] [2] [3]
P.Aiena, Fredholmand local spectral theory with applications to multipliers, Kluwer Acad. Publishers, Dordrecht (2004). P.Aiena, Semi-Fredholmoperators, perturbationtheory and localized SVEP, MERIDA, VENEZUELA, 2 AL 7 DE SEPTIEMBRE DE 2007. K.B.Laursen, M.M.Neumann, Anintroduction to local spectraltheory, Oxford. Clarendon (2000).
DOI: 10.9790/5728-1301062124
www.iosrjournals.org
24 | Page