IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue I Ver. VI (Jan. - Feb. 2017), PP 21-24 www.iosrjournals.org
Properties (T) and (Gt) for f (T) Type Operators Adel Babbah1, Mohamed Zohry2, MohamedArrazaki3, Anass Elhaddadi4 1
(University AbdelmalekEssaadi, Faculty of sciences, Mathematics Department,B.P. 2121, Tetouan, Morocco) (University AbdelmalekEssaadi, Faculty of sciences, Mathematics Department,B.P. 2121, Tetouan, Morocco) 3 (University AbdelmalekEssaadi, Faculty of sciences, Mathematics Department,B.P. 2121, Tetouan, Morocco) 4 (DĂŠpartement of MathĂŠmatics&Informatic, ENSA Al-Hoceima, Morocco) 2
Abstract: in this paper we establish the relation with property (t) and (gt) introduced by M. H. M. RACHID in [1] and sprectrale mapping theorem. We will special establish several sufficient and necessary conditions for which f(T) verify the (t) and (gt) as f an analytic function on the T spectrum and see the validity of these results for the semi- Browder operators. Analogously we ask question about the conditions for which the spectral theory hold for generalized a-weyl’s theorem and generalized a-browder’s theorem [18]. Keywords: generalized a-weyl’s theorem. Generalized a-browder’stheorem . Semi-Browder operators. Property (t).Property (gt).Spectral theory.
I. Introduction and Preliminary Throughout this paper, X denote an infinite-dimentional complex space, L(X) the algebra of all bounded linear operators on X. For đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;), let đ?&#x2018;&#x2021; â&#x2C6;&#x2014; , ker đ?&#x2018;&#x2021; , đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; , đ?&#x153;? đ?&#x2018;&#x2021; , đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x153;?đ?&#x2018; (đ?&#x2018;&#x2021;)denote the adjoint, the null space, the range, the spectrum, the approximate point spectrum and the surjectivity spectrum of T respectively. Let đ?&#x203A;ź đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;˝(đ?&#x2018;&#x2021;)be the nullity and deficiency of T defined by đ?&#x203A;ź đ?&#x2018;&#x2021; = dim kerâ Ą (đ?&#x2018;&#x2021;) đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;˝ đ?&#x2018;&#x2021; = codim đ?&#x2018;&#x2026;(đ?&#x2018;&#x2021;). Let đ?&#x2018;&#x2020;đ??š+ đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; : đ?&#x203A;ź(đ?&#x2018;&#x2021;) < â&#x2C6;&#x17E; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;&#x2018;}and đ?&#x2018;&#x2020;đ??šâ&#x2C6;&#x2019; đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; : đ?&#x203A;˝(đ?&#x2018;&#x2021;) < â&#x2C6;&#x17E;}denote the semi-group of upper semi-Fredholm and lower semi-Fredholm operators on X respectively. If both đ?&#x203A;ź đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x203A;˝ đ?&#x2018;&#x2021; đ?&#x2018;&#x17D;đ?&#x2018;&#x;đ?&#x2018;&#x2019; đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; , then T is called Fredholm operator. If T is semi-Fredholm then the index of T is definedby đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2021; = đ?&#x203A;ź đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x203A;˝(đ?&#x2018;&#x2021;). A bounded linear operator T acting on a Banach space X is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. Let â&#x201E;&#x201A; denote the set of complex numbers. The Weyl spectrum and Browder spectrum of T are defined by đ?&#x153;?đ?&#x2018;¤ đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; : đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ?&#x2018;&#x160;đ?&#x2018;&#x2019;đ?&#x2018;Śđ?&#x2018;&#x2122;}and đ?&#x153;?đ?&#x2018;? đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; : đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ??ľđ?&#x2018;&#x;đ?&#x2018;&#x153;đ?&#x2018;¤đ?&#x2018;&#x2018;đ?&#x2018;&#x2019;đ?&#x2018;&#x;}respectively. For T â&#x2C6;&#x2C6; L(X), SF+â&#x2C6;&#x2019; X = {T â&#x2C6;&#x2C6; SF+ X : ind(T) â&#x2030;¤ 0}. Then theupper Weyl spectrum of T is defined by đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A; : đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;ż }. Let Î&#x201D; đ?&#x2018;&#x2021; = đ?&#x153;?(đ?&#x2018;&#x2021;)\đ?&#x153;?đ?&#x2018;¤ đ?&#x2018;&#x2021; and Î&#x201D;đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)\đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; . Following Cuburn [10], we say that Weylâ&#x20AC;&#x2122;s theorem holds for đ?&#x2018;ť â&#x2C6;&#x2C6; đ?&#x2018;ł(đ?&#x2018;ż)if Î&#x201D; đ?&#x2018;&#x2021; = đ??¸ 0 đ?&#x2018;&#x2021; , đ?&#x2018;¤đ?&#x2018;&#x2022; đ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;&#x2019; E 0 T = {Îť â&#x2C6;&#x2C6; iso Ď&#x192; T : 0 < đ?&#x203A;ź(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;) < â&#x2C6;&#x17E;}. Here and elsewhere in this paper, for đ??ž â&#x160;&#x201A; â&#x201E;&#x201A; , đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x153;đ??ž đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2022; đ?&#x2018;&#x2019; đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;Ą đ?&#x2018;&#x153;đ?&#x2018;&#x201C; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;đ?&#x2018;Ąđ?&#x2018;&#x2019;đ?&#x2018;&#x2018; đ?&#x2018;?đ?&#x2018;&#x153;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Ąđ?&#x2018; đ?&#x2018;&#x153;đ?&#x2018;&#x201C; đ??ž. According to Rakocevic [20], an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; is said to satisfy a-Weylâ&#x20AC;&#x2122;s theorem if đ??¸đ?&#x2018;&#x17D;0 đ?&#x2018;&#x2021; = đ?&#x153;?đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)\ đ?&#x153;?đ?&#x2018;&#x2020;đ??š+â&#x2C6;&#x2019; đ?&#x2018;&#x2021; , where đ??¸đ?&#x2018;&#x17D;0 T = {Îť â&#x2C6;&#x2C6; iso Ď&#x192;a T : 0 < đ?&#x203A;ź(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;) < â&#x2C6;&#x17E;}. It is known from [20] that an operator satisfying a-Weylâ&#x20AC;&#x2122;s theorem satisfies Weylâ&#x20AC;&#x2122;s theorem, but the converse does not hold in general. For đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; and a non negative integer n define đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] to be the restrictionđ?&#x2018;&#x2021; đ?&#x2018;Ąđ?&#x2018;&#x153; đ?&#x2018;&#x2026;(đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; ) viewed as a map for đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; đ?&#x2018;Ąđ?&#x2018;&#x153; đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; (in particular đ?&#x2018;&#x2021;[0] = đ?&#x2018;&#x2021;). If for some integer n the range space đ?&#x2018;&#x2026;(đ?&#x2018;&#x2021; đ?&#x2018;&#x203A; )is closed and đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] is an upper (resp., lower) semi-Fredholm operator, then T is called upper (resp., lower) semi-BFredholm operator. In this case index of T is defined as the index of semi-Fredholmoperator đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] . Moreover, if đ?&#x2018;&#x2021;[đ?&#x2018;&#x203A;] is a Fredholm operator then T is called a B-Fredholm operator. An operator T is said to be B-Weyl operator if it is a B-Fredholm operator of index zero. Let đ?&#x153;?đ??ľđ?&#x2018;&#x160; đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A;: đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ??ľ â&#x2C6;&#x2019; đ?&#x2018;&#x160;đ?&#x2018;&#x2019;đ?&#x2018;Śđ?&#x2018;&#x2122;}.Recall that the ascent, đ?&#x2018;&#x17D;(đ?&#x2018;&#x2021;), of an operatorđ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is the smallest non negative integer p such that ker đ?&#x2018;&#x2021; đ?&#x2018;? = kerâ Ą(đ?&#x2018;&#x2021; đ?&#x2018;?+1 )and if such integer does not exist we put đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; = â&#x2C6;&#x17E;. Analogously the descent, đ?&#x2018;&#x2018;(đ?&#x2018;&#x2021;), of an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is the smallest non negative integer q such that R đ?&#x2018;&#x2021; đ?&#x2018;&#x17E; = Râ Ą (đ?&#x2018;&#x2021; đ?&#x2018;&#x17E;+1 )and if such integer does exist we put đ?&#x2018;&#x2018; đ?&#x2018;&#x2021; = â&#x2C6;&#x17E;.According to Berkani [3], an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is said to be Drazin invertible if it has finite ascent and descent . The Drazin spectrum of T is defined by đ?&#x153;?đ??ˇ đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A;: đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;&#x203A;đ?&#x2018;&#x153;đ?&#x2018;Ą đ??ˇđ?&#x2018;&#x;đ?&#x2018;&#x17D;đ?&#x2018;§đ?&#x2018;&#x2013;đ?&#x2018;&#x203A; đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;Łđ?&#x2018;&#x2019;đ?&#x2018;&#x;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x2019;}. Define the set đ??żđ??ˇ đ?&#x2018;&#x2039; = {đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż đ?&#x2018;&#x2039; : đ?&#x2018;&#x17D;(đ?&#x2018;&#x2021;) < â&#x2C6;&#x17E; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;&#x2018; đ?&#x2018;&#x2026; đ?&#x2018;&#x2021; đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; +1 đ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;?đ?&#x2018;&#x2122;đ?&#x2018;&#x153;đ?&#x2018; đ?&#x2018;&#x2019;đ?&#x2018;&#x2018; }andđ?&#x153;?đ??żđ??ˇ đ?&#x2018;&#x2021; = {đ?&#x153;&#x2020; â&#x2C6;&#x2C6; â&#x201E;&#x201A;: đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2030; đ??żđ??ˇ(đ?&#x2018;&#x2039;)}. Following [4], an operator đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is said to be left Drazin invertibleif đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??żđ??ˇ(đ?&#x2018;&#x2039;). We say that đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; is a left pole of T if đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ??żđ??ˇ(đ?&#x2018;&#x2039;), and that đ?&#x153;&#x2020; â&#x2C6;&#x2C6; đ?&#x153;?đ?&#x2018;&#x17D; đ?&#x2018;&#x2021; is a left pole of T of finite rank if đ?&#x153;&#x2020;is a left pole of T and đ?&#x203A;ź(đ?&#x2018;&#x2021; â&#x2C6;&#x2019; đ?&#x153;&#x2020;) < â&#x2C6;&#x17E;[4, đ??ˇđ?&#x2018;&#x2019;đ?&#x2018;&#x201C;đ?&#x2018;&#x2013;đ?&#x2018;&#x203A;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2013;đ?&#x2018;&#x153;đ?&#x2018;&#x203A; 2.6]. Let đ?&#x153;&#x2039;đ?&#x2018;&#x17D; (đ?&#x2018;&#x2021;)denotes the set of all left poles of T and let đ?&#x153;&#x2039;đ?&#x2018;&#x17D;0 (đ?&#x2018;&#x2021;)denotes set of all left poles of finite rank. It follows from [4, theorem2.8] that if đ?&#x2018;&#x2021; â&#x2C6;&#x2C6; đ??ż(đ?&#x2018;&#x2039;)is left Drazin invertible, then T is upper semi-BDOI: 10.9790/5728-1301062124
www.iosrjournals.org
21 | Page