IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 2 Ver. IV (Mar. - Apr. 2017), PP 47-53 www.iosrjournals.org
On Curvatures of Homogeneous Finsler Space with Special (đ?œś, đ?œˇ)-Metric Chandru K. and Narasimhamurthy S.K. Department of Mathematics, Kuvempu University, Jnana Sahyadri, Shankaraghatta-577 451, Shimoga, Karnataka, INDIA.
Abstract: In this paper, we give an explicit formula of the S-curvature of homogeneous Finsler space with special (đ?›ź, đ?›˝)-metric and proved that a homogeneous Finsler space with almost isotropic S-curvature must have vanishing S-curvature. We also derived an explicit formula of the mean-Berwald curvature đ??¸đ?‘–đ?‘— of homogeneous Finsler space. Keywords: Finsler space, (đ?›ź, đ?›˝)-metric, Homogeneous Finsler space, S-curvature, Mean-Berwald curvature.
I.
Introduction
Let (đ?&#x2018;&#x20AC;, đ??š) be a Finsler space, where đ?&#x2018;&#x20AC; be the connected smooth manifold and đ??š be the Finsler metric. (đ?&#x203A;ź, đ?&#x203A;˝)-metrics are the class of Finsler metrics, for example Randers metric, Kropina metric, Matsumoto metric, đ?&#x203A;˝ etc. (đ?&#x203A;ź, đ?&#x203A;˝)-metrics are of the form đ??š = đ?&#x153;&#x2122;(đ?&#x2018; ), where đ?&#x2018; = , here đ?&#x203A;ź is Riemannian metric and đ?&#x203A;˝ is the one form. đ?&#x203A;ź One of the central problems in Finsler geometry is to study curvature properties of special class of Finsler spaces such as homogeneous-Finsler spaces with (đ?&#x203A;ź, đ?&#x203A;˝)-metrics. A Finsler space (đ?&#x2018;&#x20AC;, đ??š) becomes homogeneous if the group of isometries đ??ź(đ?&#x2018;&#x20AC;, đ??š) of (đ?&#x2018;&#x20AC;, đ??š) acts transitively on đ?&#x2018;&#x20AC;. As described in [7], for homogeneous Finsler space, đ?&#x2018;&#x20AC; can be written as a coset space đ??ş/đ??ť with (đ?&#x203A;ź, đ?&#x203A;˝)đ?&#x203A;˝ metric of the form đ??š = đ?&#x153;&#x2122;(đ?&#x2018; ), where đ?&#x2018; = , with đ?&#x203A;ź a đ??ş invariant Riemannian metric on đ??ş/đ??ť and đ?&#x203A;˝ a đ??ş-invariant đ?&#x203A;ź vector field on đ??ş/đ??ť. Therefore the Lie algebra g of đ??ş expressed as composition of đ?&#x2018;&#x2022; and đ?&#x2018;&#x161;. đ?&#x2018;&#x201D; = đ?&#x2018;&#x2022; + đ?&#x2018;&#x161; (direct sum of subspaces) (1.1) such that đ??´đ?&#x2018;&#x2018; đ?&#x2018;&#x2022; đ?&#x2018;&#x161; â&#x160;&#x201A; đ?&#x2018;&#x161;, đ?&#x2018;&#x2022; â&#x2C6;&#x2C6; đ??ť, and we can identify đ?&#x2018;&#x20AC; with the tangent space of (đ??ş/đ??ť) at the origin đ?&#x2018;&#x153; = đ??ť. Further, the one form đ?&#x203A;˝ corresponds to a vector field đ?&#x2018;&#x2039; on đ??ş/đ??ť which is generated by đ??´đ?&#x2018;&#x2018;(đ??ť) â&#x2C6;&#x2019;invariant vector in đ?&#x2018;&#x161; with length < 1. The goal of this paper is to derive an explicit formula for the S-curvature of homogeneous Finsler space with special (đ?&#x203A;ź, đ?&#x203A;˝)-metric đ??š =
đ?&#x203A;ź2 đ?&#x203A;˝
+ đ?&#x203A;˝.The notion of S-curvature for a Finsler space introduced by Z. Shen in [14]. It
is a quantity to measure the rate of change of the volume form of a Finsler space along the geodesics. Recently many geometers studied curvature properties of homogeneous Finsler space [7, 8]. In 2007, S. Deng and Z. Hou studied that a homogeneous Finsler spaces with non-positive flag curvature [8]. In 2010, S. Deng obtained the explicit formula of S-curvature of homogeneous Randers space with almost isotropic S-curvature must have vanishing S-curvature [7]. As for reference, there is an explicit formula for S-curvature in a local standard coordinate system by Z. Shen [14]. However, for a homogeneous spaces there should have a formula which does not use local coordinates. In this article we are studied curvature properties of homogeneous Finsler space with special (đ?&#x203A;ź, đ?&#x203A;˝)-metric đ??š =
đ?&#x203A;ź2 đ?&#x203A;˝
+ đ?&#x203A;˝ and find the formula for S-curvature and mean-Berwald curvature.
In the following, we shall use Einstein summation convention unless otherwise stated.
II.
Preliminaries
Finsler space is a smooth manifold possessing a Finsler metric. A standard definition of a Finsler space is defined by: Definition 2.1. A Finsler space is a triple đ??š đ?&#x2018;&#x203A; = (đ?&#x2018;&#x20AC;, đ??ˇ, đ??š), where đ?&#x2018;&#x20AC; is an đ?&#x2018;&#x203A;-dimensional manifold, đ??ˇ is an open subset of a tangent bundle đ?&#x2018;&#x2021;đ?&#x2018;&#x20AC; and đ??š is a Finsler metric defined as a function đ??š â&#x2C6;ś đ?&#x2018;&#x2021;đ?&#x2018;&#x20AC; â&#x2020;&#x2019; [0,1), with the following properties: 1. Regular: đ??š is đ??ś 1 on the entire tangent bundle đ?&#x2018;&#x2021;đ?&#x2018;&#x20AC;\{0}. 2. Positive homogeneous: đ??š(đ?&#x2018;Ľ, đ?&#x153;&#x2020;đ?&#x2018;Ś) = đ?&#x153;&#x2020;đ??š(đ?&#x2018;Ľ, đ?&#x2018;Ś). 3. Strong convexity: The đ?&#x2018;&#x203A; Ă&#x2014; đ?&#x2018;&#x203A; Hessian matrix đ?&#x2018;&#x201D;đ?&#x2018;&#x2013;đ?&#x2018;&#x2014; = đ??š 2 đ?&#x2018;Ś đ?&#x2018;&#x2013; đ?&#x2018;Ś đ?&#x2018;&#x2014; is positive definite at every point on đ?&#x2018;&#x2021;đ?&#x2018;&#x20AC;\{0}, where đ?&#x2018;&#x2021;đ?&#x2018;&#x20AC;\{0} denotes the tangent vector đ?&#x2018;Ś is non zero in the tangent bundle đ?&#x2018;&#x2021;đ?&#x2018;&#x20AC;. DOI: 10.9790/5728-1302044753
www.iosrjournals.org
47 | Page