IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 1 Ver. IV (Jan. - Feb. 2017), PP 77-79 www.iosrjournals.org
Least Square Plane and Leastsquare Quadric Surface Approximation by Using Modified Lagrange’s Method C.V.Rao, GS Department Assistant professor, JubailIndustrial College, Jubail, KSA.
Abstract: Now a days Surface fitting is applied all engineering and medical fields. Kamron Saniee ,2007 find a simple expression for multivariate LaGrange’s Interpolation. We derive a least square plane and least square quadric surface Approximation from a given N+1 tabular points when the function is unique. We used least square method technique. We can apply this method in surface fitting also. Keywords: Least square, quadric surface , Normal equations
I. Introduction Least square principle method is one the best approximation methodin numerical analysis for line and curve fitting, this method was invented by Lagrange's. A function đ?‘Ś = đ?‘“(đ?‘Ľ)may be given in discretedata đ?‘Ľđ?‘˜ , đ?‘Śđ?‘˜ .The best approximation in the least square is defined as that for which the constantsđ?‘?đ?‘– , đ?‘– = 0,1,2,3 ‌ đ?‘›are determined so that the aggregate of đ?‘¤ đ?‘Ľ đ??¸2over given domain D is as small as possible, where đ?‘¤ đ?‘Ľ > 0 $ is the weight function for the function whose values are given at đ?‘ + 1 pointsđ?‘Ľ0 , đ?‘Ľ1 ‌ đ?‘Ľđ?‘ . We have đ??ź đ?‘?0 , đ?‘?1 ‌ đ?‘?đ?‘ =
đ?‘ đ?‘˜=đ?‘œ
đ?‘› đ?‘–=0 ∅đ?‘–
đ?‘¤( đ?‘Ľđ?‘˜ ) đ?‘“ đ?‘Ľđ?‘˜ −
đ?‘Ľđ?‘˜
2
= �������------------(1)
Where ∅đ?‘– đ?‘Ľ = đ?‘Ľ đ?‘– , đ?‘– = 0,1,2,3 ‌ đ?‘› and đ?‘¤ đ?‘Ľ = 1 The necessary conditions for (1) to have a minimum value is that đ?œ•đ??ź = 0 , đ?‘– = 0,1,2,3 ‌ đ?‘› . đ?œ•đ?‘? đ?‘–
This gives a system of đ?‘› + 1linear equations in đ?‘› + 1constants. These equations are called normal equations. Then we get approximated nth degree polynomial function of đ?‘Ľ. 1.Least square plane: Given a discrete data đ?‘Ľđ?‘˜ , đ?‘Śđ?‘˜ , đ?‘˜ = 0,1, ‌ đ?‘ , Consider∅ đ?‘Ľ, đ?‘Ś = đ?‘?0 + đ?‘?1 đ?‘Ľ + đ?‘?2 đ?‘Ś Such that đ??ź đ?‘?0 , đ?‘?1 , đ?‘?2 = đ?‘ đ?‘˜=đ?‘œ đ?‘§đ?‘˜ − đ?‘?0 + đ?‘?1 đ?‘Ľđ?‘˜ + đ?‘?2 đ?‘Śđ?‘˜
Then Normal equations
đ?œ•đ??ź đ?œ•đ?‘? đ?‘–
2
đ?‘ ≼ 2.
= �������
= 0 , đ?‘– = 0,1,2 .
ie., đ?‘?0 đ?‘ + 1 + đ?‘?1 đ?‘?0 đ?‘?0
đ?‘Śđ?‘˜ + đ?‘?1
đ?‘Ľđ?‘˜ đ?‘Śđ?‘˜ + đ?‘?2
đ?‘Śđ?‘˜ 2 =
đ?‘Ľđ?‘˜ + đ?‘?1
đ?‘Ľđ?‘˜ + đ?‘?2 đ?‘Ľđ?‘˜ 2 + đ?‘?2
đ?‘Śđ?‘˜ = đ?‘Ľđ?‘˜ đ?‘Śđ?‘˜ =
đ?‘§đ?‘˜ đ?‘Ľđ?‘˜ đ?‘§đ?‘˜
đ?‘Śđ?‘˜ đ?‘§đ?‘˜
Solving this system of equations we getđ?‘?0 , đ?‘?1 đ?‘Žđ?‘›đ?‘‘ đ?‘?2 . Example 1: Suppose that given data points −1, 1, −2 , 1, 2 , 3 , 1, 1 , 2 that lie on đ?‘§ = đ?‘“(đ?‘Ľ , đ?‘Ś).These points define uniquely a linear function in two variables, sođ?‘§đ?‘˜ = đ?‘?0 + đ?‘?1 đ?‘Ľđ?‘˜ + đ?‘?2 đ?‘Śđ?‘˜ , đ?‘˜ = 0,1,2 DOI: 10.9790/5728-1301047779
www.iosrjournals.org
77 | Page