A RELATIONSHIP BETWEEN THE CONVOLUTION AND TRANSLATION OPERATORS FOR CONVOLUTABLE FRECHET SPACES OF

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 07| July 2024 www.irjet.net p-ISSN: 2395-0072

A RELATIONSHIP BETWEEN THE CONVOLUTION AND TRANSLATION OPERATORS FOR

CONVOLUTABLE FRECHET SPACES OF DISTRIBUTIONS

Associate Professor, Department of Mathematics, Maharaja Agrasen Institute of Technology, Delhi, India

Abstract - In this paper, a relationship between the convolution and translation operators is established for ConvolutableFrechetSpacesofDistributions(CFD-spaces).

Key Words: Fourier analysis, Banach spaces, Frechet spaces, Locally convex spaces, circle group and homogeneous space.

1. INTRODUCTION

If E is (1) p Lp orC , fE  and 1gL  ,thenitis shownin[1,Vol.I,3.19]that gf  isthelimitin E offinite linearcombinationsoftranslatesof f .Also,arelationship between the convolution and translation operators is establishedin[2]and[5]forConvolutableBanachSpacesof DistributionsandforFrechetSpacesofDistributions(FDspaces).Inthispaper,weextendthatresulttohomogeneous ConvolutableFrechetSpacesofDistributions(CFD-spaces).

2. DEFINITIONS AND NOTATIONS

Allthenotationsandconventionsusedin[3]and[6]willbe continued in thispaper.In particular,GR/2Z   will denotethecirclegroupand D willdenotethespaceofall distributionson G.Fortheconvenienceofthereader,we repeatthefollowingdefinitionsgivenin[3].

2.1 Definition

AFrechetspace E iscalledaconvolutableFrechetspaceof distributions,brieflya CFD-space,ifitcanbecontinuously embeddedin(D, strong*),andif,regardedasasubsetof D;it satisfiesthefollowingproperties:

(2.1) , MfEfE  ,whereMdenotesthe setofall(Radon)measures.

(2.2) CE   isaclosedsubspaceof C  .

Throughoutthepaper E ,ifnotspecified,willdenotea CFDspaceand E willdenoteits strong* dual(see[7],Ch.10).

2.2. Definition

A CFD-space E issaidtobehomogenousif 0xx  in G implies 0xx TfTf  in E foreach fE 

3. SOME USEFUL RESULTS

Using Theorems 3.25 and 3.27 of [4] we can state the following.

3.1. Theorem. Let X be a Frechet space and  be a complexBorelmeasureonacompactHausdorffspace Q.If : fQX  is continuous, then the integral Q fd  exists(andliesin X)suchthat

() QQ FfdFfdFX   

3.2.Theorem. If pisacontinuousseminormonaFrechet space X and Q yfd   isdefinedasabove,thenthere exists FX   suchthat ()() Fypy  and |()|() Fxpx  forall xX 

(SeeTheorem3.3of[4]).

Inparticular,

 QQ pfdFfd  

()()||QQFfdpfd  

Theabovetworesultswillbeusefultofindtherelationship between the convolution and translation operators for homogeneous CFD-spaces.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 07| July 2024 www.irjet.net p-ISSN: 2395-0072

4. CONVOLUTIONS AND TRANSLATIONS

4.1. Theorem. Let M  and E beahomogeneous CFD-space.If gE  ,then g  isthelimitin E offinite linearcombinationsoftranslatesof g .

Proof: Let g V denote the closed linear subspaceof E generatedby () a TgaG  ,i.e.,theclosurein E oftheset ofallfinitelinearcombinationsofelements a Tg.Weshall firstprovethetheoremfor f in 1L insteadof  in M

Let   1 : gSfLfgV  . Now obviously S is a linearsubspaceof 1L .Also S isclosedin 1L .Toseethis,let f bealimitpointof S .Thenthereexistsasequence nf in S suchthat n ff  in 1L .ByTheorem2.4.of[3], n fgfg   in E .But ng fgV   forevery n,and g V isaclosedlinearsubspaceof E ,therefore gfgV  andhence fS  .Thus S isclosedin 1L

Now we shall show that S contains all characteristic functionsofthesubintervalsof [0,2]  .Toseethis,first take I f   where [,]Iab  and 02 ab   .

Since E is homogeneous, the vector valued integral y I Tgdy  isdefinedandbelongsto E (seeTheorem3.1). Now,forevery n

Partition I byafinitenumberofsubintervals kI whose lengths kI aremajorizedbyanumber  tobechosen later.Chooseandfixapoint ka ineach kI .Wethenhave

,say.

Nowgiven 0   andacontinuousseminorm p on E ,we canchoose 0   sosmallthat   kkya yapTgTg 

Then,byTheorem3.2, 

k k kyak I phpTgTgdyI    foreach k

Hence,

|| 222 k kak kk pfgITgII 

Sincethisholdsforeachcontinuousseminorm p ,

lim 2 kka k k ITgfg 

But 1 2 kka k ITg 

 is a finite linear combination of translates of g , hence gfgV  , i.e., fS  where I f  

Asfinitelinearcombinationsofcharacteristicfunctionsof theform I aredensein 1L and S isclosedin 1L ,wecan concludethat 1SL 

Now, let  be in M . Then 1 n L  for all n, i.e., n S  forall n.Hence, ng gV forall n.But

   nn pggpgg  

So, by Theorem 2.4. of [3], there exists a continuous seminorm q on E suchthat     1 nn pggqgg  

But n gg   byTheorem3.6.of[3],therefore   0as . n pggn 

Hence * ggV   .

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 07| July 2024 www.irjet.net p-ISSN: 2395-0072

5. CONCLUSIONS

Inthispaper,wehaveobtainedarelationshipbetweenthe convolution and translation operators for homogeneous ConvolutableFrechetSpacesofDistributions(CFD-spaces). WehaveusedvariousresultsandtechniquesofFunctional analysis to obtain theresult. Theresult obtained willbe usefulforfurtheranalysisinthefieldofFourieranalysisand Functionalanalysis.

ACKNOWLEDGEMENT

Mydeepandprofoundgratitudeto(Late) Dr. R.P. Sinha, Associate Professor, Department of Mathematics, I.I.T. Roorkeeforhisvaluableguidance.Idonothavewordsto thankhim.Hewillbeaconstantsourceofinspirationforme throughoutthelife.

REFERENCES

[1] R.E.Edwards,FourierSeries,Vols.I,II,Springer-Verlag, NewYork,1979,1982.

[2] J.K. Nath, “On Convolutable Banach spaces of distributions”, Ph.D. Thesis, University of Roorkee, Roorkee,India,1986.

[3] Nishu Gupta, “On Convolutable Frechet spaces of distributions”, International Research Journal of EngineeringandTechnology(IRJET),Volume10Issue7 July2023.

[4] W.Rudin,FunctionalAnalysis,McGraw-Hill,Inc.,New York,1991.

[5] M.P. Singh, “On Frechet spaces of distributions”, MathematicalSciencesInternationalResearchJournal, Volume3Issue2(2014).

[6] R.P.SinhaandJ.K.Nath,“OnConvolutableBanachspaces ofdistributions”,Bull.Soc.Math.Belg.,ser.B,41(1989), No.2,229-237.

[7] A. Wilansky, Modern Methods in Topological Vector SpacesMcGraw-Hill,Inc.,NewYork,1978.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.