
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
INNOVATIVE CYBER SECURITY DETECTING AND ALERTING DEVICE: AN INTEGRATED APPROACH TO THREAT DETECTION AND MITIGATION
SarangKumar Radadia1 , Keyur Dodiya2 , Kumar Shukla3
1Principal/Associate Dir Software Development/ Engineering 2System Engineer 3Principal Network Engineer
Abstract - In an era where cyber threats are escalating in sophistication and frequency, the need for robust and responsive security measures has never been greater. This paper presents an innovative cyber security detecting and alerting device designed to provide a comprehensive approach to threat detection and mitigation. Our integrated system leverages advanced machine learning algorithms, real-time data analysis, and automated response mechanisms to identify and neutralize potential threats before they can inflict damage. By combining anomaly detection, behavioural analysis, and signature-based techniques, the device ensures multi-layered protection against a wide range of cyber threats. Kexx`y features include rapid threat detection, real-time alerts, and automated mitigation processes, all tailored to adapt to evolving security landscapes. The system's effectiveness is demonstrated through rigorous testing in various scenarios, highlighting its capability to safeguard critical infrastructure and sensitive information. This innovative device represents a significant advancement in cyber security, offering enhanced protection and peace of mind for organizations and individuals alike.
Key Words: Cybersecurity,Threatdetection,Real-timealerts,Automatedmitigation
1. INTRODUCTION
CyberSecurityDetectingandAlertingDevicesareessentialcomponentsofarobustcybersecuritystrategy.Thesedevicesare designedtomonitor,detect,andrespondtovariouscyberthreats,providingcriticalprotectionfornetworks,systems,anddata. Theirprimaryfunctionistoidentifymaliciousactivitiesorpolicyviolationsandalertusersoradministrators,enablingprompt actiontomitigatepotentialthreats.

1.1 TYPES OF DEVICES
1.1.1 INTRUSION DETECTION SYSTEMS (IDS)
IntrusionDetectionSystems(IDS)aresystemsdesignedtomonitornetworkorsystemactivitiesformaliciousactivitiesorpolicy violations.Thesesystemsanalyzetrafficpatternsanddatapacketstodetectsuspiciousactivities[1].Theprimaryfunctionalityof IDSistoactaspassivesystemsthatgeneratealertsandreportswhenpotentialthreatsaredetected,providingcriticalinsights intopossiblesecuritybreaches.UnlikeIntrusionPreventionSystems(IPS),IDSdonottakeactivemeasurestoblockorprevent threatsbutinsteadfocusonidentifyingandalertinguserstothepresenceofpotentialsecurityissues.Thispassiveapproach

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
allowsorganizationstorespondtothreatspromptlyandeffectively,basedonthedetailedreportsandalertsgeneratedbythe IDS.
1.1.2 INTRUSION PREVENTION SYSTEMS (IPS)
IntrusionPreventionSystems(IPS)areproactivecybersecuritysolutionsdesignedtoextendthefunctionalityofIntrusion DetectionSystems(IDS)bynotonlydetectingbutalsoactivelyblockingorpreventingmaliciousactivitiesbasedonpredefined rules. These systems are essential for mitigating threats in real time, as they automatically take actions such as blocking malicioustraffic,quarantininginfecteddevices,andpreventingunauthorizedaccesstonetworksandsystems.Theautomated responsecapabilitiesofIPSsignificantlyenhancethesecuritypostureofanorganizationbyswiftlyaddressingpotentialthreats beforetheycancauseharm[3,4].

1.1.3
SECURITY INFORMATION AND EVENT MANAGEMENT (SIEM)
SIEMsystemsaredesignedtoprovidereal-timeanalysisofsecurityalertsgeneratedbyvariousapplicationsandnetwork hardware,enablingacomprehensiveviewofanorganization'ssecurityposture[6].Thesesystemsaggregateandnormalizelog datafrommultiplesources,facilitatingthedetectionofpatternsthatmayindicatepotentialsecurityincidents.Bycorrelating eventsandgeneratingalerts,SIEMsystemsplayacrucialroleinfacilitatingtimelyincidentresponseandensuringeffective securitymanagement.
1.1.4 UNIFIED THREAT MANAGEMENT (UTM)
UnifiedThreatManagement(UTM)devicesintegratemultiplesecurityfeaturesintoasingleplatform,encompassingelements such as firewalls, gateway antivirus, and intrusion detection/prevention capabilities. This integration simplifies the management of diverse security functions and enhances the overall security posture of an organization by providing a consolidateddefensemechanismagainstvariousthreats[3].
1.1.5 ENDPOINT DETECTION AND RESPONSE (EDR)
EndpointDetectionandResponse(EDR)toolsaredesignedtomonitorandrespondtoadvancedthreatsonendpointssuchas computers,servers,andmobiledevices.EDR solutionsfocus ondetectingandinvestigatingsuspicious activities onthese endpoints,offeringcontinuousmonitoringandresponsecapabilities.Theyareequippedwithfeaturesforthreathuntingand forensicanalysis,enablingrapiddetectionandremediationofthreats[7].
1.1.6 WEB APPLICATION FIREWALLS (WAF)
Web Application Firewalls (WAFs) protect web applications by filtering and monitoring HTTP traffic between a web applicationandtheInternet.Theyareessentialforsafeguardingwebapplicationsfromvariousthreats,includingSQLinjection andcross-sitescripting.WAFsinspectincomingandoutgoingwebtrafficandapplypredefinedrulestoidentifyandblock maliciousrequests,ensuringthesecurityandintegrityofwebapplications[8].

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
2. TECHNOLOGICAL COMPONENTS AND ARCHITECTURE
2.1 HARDWARE AND SOFTWARE INTEGRATION
Cybersecuritydetectingandalertingdevicestypicallyintegratehardwareandsoftwaretoprovidecomprehensiveprotection. Thehardwareoftenincludessensors,networkinterfacecards,anddedicatedprocessingunits,whilethesoftwareincludes operatingsystems,detectionalgorithms,andmanagementinterfaces[9].
Hardware Components: Theseincludenetworksensors,intrusiondetectionhardware,anddedicatedprocessors.For instance, network sensors capture traffic data, while processors handle the data analysis and threat detection processes.
Software Components: Thisincludesintrusiondetectionandpreventionsoftware,real-timemonitoringsystems,and securityinformationandeventmanagement(SIEM)systems.Thesoftwareisresponsibleforanalyzingdata,detecting anomalies,andgeneratingalerts.
2.2 NETWORK TRAFFIC MONITORING
Network traffic monitoring involves capturing and analyzing the data packets that traverse a network. This is crucial for identifyingsuspiciousactivities,unauthorizedaccess,andpotentialthreats.
Data Capture: Tools and devices are deployed to capture network traffic in real-time. This includes monitoring incomingandoutgoingpackets,sessionlogs,andnetworkflowdata.
Traffic Analysis: Analyzing network traffic helps identify patterns and anomalies that could indicate malicious activities. This can involve checking for unusual traffic volumes, unexpected data transfers, or unauthorized communicationattempts.
2.3 DATA PACKET ANALYSIS
Data packetanalysisisa techniqueusedto inspectand analyzedata packetsfor signsofmaliciousactivity. Thisinvolves examiningthecontentsofdatapackets,includingheadersandpayloads,todetectanomaliesorattacks.
Packet Inspection: Detailed inspection of packet headers and payloads to identify unusual patterns or signs of intrusion.Thiscanincludeanalyzingsourceanddestinationaddresses,portnumbers,anddatacontent.
Protocol Analysis: Analysisofnetworkprotocolstoensuretheyarebeingusedcorrectlyandsecurely.Anydeviations orabnormalusagecanbeflaggedaspotentialthreats.
2.4 ANOMALY DETECTION MECHANISMS
Anomalydetectionmechanismsareusedtoidentifydeviationsfromnormalbehaviourthatcouldindicateasecuritythreat. Thesemechanismsoftenemploymachinelearningandstatisticalmethodstodetectunusualpatterns[10].
Behavioural Analysis: This involves creating a baseline of normal network behaviour and using it to identify deviations.Machinelearningalgorithmscanbetrainedtorecognizenormalpatternsanddetectanomalies.
Statistical Methods: Statistical models can analyze network traffic and system logs to identify deviations from expectedpatterns.Thiscanhelpindetectingpotentialthreatsbasedonstatisticalanomalies.
Thesecomponentsandtechniquesformthebackboneofmoderncybersecuritydetectingandalertingdevices,enablingthem toeffectivelymonitor,analyze,andrespondtopotentialthreatsinrealtime.
3. ADVANCED PERSISTENT THREATS (APTS) DETECTION AND MITIGATION
3.1 TECHNIQUES FOR DETECTING
APTS:
a) Behavioural Analysis:Thisinvolvesmonitoringthebehaviourofusersandsystemstoidentifyanomaliesthatcould indicatethepresenceofanAPT.Behaviouralanalysislooksforunusualpatternsindataaccess,systemoperations,and networktrafficthatdeviatefromthenorm.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
b) Threat Intelligence Integration:Utilizingthreatintelligencefeedstostayupdatedwiththelatesttactics,techniques, andprocedures(TTPs)usedbyattackers.Thisproactiveapproachhelpsinrecognizingpatternsthatareindicativeof APTactivities.
c) Network and Endpoint Monitoring:Employingcomprehensivemonitoringtoolsthatanalyzenetworktrafficand endpointactivities.ThisincludesIntrusionDetectionSystems(IDS),IntrusionPreventionSystems(IPS),andEndpoint DetectionandResponse(EDR)toolsthatcanspotsignsofAPTs[10].
d) Machine Learning and AI Techniques:Leveragingmachinelearningalgorithmstodetectpatternsandanomalies associatedwithAPTs.Thesetechniquescanhelpinidentifyingsophisticatedattackvectorsthattraditionalmethods mightmiss.
e) Signature-Based Detection:UsingknownsignaturesofmalwareandattackpatternstoidentifyAPTs.Whileeffective forknownthreats,thismethodmaynotbeaseffectiveagainstnovelormodifiedattackmethods[11].
3.2 MITIGATION STRATEGIES:
a) Incident Response Planning: Developing a comprehensive incident response plan that includes steps for containment,eradication,andrecovery[9].Thisensuresthattheorganizationcaneffectivelyrespondtoandmitigate theimpactofanAPT.
b) Regular System Updates and Patching:Ensuringthatallsystems,software,andfirmwareareup-to-datewiththe latestsecuritypatchestoreducevulnerabilitiesthatAPTscanexploit[13].
c) Network Segmentation:Dividingthenetworkintosegmentstocontainanypotentialbreachandlimitthelateral movementofattackerswithinthenetwork[14].
d) User Education and Awareness: Training users on recognizing phishing attempts and other social engineering tacticsthatAPTsoftenemploytogaininitialaccess.
e) Advanced Encryption Techniques:Usingstrongencryptionmethodsforsensitivedatatopreventunauthorized accessandensuredataconfidentiality[15].
f) Continuous Monitoring and Threat Hunting:Implementingcontinuousmonitoringsystemsandproactivethreat huntingpracticestodetectandrespondtoAPTsbeforetheycancausesignificantdamage[8].
4. AI-ENHANCED THREAT DETECTION
4.1 ROLE OF AI IN CYBERSECURITY
ArtificialIntelligence(AI)hasbecomeacrucialcomponentinenhancingcybersecurityduetoitsabilitytoanalyzevastamounts ofdataandidentifypatternsthatareindicativeofthreats.AIsystemscanautomatethedetectionandresponsetocyberthreats, makingthemmoreefficientthantraditionalmethods.
a) Anomaly Detection:AIalgorithmscananalyzenetworktrafficanduserbehaviourtodetectanomaliesthatmight indicateapotentialsecuritythreat.Bylearningwhatnormalbehaviourlookslike,thesesystemscanflagdeviations thatcouldbesignsofabreachormaliciousactivity.
b) Threat Intelligence:AIcanaggregateandanalyzethreatdatafromvarioussourcestoprovideactionableintelligence. Thishelpsorganizationsstayaheadofemergingthreatsbyunderstandingpatternsandtrendsincyber-attacks.
c) Automated Response:AI-drivensystemscanautomaticallyrespondtocertaintypesofthreatsbyisolatingaffected systems,blockingmalicioustraffic,orapplyingpatches,reducingthetimewindowinwhichanattackercanoperate.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
4.2 MACHINE LEARNING AND DEEP LEARNING APPLICATIONS
Machinelearning(ML)anddeeplearning(DL)havesignificantlyadvancedthreatdetectioncapabilitiesincybersecurity:
a) Machine Learning Applications:
o Classification Models:MLalgorithmscanclassifynetworktrafficanduserbehaviourasbenignormalicious. Techniquessuchassupportvectormachines(SVM)andrandomforestsarecommonlyusedforthispurpose.
o Clustering:Unsupervisedlearningtechniqueslikeclusteringcangroupsimilartypesofattacksandidentify new,previouslyunknownthreatsbydetectingpatterns[16].
b) Deep Learning Applications:
o Neural Networks:Deepneuralnetworks,includingconvolutionalneuralnetworks(CNNs),canbeemployed to analyze network traffic and detect anomalies with high accuracy. These networks can learn complex patternsandinteractionsthatmightnotbevisiblethroughtraditionalmethods.
o Recurrent Neural Networks (RNNs):RNNs,includingLongShort-TermMemory(LSTM)networks,areused toanalyzesequentialdata,suchastime-seriesdatafromnetworklogs,toidentifysuspiciouspatternsover time.
4.3 FUTURE RESEARCH OPPORTUNITIES
a) Explainable AI:ThereisagrowingneedforexplainableAImodelsincybersecuritytohelpsecurityprofessionals understandandtrustAI-drivendecisions.Researchintocreatingtransparentmodelsthatprovideclearreasoningfor theirdecisionsiscrucial.
b) Adversarial Attacks: As AI systems become more prevalent, they may become targets for adversarial attacks designed to deceive or mislead these systems. Research into making AI models robust against such attacks isan importantareaofdevelopment.
c) Integration with Other Security Tools:CombiningAIwithothercybersecuritytools,suchasintrusiondetection systems(IDS)andsecurityinformationandeventmanagement(SIEM)systems,couldprovideamorecomprehensive defence strategy. Future research could focus on optimizing these integrations for better threat detection and response.
d) Real-Time Threat Detection:EnhancingthecapabilityofAIsystemstodetectandrespondtothreatsinreal-timeis anongoingchallenge.Researchintofasteralgorithmsandmoreefficientprocessingtechniquescouldimprovethe timelinessofthreatresponses.
5. CASE STUDIES:
Reference Focus
Diro AA, Chilamkurti N.(2018)[16]
Distributed attack detectionforIoT
Mustafa FE, et al. (2023)[17] Alarm management systemsforindustrial processcontrol
Table5.1Casestudies:
Methodology Key Findings
Deep learning approach
Literature review, Systemanalysis
Proposed a distributed attackdetectionscheme using deep learning for IoT, showing improved detectionrates.
Reviewed barriers and opportunities in alarm management systems, highlighting key challenges and solutions.
Contribution
Demonstrated the effectiveness of deep learning in detecting IoTattacks.
Provided a comprehensive overview of effective alarm management systemsandidentified keychallenges.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
DoghudjeI,AkandeO. (2022)[18]
Cybersecurity challengesforIoTand smartmaterials
Khatoon A, et al. (2023)[19] Machine learningbased detection for IoE
Ralston PA, et al. (2007)[20] Cybersecurity risk assessmentforSCADA andDCSnetworks
Review of cybersecurity challenges
Machine learning techniques
Discussedcybersecurity challenges associated with IoT and smart materials, emphasizing theroleofbigdata.
Explored detection and prevention systems using machine learning for the Internet of Everything(IoE).
Risk assessment methodologies Presented a risk assessment framework for SCADA and DCS networks, addressing unique security challenges.
Adewusi AO, et al. (2024)[21] AIincybersecurityfor national infrastructure AI techniques, Case studies Reviewed AI applications in protecting national infrastructure, focusing ontheUSA.
Khraisat A, et al. (2019)[22] Survey of Intrusion Detection Systems (IDS)
The survey, Techniqueanalysis Surveyed IDS techniques, datasets, and challenges, providing a comprehensive review ofthestateoftheart.
6. FUTURE DIRECTIONS AND EMERGING TRENDS
6.1
PROACTIVE THREAT DETECTION:
Offered insights into the unique cybersecurity challenges of IoT and smartmaterials.
Highlighted the potential of machine learninginenhancing IoEsecurity.
Provided a foundational risk assessment approach for critical infrastructure networks.
Highlightedtheroleof AI in enhancing national infrastructure cybersecurity.
Offered a detailed overview of IDS, including key techniques and challenges.
Proactive threat detection involves anticipating and identifying potential threats before they can cause harm, enhancing cybersecuritymeasuresandpreventingattacks.Keytechniquesincludethreathunting,whichactivelysearchesforthreats withinanorganization'snetworkbeforeanyalertsaretriggered;behavioralanalysis,whichmonitorsandanalyzesthebehavior of usersand systems to detect anomalies; and predictive analytics, which uses data analytics to predict potential security incidentsbasedonhistoricaldataandtrends.Emergingtechnologiesplayacrucialroleinthisapproach.Artificialintelligence (AI) and machine learning algorithms can identify patterns and predict potential threats more accurately, while big data analyticsenablestheanalysisoflargevolumesofdatatouncoverhiddenpatternsandcorrelationsthatcouldindicatesecurity threats. Additionally, blockchain technology provides secure and tamper-proof transaction records, further enhancing the securityinfrastructure.
6.2 INTEGRATION OF NEW TECHNOLOGIES
Integrating new technologies into cybersecurity frameworks can significantly enhance threat detection and response capabilities.Keytechnologiesdrivingthisadvancementincludequantumcomputing,InternetofThings(IoT)security,and5G networks.Quantumcomputingofferspowerfulalgorithmsthatcansolvecomplexcryptographicproblems,thusenhancing encryptionandoverallsecurity.IoTsecurityfocusesonimplementingmeasuresspecificallydesignedtoprotectIoTdevicesfrom vulnerabilities,ensuringamoresecureinterconnectedenvironment.Theadoptionof5Gnetworkspresentsbothchallengesand opportunities,withthepotentialtorevolutionizecommunicationspeedsandconnectivitywhilenecessitatingrobustsecurity protocols to manage new threats. The benefits of integrating these technologies include enhanced detection capabilities, improvedresponsetimes,andgreateraccuracyinidentifyingandmitigatingthreats,ultimatelyleadingtoamoreresilient cybersecurityinfrastructure.
© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page783

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
7. CONCLUSION
The development and implementation of innovative cybersecurity detecting and alerting devices represent a significant advancement inthe fieldofthreatdetectionandmitigation.Byintegratingvarious technologiessuchas deeplearning,AI, machinelearning,andbigdataanalytics,thesedevicesofferunparalleledcapabilitiesinidentifyingandrespondingtopotential threats.Theuseofintrusiondetectionandpreventionsystems(IDSandIPS),SecurityInformationandEventManagement (SIEM),UnifiedThreatManagement(UTM),EndpointDetectionandResponse(EDR),andWebApplicationFirewalls(WAF) formsacomprehensivedefensestrategy.Additionally,theintegrationofnewtechnologiessuchasquantumcomputing,IoT security, and 5G networks further enhances the effectiveness of these devices, providing enhanced detection capabilities, improvedresponsetimes,andgreateraccuracyinthreatidentificationandmitigation.Ascyberthreatscontinuetoevolve,the adoptionoftheseadvanceddevicesandintegratedapproacheswillbecrucialinensuringrobustandresilientcybersecurity defenses,ultimatelysafeguardingcriticalinfrastructureandsensitiveinformation.
REFERENCES
[1] KureHI,IslamS,RazzaqueMA.Anintegratedcybersecurityriskmanagementapproachforacyber-physicalsystem. AppliedSciences.2018May30;8(6):898.
[2] AdamskyF,AubignyM,BattistiF,CarliM,CimorelliF,CruzT,DiGiorgioA,FogliettaC,GalliA,GiuseppiA,LiberatiF. Integratedprotectionofindustrialcontrolsystemsfromcyber-attacks:theATENAapproach.InternationalJournalof CriticalInfrastructureProtection.2018Jun1;21:72-82.
[3] DiogenesY,OzkayaE.Cybersecurity–AttackandDefenseStrategies:Countermodernthreatsandemploystate-of-thearttoolsandtechniquestoprotectyourorganizationagainstcybercriminals.PacktPublishingLtd;2019Dec31.
[4] SikderAK,PetraccaG,AksuH,JaegerT,UluagacAS.Asurveyonsensor-basedthreatsandattackstosmartdevicesand applications.IEEECommunicationsSurveys&Tutorials.2021Mar8;23(2):1125-59.
[5] https://www.spiceworks.com/it-security/network-security/articles/ids-vs-ips/
[6] AdamskyF,AubignyM,BattistiF,CarliM,CimorelliF,CruzT,DiGiorgioA,FogliettaC,GalliA,GiuseppiA,LiberatiF. Integratedprotectionofindustrialcontrolsystemsfromcyber-attacks:theATENAapproach.InternationalJournalof CriticalInfrastructureProtection.2018Jun1;21:72-82.
[7] SikderAK,PetraccaG,AksuH,JaegerT,UluagacAS.Asurveyonsensor-basedthreatsandattackstosmartdevicesand applications.IEEECommunicationsSurveys&Tutorials.2021Mar8;23(2):1125-59.
[8] ChaabouniN,MosbahM,ZemmariA,SauvignacC,FarukiP.NetworkintrusiondetectionforIoTsecuritybasedon learningtechniques.IEEECommunicationsSurveys&Tutorials.2019Jan30;21(3):2671-701.
[9] KhalidA,KirisciP,KhanZH,GhrairiZ,ThobenKD,PannekJ.Securityframeworkforindustrialcollaborativerobotic cyber-physicalsystems.ComputersinIndustry.2018May1;97:132-45.
[10]Arif H, Kumar A, Fahad M, Hussain HK. Future Horizons: AI-Enhanced Threat Detection in Cloud Environments: Unveiling Opportunities for Research. International Journal of Multidisciplinary Sciences and Arts. 2024 Jan 15;3(1):242-51.
[11]Rassam MA, Maarof M, Zainal A. Big Data Analytics Adoption for Cybersecurity: A Review of Current Solutions, Requirements,ChallengesandTrends.JournalofInformationAssurance&Security.2017Oct1;12(4).
[12]KhorshedMT,AliAS,WasimiSA.Asurveyongaps,threatremediationchallengesandsomethoughtsforproactive attackdetectionincloudcomputing.FutureGenerationcomputersystems.2012Jun1;28(6):833-51.
[13]Hossain-McKenzieS,JacobsN,JonesCB,SummersA,ChavezA,WrightB.SecuringInverterCommunication:Proactive IntrusionDetectionandMitigationSystemtoTap,Analyze,andAct.SandiaNationalLab.(SNL-NM),Albuquerque,NM (UnitedStates);2022Mar1.
[14]Fahad M, Airf H, Kumar A, Hussain HK. Securing Against APTs: Advancements in Detection and Mitigation. BIN: BulletinOfInformatics.2023;1(2).
[15]Georgiadou A, Mouzakitis S, Askounis D. Assessing mitre att&ck risk using a cyber-security culture framework. Sensors.2021May9;21(9):3267.
[16]DiroAA,ChilamkurtiN.DistributedattackdetectionschemeusingdeeplearningapproachforInternetofThings. FutureGenerationComputerSystems.2018May1;82:761-8.
[17]MustafaFE,AhmedI,BasitA,MalikSH,MahmoodA,AliPR.Areviewoneffectivealarmmanagementsystemsfor industrialprocesscontrol:barriersandopportunities.InternationalJournalofCriticalInfrastructureProtection.2023 Jul1;41:100599.
[18]DoghudjeI,AkandeO.SecuringtheInternetofThings:CybersecurityChallengesforSmartMaterialsandBigData. InternationalJournalofInformationandCybersecurity.2022Mar15;6(1):82-108.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072
[19]KhatoonA,UllahA,YasirM.MachineLearning-BasedDetectionandPreventionSystemsforIoE.InCybersecurity Vigilance and Security Engineering of Internet of Everything 2023 Dec 1 (pp. 109-125). Cham: Springer Nature Switzerland.
[20]RalstonPA,GrahamJH,HiebJL.CybersecurityriskassessmentforSCADAandDCSnetworks.ISAtransactions.2007 Oct1;46(4):583-94.
[21]Adewusi AO, Okoli UI, Olorunsogo T, Adaga E, Daraojimba DO, Obi OC. Artificial intelligence in cybersecurity: Protectingnationalinfrastructure:AUSA.WorldJournalofAdvancedResearchandReviews.2024;21(1):2263-75.
[22]KhraisatA,GondalI,VamplewP,KamruzzamanJ.Surveyofintrusiondetectionsystems:techniques,datasetsand challenges.Cybersecurity.2019Dec;2(1):1-22.