An Empirical Study on Identifying the Best Qualitative Methods for Sales Forecasting Models of the T

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

An Empirical Study on Identifying the Best Qualitative Methods for Sales Forecasting Models of the Top Five FMCG Companies in India Based on Market Capitalization as of March 19, 2024, Using JMP Software.

Student, pursuing MBA at PES University Bengaluru, Banashankari - 560085

Abstract - This paper examines sales forecasting for the five largest FMCG companies as of March 19, 2024: Hindustan Unilever Limited (HUL), ITC Limited, Nestlé India Limited, Varun Beverages Limited, and Godrej Consumer Products Limited. We obtained 12 years of sales data for these companies from the Screener website to predict sales for the next three years, from March 2024 to March 2027. Various forecasting methods were employed, utilizing JMP software to identify the most effective techniques for each company. Our study revealed that each FMCG company has an optimal forecasting model tailored to its specific sales data. For ITC, Nestlé India Limited, and Godrej Consumer Products Limited, the ARIMA model proved most effective. In contrast, Varun Beverages Limited benefited more from the Seasonal Exponential Smoothing model. This highlights the importance of selecting the right forecasting method for accurate predictions and positive outcomes. Additionally, the paper provides an overview of the FMCG sector and its growth trends, driven by urbanization, rising incomes, and changing consumer preferences. Despite economic fluctuations, the FMCG sector remains resilient, offering lucrative investment opportunities. The findings are valuable for industry stakeholders, including companies, investors, and policymakers. Accurate sales predictions enable effective inventory management and strategic marketing. Overall, this study enhances our understanding of sales forecasting in the FMCG industry, underscoring the utility of diverse quantitative models in decision-making.

Key Words: Business forecasting, sales forecasting, ARIMA model, Seasonal Exponential Smoothing, quantitative analysis, economic fluctuations, Screener website, growth potential.

1. INTRODUCTION

Thelong-termsuccessofanyfirmgreatlydependsonitsmanagement'sabilitytorecognizetrendsandmakesounddecisions. Topcompanyexecutivestypicallyknowjustwhentomakechangestostayaheadofthecompetition.Thesecompaniesrarely makemistakesbymisjudgingconsumerdemand,unlikemanyothers.Beingadeptatforecastingcanmakeallthedifference.

Duetointensecompetitionandchallengingtimes,determininghowmuchproducttosellisdifficult.Variousfactorsinfluence consumer demand, but if a company can accurately forecast sales, it can lead to increased customer satisfaction, higher revenue,andmoreefficientproductionplanning.

Accurateandtimelyforecastingiscrucialforinventorymanagement.Ifforecastingmethodsareflawed,acompanymayendup withtoomuchortoolittlestock,whichcannegativelyimpactprofitabilityandcompetitiveness.

Forecastinghelpspredictandexplainpotentialoutcomes,andincorporatingthesepredictionsintoplanningcanleadtobetter decision-making for the company (Makridakis and Wheelwright, 1989). For example, forecasting sales can enhance the effectivenessofthesalesormarketingteam.Thesamepredictionscanaidotherdepartmentsinproductionplanningand scheduling.

Therearevariousmethodsforforecastinginbusiness,rangingfromsimpletosophisticatedapproaches.Themostcommon methodappearstoberelyingonintuition,asmanydecision-makersbasetheirpredictionsonexperienceandpastobservations (Makridakis,1989;DeLurgio,1998;Wright&Goodwin,1998).Whilemostcompaniesfollowthisapproach,somecombineit withdata-driventechniques,andonlyafewrelysolelyonstatisticalmethods(Makridakis,1989).

1) Sales Forecasting:

Salesforecastinginvolvesanalyzingpastandcurrentdatatopredictfuturesales.Everycompanythatsellsproductsmust estimateconsumerdemand.Manufacturersneedtoknowhowmuchtoproduce,andretailersneedtodetermineoptimalstock levels.Failingtounderstandconsumerdemandcanresultinlostsales,dissatisfiedcustomers,andaweakenedmarketposition.

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

Importance of Sales Forecasting:

1)Improving Problem-Solving Techniques:

a)Managingfinalproductsandinventoryefficiently.

b)Schedulingproductiontooptimizemachineryandplantusage.

c)Maintainingadequaterawmaterialandsupplystockstoensureuninterruptedproduction.

d)Reducingoverstockingwhileminimizingwarehousingandtransportationcosts,andcreatingamanpowerplan.

e)Anticipatingfinancialrequirements.

2)Supporting Management:

a)Providingguidancefortopmanagementinpolicy-making,planning,andoperationalcontrol.

b)Aligningdifferentfunctionaldepartmentsonproducttypesandquantities.

c)Makinginformeddecisionsaboutbusinessexpansion.

d)Planningforbothlong-termandshort-termfinancialneeds.

e)Preparingoperatingandcapitalbudgetsfortheyear.

3)Supporting Sales and Marketing Decisions:

a)Settingsalestargetsforthesalesforce.

b)Developinganeffectivesalesstrategy.

c)Directingsaleseffortsanddeterminingsalesandpromotionalexpenses.

d)Evaluatingtheadvertisingbudget’ssizeandscope.

e)Settingpricesthatensuresustainableprofitability.

f)Identifyingproductswithgrowthpotentialforfurtherdevelopment.

2) Overview of the FMCG Sector:

FMCG,orFast-MovingConsumerGoods,referstoproductswithquickturnoverandlowcost.Consumerstypicallyspendless timedecidingtopurchaseFMCGproductscomparedtomoreexpensiveitems.Althoughindividualearningsfromproductslike soapandsnacksaresmall,theoverallprofitcanbesubstantialwhensoldinlargevolumes.Evenduringeconomicdownturns, consumersmaydelaypurchasingitemslikecars,buttheywillstillbuyessentialgoodslikefoodandcleaningsupplies.

Daily-useitemssuchassoap,shampoo,andtoothpastefallundertheFMCGsector.ThissectorisvitalfortheIndianeconomy andisthefourth-largestcontributortothecountry’sGDP.Itincludesfrequentlypurchaseditemslikepersonalcareproducts, food,householdgoods,andevenelectronics.

Top 5 FMCG companies in India

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

Examples of FMCG Products

BelowaresomeexamplesofFMCG(Fast-MovingConsumerGoods)products:

1. Toiletries and Personal Care Products:

o Toothpaste

o Shampoo

o Soap

o Deodorant

o ShowerGel

o HandSanitizers

2. Food and Beverages:

o SoftDrinks

o SnackFoods(chips,cookies,chocolates)

o BreakfastCereals

o PackagedTeaandCoffee

o InstantNoodles

o PackagedFruitsandVegetables

3. Household Products:

o LaundryDetergent

o DishwashingLiquid

o AirFresheners

o CleaningAgents(all-purposecleaners,floorcleaners)

o InsectRepellents

o Batteries

4. Healthcare Products:

o Over-the-CounterMedicines(painrelievers,coughsyrup,antacids)

o VitaminsandSupplements

o BandagesandFirstAidSupplies

o OralCareProducts(mouthwash,dentalfloss)

o DietaryandNutritionalProducts

5. Packaged Foods:

o CannedFoods(soups,vegetables,fruits)

o FrozenFoods(readymeals,pizzas,vegetables)

o PackagedSnacks(nuts,popcorn,pretzels)

o CondimentsandSauces(ketchup,mayonnaise,saladdressings)

o BreakfastBarsandGranolaBars

6. Baby and Infant Care Products:

o Diapers

o BabyWipes

o BabyFood

o InfantFormula

o BabySkincareProducts

ThesearejustafewexamplesofthevastrangeofFMCGproductsavailableinthemarket.Theyarecalled"fast-moving" becausetheyarelow-costitemsthatsellquicklyandhaveahighturnoverrate.

Major Concerns in the FMCG Sector in India

Currently,allkindsofbusinessesarefacingchallenges,notjustoneparticulartype.It’sbecomingincreasinglydifficultto perform well and maintain growth. The market for everyday products is constantly evolving, with new items launching frequentlyandtrendschangingquickly.Additionally,variouspromotionsandadvertisementsmakesalesforecastingeven morechallenging.Thedistributionofstoresacrossdifferentregionsalsocomplicatesplanning.Therefore,predictingglobal salesfortheseproductsisadifficulttask.

Objectives of the Study

1. Todeterminewhichmodelsaremosteffectiveforforecastingsalesinstoresthatselleverydayproductslikesoapand snacks.

2. Toanalyzethefactorsthatinfluencestheselectionofsalesforecastingmodelsforthesestores.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

3. Tocomparedifferentsalesforecastingmethodsbasedonproductcategories.

4. TosuggestimprovementstoexistingforecastingmodelstoenhancetheiraccuracyforpredictingsalesinFMCGstores.

Expected Contribution from the Study

This study aims to improve our understanding of sales forecasting. The key beneficiaries include researchers, educators, managers,andanyoneinvolvedinsalesforecasting.Thestudywillproposesalesforecastingmodelsfordifferenttypesof FMCGproducts,helpingforecastersmakebetterpredictions.Additionally,itwillidentifythefactorsthatinfluencetheselection offorecastingmodels,especiallyforconsumergoods.Thisresearchisexpectedtoimproveforecastingaccuracy.

a) Reduced inventory:Bettercashflowcanbeutilizedformarketingeffortssuchasadvertisementsandin-storedisplaysto drivesales.

b) Minimizing stockouts:Reducedmissedsalesopportunitiesattheretaillevel.

c) Maximizing resource utilization:Inaproductionsetting,ensuringthetimelyproductionoftherightproductswithin constraints.

FMCGcompaniesmayapplythesefindingstoimprovetheirsalesforecasting,allowingthemtomeetcustomerdemandmore efficientlywhileminimizingexcessinventory.Thisapproachisbeneficialforvarioustypesofbusinesses.

Literature Review:

1. In2008,HanaaE.Sayedandcolleaguesintroducedasimplesystemtoaiddecision-making.Theyusedmathematical techniqueslikeadditionandaveragingtoforecastacompany’sproductionneeds.Byanalyzingrealdatafromvarious products,theyshowedthattheirsystemwasmoreeffectivethanguessing.Bycombiningdifferentmethods,they improvedpredictionsaboutproductiontiming.Theirsystemalsoincorporatedexpertopinionsandmathematical modelstoenhanceaccuracy.

2. DragisaStojanovic(bornin1994)examinedbothdirectandindirectproductsales.Hedevelopedamodelusingasales charttoanalyzesalestrendsandpredictfuturesales.Thismodelhelpsforecastsalesunderdifferentconditions whethertheyremainstableorchange.Thesaleschartormodelallowsforprojectionsbasedonpasttrends,makingit usefulforfuturesalespredictions.

3. MichaelS.MorganandPradeepK.Chintagunta(1997)exploredthechallengesofpredictingrestaurantsales,which are only observable when the restaurant is open. They discussed these difficulties in a paper relevant to many restaurantowners.Theirfindingsdemonstratedthataparticularmathematicalmodelperformedwellinforecasting sales,makingitavaluabletoolforestimatingrestaurantrevenues.

4. Koen Pauwels highlighted the value of time-series data for marketing researchers. This data enables more sophisticatedresearchandinsightsintochangesovertime.Hediscussedthechallengesresearchersfacewhenusing time-seriesdatainmarketingandprovidedexamplesofnewapplications.However,healsonotedthatthereisstill muchtolearninthisfield.

5. In2004,PeterS.Faderandcolleaguesdevelopedamodeltounderstandhowcustomerspurchasenewproductsover time.Whilesimilartoexistingmodels,theirsismoreflexibleandadaptsovertime.Themodelalsointegratesother commonly used marketing models. Their research showed that this model can predict sales volume and timing, helpingmanagersmakebetterdecisions.

6. In2008,RajivUrspresentedasystematicapproachtoproductionplanningforimprovedresults.Heproposedeight steps: inputting historical data, cleaning it, making predictions using mathematical models, accounting for new products, adjusting predictions with expert insights, aligning forecasts with promotional schedules, tracking inventory,andcollaboratingwithsuppliers.Hismethodensuresthatdecisionsarebasedonconsistentandreliable forecasts.

7. InMay2012,TetyanaKuzhdadevelopedamathematicalequationtoforecastfuturesales.Theequationfactorsin variablessuchasconsumerincomeandadvertisingexpenditure.Kuzhda'sstudyfoundthatthisequationaccurately predictssalesandcanbeappliedtootherbusinessforecastingscenarios.

8. TomWallace(2006)identifiedfourkeyelementsinSales&OperationsPlanning:demand,supply,volume,andmix. Thisprocessensuresthatsupplymatchesdemandandthatproductvarietyalignswithconsumerneeds.Wallace emphasizedthatplanningiseasierwhenconditionsarestablebutbecomeschallenginginvolatilesituations.Henoted thatbusinessesincreasinglyfacesuchunpredictableconditions,makingforecastingmoredifficult.

9. LarryLapide(2009)pointedoutthatsomeproductsarehardertoforecast,particularlythosewithirregulardemand ornewproductlaunches.Thisstudyhighlightsthedifficultiesforecastersfacewhenpredictingdemandinfluencedby

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

promotions or economic shifts. The unpredictability of customer reactions and limited historical data for new productsmakeforecastingevenmorechallenginginrapidlychangingeconomies.

10. Manisha Gahirwal and Vijayalakshmi M. (2011) found that combining multiple forecasting techniques improves accuracy.Theydivideddataintothreecomponents trend,seasonalpatterns,andrandomfluctuations andapplied different mathematical models, such as ARIMAand Holt-Winter, to each. Their study showed that using the best forecastingmethodsfromonedatasetcanimprovepredictionsinsimilardatasets.TheirmethodoutperformedHoltWinteralone.

11. McKinsey’sBudgetingControl,introducedin1922,revolutionizedbusinessplanningbyimprovingsalesforecasting,a keyfactorineffectivebudgeting.

12. In1988,ChatfielddiscussedtheeffectivenessofHolt-Winter'sexponentialsmoothingforforecasting,notingthat despiteitssimplicity,itperformsaswell asmorecomplexmethods.Hearguedthat combining thismethod with human judgment can further enhance forecasts. Chatfield emphasized that simplicity often rivals complexity in forecasting,andsometimesyieldsbetterresults.

13. MichaelKelleher(2012)describedhowHollister,Incorporatedimproveditsglobalplanningbycleaningolddata, focusingonunpredictableproducts,developinga systemtodetectunusual forecastpatterns early,andfostering regularcommunicationbetweentheSales,Marketing,andOperationsteams.

Research Gap:

Afterreviewingvariousforecastingmethods,itisclearthatnosinglemethodisuniversallyperfect.Thechoiceofmethod dependsonfactorslikethetypeofdataavailable,thepurposeoftheforecast,thepeopleinvolved,andthesuitabilityofthe model. Additionally, the complexity of forecasting increases with the number of products involved. The central question remains:whichforecastingmethodshouldbeused?

a) TimeSeriesMethods

b) CausalMethods

c) JudgmentalMethods

Using the same method for all popular products is often not effective. Factors such as the type of data available and the product’slifecyclealsoinfluencepredictionaccuracy.Therefore,selectingtheappropriateforecastingmethodischallenging, andthetypeofproductmatters.Amethodthatworkswellforshampoomightnotbeaseffectiveforcookies.

Thisstudyaimstoaddressthesegapsandidentifyaforecastingmodelthatdeliversthemostaccuratepredictionsforawide rangeoffast-movingconsumergoods(FMCG).

FORECASTING TECHNIQUES AND THEIR ATTRIBUTES

Forecasting

Forecastinginvolvespredictingfutureeventsbyanalyzingpastdata.Itistheprocessofusinghistoricalinformationtomakean educatedguessaboutwhatmighthappennext.Predictionalsoreferstoanticipatingfutureevents,butunlikeforecasting,itcan involvepersonalintuitionandfeelings,whichmaynotfollowaspecificpatternormethod.

Aforecastisessentiallyapredictionaboutthefuture.Sometimes,asinglepredictionissufficient,whileatothertimes,multiple predictionsarenecessary.Thenumberofpredictionsandthedepthofanalysisdependonhowtheforecastwillbeused.

Therearetwoprimaryreasonsfortheneedforforecastinginanyfield:

1. Purpose –Forecastinghelpsinplanningforfutureevents.Bypredictingwhatmighthappen,wecantakestepsto improveoutcomesormitigatepotentialproblems.

2. Time –Timeplaysacrucialroleinplanning,preparation,execution,andcompletion.Differentsituationsrequire varyingtimeframes somemayneedshort-termsolutions,whileothersmayspanseveralyears.Knowingwhatthe futureholdsenablesustoplanandactattherighttime.

Types of forecasts

Forecastingcanbeclassifiedinto:

a) Long-term Forecast:Executivesneedlong-termforecaststosetthecompanyontherightpathforthefuture.Therefore, theypaycloseattentiontosuchforecasts.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

b) Short-term Forecast:Short-termforecastsassistmanagersinplanningfortheimmediatefuture.Theseforecastshelpguide decision-makinginday-to-dayoperations.

c) Quantitative Techniques:Theseinvolvemathematicalapproachesthatyieldnumericalresults.Theyrelyonestablished rulesandformulasratherthanintuition.

FORECASTING STEPS

Understandingthatforecastingmethodsrelyonhistoricaldatahelpsoutlinethefivebasicstepsintheforecastingprocess:

a) Data Collection

b) Data Reduction or Condensation

c) Model Building and Evaluation

d) Model Extrapolation (the actual forecast)

e) Forecast Evaluation

Belowisabriefexplanationofeachstep:

a) Data Collection:Gatheringaccurateandrelevantdataiscrucial.Ensuringthequalityandrelevanceofthedataisessential becauseincorrectorirrelevantdatacanleadtoflawedforecasts.

b) Data Reduction or Condensation:Insomecases,dataneedstobesimplified,eitherbecausethereistoomuchortoolittle information.Irrelevantdatacanreducetheaccuracyofpredictions,whilesomedatamayonlyprovideinsightintopastevents ratherthanfuturetrends.

c) Model Building and Evaluation:Thisstepinvolvesconstructingamodelbasedonthecollecteddatatomakeaccurate predictions.Thesimplerthemodel,themorelikelymanagerswillunderstandanduseitfordecision-making.

d) Model Extrapolation (the actual forecast):Oncethemodelisbuiltandtherightdataisselected,itisusedtopredictfuture outcomes.

e) Forecast Evaluation:Thisinvolvescheckinghowwelltheforecastmatchesactualoutcomes.Sometimes,themostrecent dataissetasidetoverifytheaccuracyofthepredictions.

METHODS OF SALES FORECASTING

a) Qualitative Method / Survey Method:Thisresearchpaperdoesnotcoverthisforecastingmethod.

b) Quantitative Method / Statistical Method:Statisticalmethodsinclude:

a) Time Series Analysis

b) Moving Average

c) Exponential Smoothing Method

d) Regression Analysis

e) Econometric Models

RESEARCH METHODOLOGY

The research method outlines the approved procedures used for a specific study, defining the scope of the proposed investigation.Italsoincludesresearchobjectives,explainingthescope,timeframe,anddatasources.

The data used for this research paper is secondary data. Sales data of the top 5 FMCG companies was obtained from the Screenerwebsite,whereinformationonpubliclylistedcompaniesisavailable.Additionalreliablesources,suchasonline articlesrelatedtotheFMCGsector,businessforecasting,andtextbooksonbusinessforecasting,werealsoutilized.

Limitations of this research paper

ThisresearchpaperdoesnotcovertheQualitativeMethod/SurveyMethodforecastingmethod.

However,toovercomethelimitationsandmaintaintheeffectivenessofthisresearchpaper,sincereeffortshavebeenmadeby theauthor.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

Data presentation of companies

HUL company sales data

Year Amount(inrscrores)

March2012-March2013

March2013-March2014

March2014-March2015

March2015-March2016

March2016-March2017

March2017-March2018

March2018-March2019

March2019-March2020 39,783.00

March2020-March2021 47,028.00

March2021-March2022 52,446.00

March2022-March2023 60,580.00

March2023-March2024 61,896.00

Source:https://www.screener.in/company/HINDUNILVR/consolidated/#profit-loss

Nestle India LTD company sales data

Year

Amount(inrscrores)

March2012-March2013 8335

March2013-March2014 9101

March2014-March2015 9855

March2015-March2016 8175

March2016-March2017 9141

March2017-March2018 10010

March2018-March2019 11292

March2019-March2020 12369

March2020-March2021 13350

March2021-March2022 14741

March2022-March2023 16897

March2023-March2024 19126

Source:https://www.screener.in/company/NESTLEIND/#profit-loss

ITC LTD company sales data

Year

Amount(inrscrores)

March2012-March2013 26516

March2013-March2014 31618

March2014-March2015 35306

March2015-March2016 38817

March2016-March2017 39192

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

March2017-March2018 42768

March2018-March2019 43449

March2019-March2020 48340

March2020-March2021 49388

March2021-March2022 49257

March2022-March2023 60645

March2023-March2024 70919

Source:https://www.screener.in/company/ITC/consolidated/#profit-loss

Varun Beverages LTD company sales data

Year

Amount(inrscrores)

March2012-March2013 1800

March2013-March2014 2115

March2014-March2015 2502

March2015-March2016 3394

March2016-March2017 3861

March2017-March2018 4004

March2018-March2019 5105

March2019-March2020 7130

March2020-March2021 6450

March2021-March2022 8823

March2022-March2023 13173

March2023-March2024 16043

Source:https://www.screener.in/company/VBL/consolidated/#profit-loss

Godrej Consumer products LTD company sales dat

Year

Amount(inrscrores)

March2012-March2013 4853

March2013-March2014 6412

March2014-March2015 7599

March2015-March2016 8273

March2016-March2017 8424

March2017-March2018 9268

March2018-March2019 9847

March2019-March2020 10314

March2020-March2021 9911

March2021-March2022 11029

March2022-March2023 12276

March2023-March2024 13316

Source:https://www.screener.in/company/GODREJCP/consolidated/#profit-loss

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072 © 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page898

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

Data Analysis with Qualitative Methods

Basedontheabovedata,wewillforecastforthenextthreeyears,fromMarch2024toMarch2027.Wehavechosenathreeyearperiodbecauseeconomicfluctuationsmayoccur,makingalongerforecastlessreliable.

Note: FortheSeasonalExponentialSmoothingandWinters'methodmodels,wehaveselectedthreeobservationsperperiod forallcompaniesinthesetwoforecastingmodels.

HUL Company

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

March 2021March 2022

March 2022March 2023

March 2023March 2024

March 2024March 2025

March 2026March 2027

Interpretation:

Company

ITC

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

Interpretation: TheMAPEvalueoftheARIMAmodelis5.641563,whichisthelowestamongthemodels.Therefore,weselect theARIMAmodelasthebestoptionforforecastingthenext3years,fromMarch2024toMarch2027.

NESTLE India LTD Company

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

March 2018

March 2018March 2019

March 2021March 2022

March 2022March 2023

2023March

International Research Journal of Engineering and Technology (IRJET)

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

March 2025March 2026

March 2027

Interpretation: TheMAPEvalueoftheARIMAmodelis5.61067,whichisthelowest,sowechoosetheARIMAmodelasthe bestmodelforforecastingthenextthreeyears,fromMarch2024toMarch2027.

Varun Beverages LTD

International Research Journal of Engineering and Technology (IRJET)

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

Interpretation: TheMAPEvalueoftheSeasonalExponentialSmoothingmodelis5.61067,whichisthelowestamongthe models.Therefore,wechoosetheSeasonalExponentialSmoothingmodelasthebestoptionforforecastingthenextthree years,fromMarch2024toMarch2027.

Godrej Consumer Products LTD

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

Interpretation: TheMAPEvalueoftheARIMAmodelis4.53325,whichisthelowestamongthemodels.Therefore,weselect theARIMAmodelasthebestoptionforforecastingthenextthreeyears,fromMarch2024toMarch2027.

Findings:

Basedontheinterpretationsprovidedforeachcompany'ssalesforecastingmodel,thefindingsareasfollows:

1. ITC Company:

o The ARIMA model produced the lowest MAPE value of 5.641563, indicating its superior performance comparedtoothermodels.

o Therefore,theARIMAmodelisrecommendedforforecastingsalesforITCCompanyforthenextthreeyears, fromMarch2024toMarch2027.

2. NESTLE India LTD:

o Similar to ITC Company, the ARIMA model achieved the lowest MAPE value of 5.61067, confirming its effectivenessasaforecastingtool.

o Hence,theARIMAmodelisthepreferredchoiceforforecastingsalesforNESTLEIndiaLTDforthenextthree years,fromMarch2024toMarch2027.

3. Varun Beverages LTD:

o Inthiscase,theSeasonalExponentialSmoothingmodeldeliveredthelowestMAPEvalueof5.61067.

o As a result, the Seasonal Exponential Smoothing model is recommended for forecasting sales for Varun BeveragesLTDforthenextthreeyears,fromMarch2024toMarch2027.

4. Godrej Consumer Products LTD:

o TheARIMAmodelresultedinthelowestMAPEvalueof4.53325forGodrejConsumerProductsLTD.

o Therefore,theARIMAmodelistheoptimalchoiceforforecastingsalesforthiscompanyforthenextthree years,fromMarch2024toMarch2027.

Summary: The ARIMA model is recommended as the preferred choice for ITC Company, NESTLE India LTD, and Godrej Consumer Products LTD, while the Seasonal Exponential Smoothing model is suggested for Varun Beverages LTD. These findingshighlightthesuitabilityofspecificforecastingtechniquesbasedoneachcompany'ssalesdatacharacteristics.

Conclusion:

TheFMCG(Fast-MovingConsumerGoods)industryhasexperiencedsignificantgrowthovertime,drivenbyfactorssuchas increasedurbanization,risingincomelevels,andevolvingconsumerpreferences.Inthisstudy,weanalysedmajorcompanies likeITC,NestleIndiaLtd,VarunBeveragesLtd,andGodrejConsumerProductsLtd,allofwhichoperateinahighlycompetitive marketwhereaccuratesalesforecastingiscriticalformakinginformedstrategicdecisions.

The forecasting methods we selected, such as ARIMA and Seasonal Exponential Smoothing, have demonstrated their effectivenessinpredictingfuturesalesforeachcompany.Thisinformationishighlyvaluabletoindustryprofessionalsasit enablesthemtoanticipatefluctuationsinconsumerdemand,optimizeinventorymanagement,anddevelopmoreeffective salesstrategies.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

References:

Heavy.ai.(n.d.). Business forecasting.Heavy.ai.RetrievedfromURL-https://www.heavy.ai/technical-glossary/businessforecasting#:~:text=Business%20forecasting%20refers%20to%20the,based%20on%20these%20informed%20predictio ns

Agicap.(n.d.). Business forecasting.Agicap.RetrievedfromURL-https://agicap.com/en/article/businessforecasting/#:~:text=4%20Basic%20forecasting%20techniques,The%20four%20basic&text=Trend%20analysis%3A%20This%20method%20identifies,where%20multiple%20variables %20are%20involved

Investopedia.(n.d.). Basics of business forecasting.Investopedia.RetrievedfromURLhttps://www.investopedia.com/articles/financial-theory/11/basics-business-forcasting.asp

ForbesIndia.(2023,September21). Top 10 FMCG companies in India by market cap.ForbesIndia.RetrievedfromURLhttps://www.forbesindia.com/article/explainers/top-10-fmcg-companies-in-india-by-market-cap/89367/1

Screener.(n.d.). ITC profit & loss statement.Screener.RetrievedfromURLhttps://www.screener.in/company/ITC/consolidated/#profit-loss

Screener.(n.d.). Hindustan Unilever profit & loss statement.Screener.RetrievedfromURLhttps://www.screener.in/company/HINDUNILVR/consolidated/#profit-loss Screener.(n.d.). Godrej Consumer Products profit & loss statement.Screener.RetrievedfromURLhttps://www.screener.in/company/GODREJCP/consolidated/#profit-loss

Screener.(n.d.). Varun Beverages profit & loss statement.Screener.RetrievedfromURLhttps://www.screener.in/company/VBL/consolidated/#profit-loss

Screener.(n.d.). Nestle India profit & loss statement.Screener.RetrievedfromURLhttps://www.screener.in/company/NESTLEIND/#profit-loss

Deliverect.(n.d.). What is FMCG? Understanding the fast-moving consumer goods industry.Deliverect.RetrievedfromURLhttps://www.deliverect.com/en/blog/fmcg-and-grocery/what-is-fmcg-understanding-the-fast-moving-consumer-goodsindustry#:~:text=The%20FMCG%20industry%20is%20characterized,other%20low%2Dcost%20household%20items

Hanke,J.E.,&Reitsch,A.G.(2017). Business forecasting (9thed.).PearsonEducation.

Smith,L.(2020). Business forecasting: A practical approach.Wiley.

Biography:

Shreyas S. Vanjare, hailing from Bagalkot City, is a dedicated and ambitious student currently pursuing an MBA at PES University,Bengaluru,Banashankari.Knownforhispositiveattitudeandresilienceinallsituations,Shreyasdemonstratesa strongcommitmenttobothpersonalandacademicgrowth.Hisfocusondevelopingstrategicbusinessacumenreflectshis drive to excel in the corporate world. As an Indian national, Shreyas is passionate about leveraging his skills to make meaningfulcontributionsinthefieldsofbusinessandmanagement.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.