A review of round robin algorithm on cloud computing task allocation.

Page 1


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

A review of round robin algorithm on cloud computing task allocation.

Raj1, Shubham kumar2

1Assistant Professor, Meerut Institute Of Technology, Meerut, India

2Assistant Professor, Department of computer science MGCU, Bihar, India

Abstract - Thecloudcomputinginfrastructurehasmanyissuesincludingscheduling,budgetingloadbalance.Thegoalisto useresourceefficientlyanddecreaseresourceconsumptioninthecloudenvironment.Thiscanbeachievedbyincreasingthe LBratewhenselectingthebestresourcesforlowworkfailuresrateswithlowleadtimes.Theroundrobinisasimplestand mostefficientalgorithm.ItgivesmoreaccurateresultthananyotherAlgorithmtoscheduleVMtask’sincloudcomputing. ManyresearchscholarsproposedvarioustechniqueinordertoimprovetheRRalgorithmandselecteddynamictimequantum whichplaysmajorroleinimprovingthisalgorithm.Becauseoftakinglongertimeinordertoswapcontextsmanyresearchers provideusadynamictimequantumstrategytoovercomethistypeoflimitations.ManydynamictimeSliceisproposed,soin thispaperwehavecomparedsomeoftheapproacheswithconcernsofitswaitingtime,turnaroundtime,andefficiencyofthe algorithm.Inreality,thearrivedjobsaremadeupofavarietyofinterconnectedtasks,someofwhichmayrunondifferentVMs orondifferentcoresofthesameVM.Additionally,thejobsarriveatrandomintervalsthroughouttheserver’soperationunder differentloadsituations[2].

Key Words: CC,RR,VM,Timequantum

1.INTRODUCTION

CloudcomputinghasgainedincreasedimportanceintherealmofITservicesduetoitsremarkableadaptabilityandtheproper distributionof resources.Theeffectivenessofa cloudcomputing environmentiscloselytied tohowtasksarescheduled. Efficienttaskschedulingguaranteestheappropriateallocationofresourcesforthetasks’associatedrequests.Cloudcomputing isanemergingtechnologyincurrentera. Itprovideutilityascomputinglikeelectricity,water.Cloudcomputingprovide serviceslikevirtualizationwithoperatingsystem,softwaredevelopment,storagewithoutanyphysicaldevices.Anyonecan accesstheseserviceswithouthardware,basicallycloudisachain ofnetworks thatcanbeaccessedfromanywhereusingonly internetconnections.Thistechnologyreducedcostofcomputingandmadeanyoneaccesslargefilesorcomputingirrespective ofhardwaredevices.CloudwasfirstintroducedbySalesforce.cominlate1990s.Todaymajorproviderofcloudservicesare Amazon.com,Googleetc.Amazonislargestgiantincloudtechnologywithit’sheadquarterinSanFranciscoCloudcomputing provideusservicesthatanyCompanyhavefacilitiestorentaccesstoanything.Inthistechnologyusercansimplypayforwhat theyusewhentheyuse.ForexampleGmail,Netflix,cloudbackupphotosusesfeaturesofcloud.Theconceptofrentingaccess tocomputingpowerhasresurfacedagainandagainintheapplicationservice.Cloudcomputingisapopularoptionforreasons suchascostsaving,increasedproductivity,speedandefficiency,performanceandsecurity.Cloudcomputingisanabstractof computing, memory and network infrastructure collected as a stage on which applications and systems can be deployed swiftly.ItisoneofthebestandemergingtechnologythathaschangedactivitiesofHumanlifeandfastinabigwayandalso providingvariousservices,resourcesusingtheInternetandcloud-basedresourcesinrecenttimesthroughvirtualization .Cloudcomputinginsimplewordsmeansallocationofresources,retrievalofdataandprogramsovertheInternetwithout physicalstorageratherthanourcomputer’sharddrive.Thoseusersthatareworkingoutsidetheworkingplacesareableto accessresourcesthroughinternetconnectingdevices.NIST(NationalInstituteofStandardsandTechnology)haslistedfive essentialrequiredcharacteristicsofcloudcomputingfromvirtualmachinethatincludeon-demandofcloudcomputingofselfservice,broadnetworkaccess,resourcepooling,rapidelasticityandmeasuredservice.Italsoinvolvestheconceptsofparallel processing and distributed computing providing the distributed the resources in many consumers by means of Virtual Machines (VMs) hosted by physical servers. It is developing rapidly and it will be the next generation technology where humanscanuseresourcesremotelywithoutconcernoftime.Thistechnologyhaschangedhumanlifeinallareaswiththehelp oftechnology.Thistechnologyhasexpandedrapidlyduringcovidtimeduetoextensivelyuseoftechnicalresources. Itis emerginginternetbasedtechnologyusedtostoretheinformationdataandaccessingresourceandapplicationthroughwebon internet.Itstoresveryhugeamountofdataandinformationwithoutanyphysicalstoragedeviceanditworksundercertain terms and conditions. Virtual machine (VM) is one the main element of virtualization of cloud computing, when a single resourceofcloudcomputingappearedasmultipleresourcethisprocesscanbeachievedwiththehelpofvirtualmachine. Cloudtechnologyisemergingrapidlyandusedindifferentfieldoflifelikee-commerce,AI,education,engineeringtechnology, dataintensiveapplications,health,geospatialsciencesandmanymoredifferentscientificandbusinessdomainsusescloudbasedserver.Cloudcomputinghasbecomeanrespectedtechnologyinworldwideduetoofferingahugeamountofstorageand

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

resource without any physical storage to different companies and organization to access this resource with proper management,ruleandregulations.Someofthekeyfeaturesarevirtualization,viability,widenetworkaccess,largeinformation storage,automatedsystem,economicalsecurity,scalabilityandmanymore.Cloudresourcesarevariablewithrentingand releasingforeachuserspecificrulesandregulationswiththehelpoftheInternet.According toNIST,cloudcomputingisa modelthatsupportson-demandnetworkaccesstoasharedpoolofconfigurablecomputingsoftwareresources.inacloud computingenvironment,therearethreemaincategoriesoftaskschedulingalgorithmswhichareconventionalalgorithmssuch asFIRSTCOMEFIRSTSERVE,SHORTESTJOBFIRST,ROUNDROBIN,HEURISTICALGORITHM,MIN-MAXandmetahieuristic algorithmssuchasANTCOLONYOPTIMIZATIONandPARTICLESWARMOPTIMIZATION.

1.1 Models in cloud computing

Therearetwotypesofmodelsincloudcomputing–

1.Servicemodel

2.Deploymentmodel

1.1.1 CLOUD SERVICE MODELS

(1)Infrastructureasaservice

(2)Platformasaservice

(3)Softwareasaservice

1.1.2 CLOUD DEPLOYMENT MODELS

(1)Publiccloud

(2)Privatecloud

(3)Hybridcloud

(4)Communitycloud

1.2 Round robin in cloud computing

[2]Thisalgorithmemploysasequentialmethodtoselectserversforupcomingrequests.However,asignificantissuewiththis approachliesintheinconsistentperformanceofservers.Toaddressthischallenge,innovativestrategieshavebeendeveloped. Itisoneofsimplest,old,fairestandmostpopularlyusedschedulingalgorithmsdesignedespeciallyfortimesharingsystems.In thisalgorithm,

Table-1 :Descriptionofterms.

The criteria

The Description

Minimizingthecontextswitch(CS) It is the process of changing the task’s status from oneactivitytoanother.

MinimizingTurnaroundtime(TAT) Itisthetimeperiodbetweenthestartingtimeofthe processanditscompletiontime

Minimizingthewaitingtime(WT) Itisthetotaltimespentbytheprocessinwaitingin betweentasks.

MinimizingResponsetime(RT) It is the time period in between queue submission anditsfirstreply.

MaximizingCPUutilization

Maximizingthroughput

TryingtomaketheCPUasbusyaspossible.

It is the number of tasks which completed in a specifictimeunit.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

Timequantumisdefinedwhichissmallestunitoftime.Alltherunableprocessesarekeptinacircularqueueand theCPUschedulergoesthroughalltheprocesseswithrespecttotimequantumoftheCPUscheduler.Newjobsare keptintailofthequeue.CPUschedulerpicksthefirstprocessesfromthequeueandexecuteitwithrespecttotime quantum.Iftheprocessdoesnotfinishinthestatictimequantum,theCPUispreemptedandtheprocessisaddedto lastofthequeue.IftheprocessisfinishinthegiventimequantumitwillreleaseCPUautomatically.CPUscheduler startexecutingthenextprocessofthereadyqueue.Everytimewhennextprocessstartexecuting,acontextswitch occurs,whichaddoverheadtotheprocessexecutiontime.

Thewaitingtimeforeachtask

WT=turnaroundtime–bursttime

P1:12-5=7

P2:10-4=6

P3:4-2=2

P4:5-1=4

Average wait time : 4.7

Figure 1:RRalgorithmprocessincloudcomputing
Figure 2: GanttchartforRR

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

2. Literature Reviews

InpaperP.Sangwanetal.suggestedanewmodificationonRRalgorithm.Theprocesseshavebeenstoredinthereadyqueuein thesameorderastheyarrived.Thequantumtimehasbeencalculatedbasedonthemeanofthebursttimeoftheprocesses. Theevaluationresultsofthisapproachconductedusingjavalanguageanditshowsagoodperformanceintermofwaitingtime andturnaroundtime.InanewalgorithmwasbuiltforRRbasedonthefollowingalgorithmsMRRAandSRBRR.Ithasbeen proposedtoenhanceresourceallocationincloudcomputing.ItisadynamicRRwherethequantumtimeischangingineach roundanditisequaltothesumofmeanandmedianofprocessesdividedbytwo.Theexperimentalanalysisshowstheout performance of the proposed algorithm in term of the number of context switches, average waiting time and average turnaroundtime.[10]

InapaperAbdulrahmanAbdulkarimetal.suggestedthatTimequantumissettobeequaltotheaverageofbursttimeof requestsforcontextswitchingwhichisdeclaredasthevariable‘round’.Thefirstrequestinthereadyqueuewouldbeassigna VM,theretheVMisallocatedtoexecutetherequestandthestateoftheVMischangedtoBusy.Afterrequestisbeingexecuted, VMisde-allocatedandthestatechanged back toAvailable.Thenwehavea context switchwitha newbursttimeforthe request.

InapaperPandabaPradhanetal.suggestedthatthisalgorithmbeginswiththetimeequalstothetimeoffirstrequest,which changesaftertheendoffirstrequest.Whenanewrequestisaddedintothereadyqueueinordertobegranted,thealgorithm calculatestheaverageofsumofthetimesofrequestsfoundinthereadyqueueincludingthenewarrivalrequest.Thisneeds tworegisters:(i)SR:Tostorethesumoftheremainingbursttimeinthereadyqueue(ii)AR:Tostoreavg.ofthebursttimesby dividingthevaluefoundintheSRbythecountofrequestsfoundinthereadyqueue.Afterexecution,ifrequestfinishesits bursttime,thenitwillberemovedfromreadyqueueorelseitwillmovetotheendofthereadyqueue.SRwillbeupdatedby subtract.[11]

In a paper D.Gritto et al. suggested that the time quantum selection in Round Robin algorithm is a big challenge. The inappropriatetimeslicemaydegradethecloudsystemperformance.WhenthetimesliceislargertheRoundRobinalgorithm behaveslikeFirstComeFirstServer(FCFS)algorithm,similarlyforthesmallertimeslicethenumberofcontextswitchingis more.ContextswitchingimpliesthemethodofVMswitchingbetweenonecloudlettotheothercloudlet.Whileswitching,the

Figure 3: Designofresourcescheduling

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

statusofthecloudletisstoredinVMbufferinordertorestoreorresumebackforthecloudletexecutioninnearfuture.More contextswitchingdegradestheperformance.Sotheproposedworkmakesanattempttoestimateanoptimaltimequantum thatreducestheresponsetime,waitingtime,turnaroundtimeandthenumberofcontextswitching.Thetimequantumis allocatedusingmidandaverageremainingexecutiontimeapproximationmethod.TheEnhancedTimeQuantumRoundRobin Algorithm(ETQRRA)arrangesthecloudletsinascendingorderaspertheirexecutiontime.Whenthenumberofcloudletsin thereadyqueueRQoftheVMisoddthenthemidapproximationmethodisused.Ifthenumberofcloudletinthereadyqueue iseventhentheaverageremainingexecutiontimeapproximationmethodisused.[4]

ElamraniChakenetal.suggestedthatIncaseofawaitinglistwiththreeorlesstasks.TheproposedalgorithmusestheShorter JobFirstAlgorithmdesignandallocatesthetimenecessaryforeachtaskuntilitsexecution-Incaseofawaitinglistwithmore thanthreetasks.IfthetotalcountoftasksonthelistisapairnumberoTheproposedalgorithmdynamicallycalculatesatime quantumastheaverageoftasksbursttime.IfthetotalcountoftasksonthelistisanimpairnumberoTheproposedalgorithm dynamicallycalculatesatimequantumasthemedianoftasksbursttimeForeachoftheconditionsthattreatsthecaseofa waitinglistwithmorethanthreetasks,theproposedalgorithminjectsatesttoverifyiftherearemorethanthreereoccurring taskswiththesamebursttime.Ifitisthecase,thetimequantumissettothevalueoftherepetitivetaskwithhighestburst timeonthewaitinglist[5].

InapaperNermeenGhazyetal.suggestedthatmanyimprovementshavebeendevelopedtheRoundRobinalgorithmfortask schedulingtobecompatiblewithtimesharingsystemsandreal-timesystems.ThemostimportantissueintheRRalgorithmis thetimequantum.ThemaincontributionofthispaperisenhancingtheefficiencyoftheRRalgorithmbyproposingaMedian MeanRoundRobinalgorithm(MMRR).Itfoundanintelligentdynamictimequantumwhichiscalculatedas(median+mean)/2 andtakingtheremainingbursttimeofthecurrentprocessintoaccount.Iftheremainingbursttimeofthecurrentprocessis lessthanhalfofthetimequantum,itallocatedagain.Otherwise,itisplacedattheendofthereadyqueue.Eachcyclewillhave itsTQbasedontheirbursttimefortheseprocesses.ByusingavariableTQdependsonthebursttime,itleadtominimizethe averagewaitingtime,turnaroundtimeandnumberofcontextswitches.Theexperimentalresultsshowedthattheproposed algorithmenhancestheperformanceofthesystembyreducingtheaveragewaitingtime,turnaroundtimeandnumberof contextswitches.[6]

V.RhymendUthariaraj etal.observedthatTimequantum=squarerootofsumofthemedian+highestbursttime.Time quantum=infirstroundhighestbursttimeinreadyqueue.Calculate0.8proportionofthebusttimeandsetitasthevalueof quantumtime.Iftheprocessinthequeue<quantumtimetaskisallottedandcompletionofthetasktimequantumisthevalue ofhighestbursttime.[8]

MaysoonA.mohammadetal.proposedamethodofdynamictimequantuminwhichProcessesarearrangedinincreasing orderinthereadyqueue.NewprioritiesandquantumtimesareassignedaccordingtotheCPUburstsoftheprocesses;the processwiththelowestbursttimeissetwiththehighestpriority.ChoosethefirstprocessintheRRfashionandassignitsburst timeasquantumtimeforthisround,andallocateCPUtothisprocessonlyforonequantumtime.Calculatequantumtimesofall theprocessesinthisrounddependingontheirprioritiesandthequantumtimeofthiscyclebyusingasimpleformula,whichis q=k+p–1,whereqisthenewquantumtime,kistheoldquantumtimeandpisthepriorityoftheprocessesintheready queue.Setdifferentquantumtimesfortheprocessesaccordingtotheirpriorities.Thehighestpriorityprocesswillgetthe largestquantumtime,whichisq,andthelowestpriorityprocesswillgetthesmallestquantumtime,whichisk.Eachprocess getsthecontroloftheCPUuntiltheyfinishtheirexecution.Repeatthestepsaboveuntilallprocessesarecompleteandready queue is assigned NULL. Apply the original RR and IRRVQ and our PDQT with the priorities and new, different quantum times.[7]

InapapersuggestedbyMd.Sohrawordietal.proposedamethodthattheproposedRRDTQalgorithmusesdynamictime quantuminCPUscheduling.Ittakestheintegeraveragevalueofthebursttimeoftheremainingwaitingprocessesintheready queueastimequantum.Aftereachcycle,thetimequantumisupdatedbycalculatingtheintegeraveragevalueofthebursttime oftheprocessesinthereadyqueue.Ifthereadyqueuecontainsonlyonewaitingprocess,thenthetimequantumwillbethe bursttimeofthatprocesses.Whentheexecutionoftheprocessesiscompleted,thenitwillberemovedfromreadyqueueand otherwiseitwillbeaddedatthetailofthereadyqueuewiththeremainingrequiredbursttime.[1]

[2]Niraj Patel, Sandip Chauhan observe and used a new approach with 5 Server for Clustering. It can be run on dedicatedmachineorsinglemachine.4ofthemworkasClusterMember(S01,S02,S03,orS04).Sameapplication(client’s request)willdeployintoall4Serve.Remaining1workasLoadBalancer.Server(LBS).CalculateWeightofEachServerbasedon ProcessingPower,BandwidthandMemory.Forexample:Thefirstservercanhandle100request/sec,thesecondcanhandle 300request/sec,thethirdcanhandle200request/secandthefourthcanhandleonly25request/sec.AnyoneServerreserve

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

forlongcompletiontimerequestandother3serverfornormalrequest.Iflongcompletiontimerequestfound.Firstcheck Server(S01)status,iffreeallocatetoit.Ifserverisbusy,thencheckotherserversstatus,ifanyoneisfreethenallocatetoit.Ifall serversarebusy,waitforanyoftheserverbecomefree.Ifshortrequestfound,itwillfirstcheckstatusofS02,S03,andS04any oftheseserverisfreethenallocatetoit.OtherwisecheckS01serverstatus.Iftheseserversisfree thenallocatetoit.Ifall serversareheavilyloaded,thenonlylongcompletiontimerequestallocatetoS01andallnormalrequestallocatebetweenS02, S03,S04.Nowhere,stepofourproposedalgorithmshownasbelow:1.CreateMap(weightMap)andaddserverandaccording weight.2.CreateMap(loadMap)totrackcurrentloadofeachServer.3.CreateMap(avgTimeMap)totrackaveraggetimeof eachrequest.4.CreateMap (waitingMap)totrack notcompleted request.5.Wheneverclient’srequestscome,first itwill forwardtotheLoadBalancer.6.BalancerlooksupinavgTimeMapforaveragetimeofRequestandputitinwaitingMap. 7.CheckforServerstatusaspertypeofrequest.8.LoadBalancerredirectrequesttoServerandincrementcurrentpointerof Server. 9. After Processing of request decrement pointer of server, update Average time of request in Map (AvgTimeMap).10).LoadBalancerwilltakenextrequestfromMap(waitingMap)andrepeat5throughLoadBalancingusing DWARRAlgorithminCloudComputing.

Paper

DWRRalgorithm(nirajpatel, sandeepchauhan)

DTQA(Bhavinfataniya)

DRSS(m.satish,A.prakash)

ANPDQ(Abidurrehman khattak) 2010

Cloudanalysttools Throughputincreasesandresourceutilizes efficiently

Eclipse lessavgTAT,lessavgWT

Euclyptus averageTATandno.ofcontextswitch reducedto20percent

Uniprocessor environment drasticallydecreasecontextswitching

RPJS(k.sutha) 2016 satisfybetterinallparameter

NRRTSA 2023

asharedapproachofdynamic loadbalancing(snehlata mishra)

m-Throttled:DLBA (AmrutanshuPanigrahi)[9]

2016

2020

Notebookkernel reducingtheaverageturn-aroundtime, minimizingaveragewaitingtime,and lesseningthenumberofcontextsswitching

Cloudsimsimulator costofeachdatacenterismoreaccurately thanthrottledandequalloadsharing algorithm

Cloudsimsimulator increasedUBresponsetimeandtheDC processingtime

ISRBRR(P.S.Varma) 2013 C++language decreasedthenumberofCS,averageWT andaverageTAT

SRBRR(S.Saeidi) 2012

ProposedAlgorithm (S.Banerjee)

2018

TSPBRR(S.Elmougy) 2017

3. CONCLUSIONS

Lingo8.0software TheexperimentalshowsthatSRBRR achievesagoodperformancecompared withtheothers

Cloudsim outperformanceoftheproposedalgorithm intermofthenumberofCS,averageWT andaverageTAT

Cloudsim goodperformanceinreducingtheWTand RTcomparedwithSJF,RRandTimeSlice PriorityBasedRR

Cloudcomputingisemergingtechnologywithlotsofconcernsliketaskcongestion.Itisnecessarytoresolvethisproblemwith bestmethod.Afterobservingalltheparametersandreviewingmanydynamicapproachesusedbyresearchersregardingtask scheduling using round robin CPU scheduling methods we concluded in this paper that a bit of changes in conventional approachesgivesusbetterresultincontextwithimprovedturnaroundtime,improvedwaitingtime,decreasenumberof contextswitches,minimumthroughput.Therearealsomanyapproachesotherthanroundrobintoallocatetasksininvirtual

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

machineincloudcomputing.wehaveonlyconcludedroundrobinmethodinthispaper,infuturewewillobserveothermethod withrespecttoallparameters.

REFERENCES

[1] Sohrawordia.Amodifiedroundrobincpuschedulingalgorithmwithdynamictimequantum.InternationalJournalof AdvancedResearch,7:422–429,022019.

[2] TaghreedBalharithandFahdAlhaidari.Roundrobinschedulingalgorithmincpuandcloudcomputing:Areview.In2019 2ndInternationalConferenceonComputerApplicationsInformationSecurity(ICCAIS),pages1–7,May2019.

[3] DiptoBiswas,MdSamsuddoha,Md.RashidAlAsif,andMd.ManjurAhmed.Optimizedroundrobinschedulingalgorithm usingdynamictimequantumapproachincloudcomputingenvironment.InternationalJournalofIntelligentSystemsand Applications,15:22–34,022023.

[4] et.al.D.Gritto.Enhancedtimequantumbasedroundrobinalgorithmforcloudletschedulingincloudenvironment.2021.

[5] HichamGibetTaniandChakerElAmrani.Smarterroundrobinschedulingalgorithmforcloudcomputingandbigdata. JournalofDataMiningDigitalHumanities,SpecialIssueonScientific...,012018.

[6] Sardar Iqbal, Hina Gull, Saqib Saeed, Madeeha Saqib, Mohammed Alq, Yasser Bamarouf, Gomathi Krishna, and May Aldossary. Relative time quantum-based enhancements in round robin scheduling. Computer Systems Science and Engineering,41:461–477,102021.

[7] MaysoonMohammed,MazlinaAbdulmajid,andBalsamMustafa.Aproposedprioritydynamicquantumtimealgorithmto enhancevaryingtimequantumroundrobinalgorithmaproposedprioritydynamicquantumtimealgorithm185.Int.J. ComputerApplicationsinTechnology,54:184–191,102016.

[8] NeetuandSubhashChandra.Dynamicdivisibleloadbalancingalgorithmforbalancingworkload incloudcomputing. InternationalJournalofComputerApplications,178(20):42–49,Jun2019.

[9] AmrutanshuPanigrahi,BibhuprasadSahu,SarojKumarRout,andAmiyaKumarRath.Mthrottled:Dynamicloadbalancing algorithmforcloudcomputing.InDebahutiMishra,RajkumarBuyya,PrasantMohapatra,andSrikantaPatnaik,editors, IntelligentandCloudComputing,pages3–10,Singapore,2021.SpringerSingapore.

[10] Pandaba Pradhan, Prafulla Behera, and B.N.B. Ray. Modified round robin algorithm for resource allocation in cloud computing.ProcediaComputerScience,85:878–890,122016.

[11] PandabaPradhan,PrafullaKu.Behera,andB.N.B.Ray.Modifiedroundrobinalgorithmforresourceallocationincloud computing.ProcediaComputerScience,85:878–890,2016.InternationalConferenceonComputationalModellingand Security(CMS2016).

Author Photo

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.