Phytocoenologia, 39 (4), 389–409 Berlin – Stuttgart, December 30, 2009
The páramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. 2. Azonal vegetation. by Nidia L. CUELLO A., Guanare, Venezuela and Antoine M. CLEEF, Amsterdam, The Netherlands with 8 figures, 4 photographs and 5 tables Abstract. The azonal páramo vegetation present at the top of Ramal de Guaramacal in the Venezuelan Andes was studied by means of observations, plant collections and surveys consisting of a total of 71 small plots of between 0.25 to 6 m2. Azonal vegetation is represented in the study area by habitats experiencing water stress (peat bogs and aquatic vegetation). The azonal vegetation present in two peat bogs areas of Páramo El Pumar (Laguna El Pumar y Laguna Seca), and in a small valley where water collects in Páramo de Guaramacal, near the ‘Las Antenas’ area between ~2900 and ~3000 m were analyzed. A total of 53 morphospecies, belonging to 30 species of vascular plants, 20 species of cryptogams and 3 undetermined species of algae have been documented for the azonal vegetation. The interpretation of a TWINSPAN clustering, based on affinities of floristic composition and species cover, allowed the recognition of six azonal vegetation communities grouped into three alliances and one order. The new alliance Sphagno recurvi–Paepalanthion pil o si groups the new bunchgrass páramo association P a e p a l a n t h o pilo si–Ag rostietum basalis and the both new Sphagnum bog associations: S p h a g n o re c u rv i – C a ri c e t u m bo n plandii and Sphagno sparsi–Caricet u m b o n p l a n d i i . The new alliance C a ri c i b o n p l a n d i i – C h u sq u e io n angustifolia contains a bamboo páramo (‘chuscal’) association C a ri c i b o n p l a n d i i – C h u sq u e e t u m a ng u s tifoliae growing close to the lake shores, in periodically flooded areas, and characterized almost exclusively by Chusquea angustifolia. The alliance Dist ri c h o su b m e rsi – Iso ë t i o n Cleef 1981 is represented by the submerged aquatic community of Sphagnum cuspidatum and the Iso ë t e t u m k a rst e n i i Cleef 1981. Keywords: floristic composition, phytosociology, azonal páramo vegetation, Sphagnum, peat bog, Isoëtes, bamboo páramo, Chusquea, Andes, Venezuela. eschweizerbartxxx ingenta
Introduction The azonal páramo vegetation in Guaramacal was studied between 2870 and 3050 m, mainly in two peat bog areas of the Sector Páramo El Pumar (Laguna El Pumar and Laguna Seca). Azonal patches are also present in the small valleys or depressions where water collects in Páramo de Guaramacal, near the ‘Las Antenas’ area. Peat bogs associated with glacial and seasonal lakes or fluvio-glacial valleys are common features in Andean and Costa Rican páramos. A great variety of azonal bog vegetation communities associated with glacial lakes and terrain depressions have been described and named from the Colombian (Cleef 1981, Sanchez & Rangel 1990, Cleef et al. 2005, 2008, Rangel et al. 2006 among others) and Costa Rican páramos (Brak et al. 2005). A low number of diverse aquatic and peat bog vegetation communities have been reported for Venezuelan páramos (Vareschi 1955, 1980; Monasterio 1980, Bono 1996, Berg 1998, Berg & Suchi 2001) with only a few of them treated in a syntaxonomic context of the upper páramo vegetation of Sierra Nevada de Mérida (Berg, 1998). Vareschi (1955) described an association (‘S p h ag ne tum m a g he l l a n i c i ’) from Naiguatá between 2500–2700 m. DOI: 10.1127/0340 – 269X/2009/0039– 0389
As mentioned before Sphagnum bogs are present in the equatorial Andes and the Central American Talamancas; up to date, they are not classified at the level of order and class. Other bogs and mires which have been described for the northern Andes concern vascular cushion bogs (P lantagini rigidaeDistich ietea muscoides Rivas Martínez & Tovar 1982) and cyperaceous reedswamps (Galio canescen tis-Gratio lio n bo gotensis Cleef 1981), grass mires (Calamagrostion ligulatae Cleef 1981), both belonging to the order M archantio plicataeEp ilo b ietalia d enticu latae Cleef 1981. Other azonal aquatic vegetation includes flush communities (Xen o p h y llion crassae-Wern erio n pygmaeae Cleef 1981), the vegetatation of glacial lake bottoms (Ditricho su b mersi-Isoëtio n k arst enii Cleef 1981) and ponds (Limo selletea australis Cleef 1981). Sphagnum bogs have not been classified in the absence of comprehensive synthetic presence tables thus far. They are found in valleys in the uppermost forests and the lower páramo, where conditions allow for Sphagnum growth. Eutrophic to mesotrophic conditions allow for mires, which are characterized by active mineroptrophic input from surrounding zonal vegetation on slopes. The highest bogs in páramos are the vascular cushion bogs consisting of Plantago rigida. Distichia muscoides, Oreobolus cleefii and the flat cushions of Xyris subu0340 – 269X/09/0039 – 0389 $ 9.45 © 2009 Gebrüder Borntraeger, D-14129 Berlin · D-70176 Stuttgart
390
N. L. Cuello A. & A. M. Cleef
lata var. breviscapa (Bosman et al. 1993, Cleef 1981, Cleef et al. 2005, 2008, Moscol Olivera & Cleef 2009, Ramsay 1992, Coombes & Ramsay 2001, Rangel Ch. & Ariza-N. 2000, Salamanca et al. 2003). In the Colombian Eastern Cordillera páramos vascular cushion bogs replace altitudinally the Sphagnum bogs at 3800–3900 m, as probably also in the Sierra Nevada de Mérida. For Chusquea-Sphagnum bogs reference can be made to Cleef (1981), Sánchez & Rangel Ch. (1990), Rangel Ch. & Franco (1985) and Cleef et al. (2006). They also have been observed in the páramos of Costa Rica (Chaverri & Cleef 1992, Brak et al. 2005). The main goal of the present study is to identify, define and characterize the azonal vegetation of two páramo areas of Ramal de Guaramacal (Páramo de Guaramacal and Páramo El Pumar) aiming at the establishment of a syntaxonomic scheme based on the analysis of the physiognomy, floristic composition and ecological relations of the different vegetation communities. This work was carried out within the framework of a larger project aimed at the study of the diversity of the flora and vegetation of the Guaramacal Na-
tional Park (Cuello, 1999; 2000, 2002; 2004). The classification of the vegetation of forests and zonal páramo of Guaramacal range are described separately (Cuello & Cleef, 2009a, b).
Study Area The azonal páramo communities have been studied in two páramo areas at the top of Ramal de Guaramacal, between ca. 2900 and 3100 m in the area surrounding the ‘Las Antenas’ site in Páramo de Guaramacal, and along the road crossing the Ramal and the ‘Lagunas del Pumar’ zone in Páramo El Pumar at 2.5 km to the Southwest from ‘Las Antenas’ (Fig. 1). The area studied in Páramo de Guaramacal concerns a small pond located at 9o 14’ 1.02” N; 70o 11’ 6.47” W with surrounding bamboo páramo vegetation present at the bottom of a small valley where water collects at ~3080–3100 m (Photo 1). This pond seems to be a remnant of small lake that existed in the past, according to observations of 1960’s aerial photographs from Páramo de Guaramacal. In the Páramo El Pumar, the associated vegetation of two contiguous glacial lakes was studied. The Laguna El Pumar, ~2880 m located at 9o 12’ 52.36”
eschweizerbartxxx ingenta
Fig. 1. Geographic location of Páramo de Guaramacal in the Venezuelan Andes.
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
391
Photo 1. Azonal vegetation associated to a pond at 3080 m in Páramo de Guaramacal (9o 14’ 1.02” N; 70o 11’ 6.47” W), Andes, Venezuela. eschweizerbartxxx ingenta
Photo 2. Laguna El Pumar, 2880 m, Ramal de Guaramacal, Andes, Venezuela.
392
N. L. Cuello A. & A. M. Cleef
N; 70o 12’ 8.04” W, which is covered mostly by water and bordered by Sphagnum bogs (Photo 2). The second lake at around 2890 m is located 110 m to the South of Laguna El Pumar. This is an evaporated lake called ‘Laguna Seca’ at 9o 12’ 47.7” N; 70o 12’ 7.27” W, which is totally covered by Sphagnum bog and surrounded by bamboo vegetation or ‘chuscales’. Ramal de Guaramacal is an outlier of the Venezuelan Andes, located South of the town of Boconó in Trujillo state, about 120 km Northeast of the city of Mérida in the centre of the Sierra Nevada de Mérida. For a more complete description of the study area the reader is refered to Cuello (1999) and Cuello & Cleef (2009a, b).
Methods Field sampling Azonal vegetation was studied by means of observations, plant collections and surveys of small plots of between 0.25 to 6 m2 according to minimum area and the extent of the homogenous and representative patches under consideration (Westhoff & Van der Maarel 1973, Cleef 1981). In each plot, and per vegetation layer, the percentage of periphery cover for each plant species was estimated. A total of 71 relevés (approx. 100 m2) were surveyed. Eight line intercept transects of 5 m in length (as used in Cuello & Cleef, 2009b) were surveyed in bamboo páramo vegetation and included in the vegetation analysis. Azonal vegetation associated with slopes, trail borders and areas of disturbance were not included in the phytosociological analysis, which was based solely on observations and collections of species composition. Field surveys were carried out only during the dry season. In the ‘Las Antenas’ area of Páramo de Guaramacal, sampling was conducted by both authors in February 15, 2006, whilst in the remote area of Páramo El Pumar sampling was completed by the first author and coworkers during two different visits: one on March 1, 2006, the other on February 18–19, 2007. Botanical vouchers of all recorded species were collected. Photographs were taken where possible. The collected botanical material was processed, identified and deposited at Herbario Universitario PORT of the Universidad Nacional Experimental de los Llanos “Ezequiel Zamora” (UNELLEZ) in Guanare, Venezuela. For vascular plants the nomenclature follows Dorr et al. (2000), complemented by Luteyn (1999) for other plant groups. Drs J. Hickey (Isoëtes karstenii), G. Davidse (MO) and S. Laegaard (AAU) were helpful with the identification of some selected grasses. Duplicates of vascular plants are deposited in MER, VEN and US. Duplicates of the bryophytes were sent to Dr. D. Griffin III (FLAS) with lichens sent to Dr. H.J.M. Sipman (B) for identification. Additional duplicates of bryophytes and lichens were also deposited in L and MERC. The record of bryo-
eschweizerbartxxx ingenta
phyte and lichen species has not been completed by the first author. Only the most prominent and conspicuous species were collected. Processing and data analysis The data from each survey were stored and processed in Microsoft Excel. For each species at each plot of azonal vegetation we used the percentage of cover estimated in the field. The data matrix of percentage cover for 53 species and 79 surveys of azonal vegetation was processed with TWINSPAN (Hill 1979) using the PC-Ord 4 program (McCune & Mefford 1999). Data were then interpreted in terms of community delimitation, the syntaxonomical vegetation classification based on cover and floristic affinities following the Zürich-Montpellier approach (Braun-Blanquet 1979). The names of the syntaxa are according to the International Code of Phytosociological Nomenclature (Weber et al. 2000). The original cover values of the relevés taken in percentages are available from the first author by request. The diverse subunits, recognized in a progressive way by the TWINSPAN procedure, were hierarchized in associations and higher (alliances, order) and lower (subassociations) syntaxa and variants. The associations represent the basic unit of description of the vegetation and are defined on the basis of floristic composition (diagnostic, character species), particular appearance (growth form) and habitat conditions. Two or more associations that share diagnostic species are combined into an alliance. Two or more alliances combine to form an order. Associations with some marked differences, or only variations in their floristic composition, are subdivided into subassociations and eventually variants, respectively. In order to elucidate floristic relationship with Sphagnum dominated paramo communities elsewhere in Colombia and Venezuela a Bray-Curtis similarity cluster analysis (Bray & Curtis 1957) has been used. The ‘Spagn etum magh ellan ici’ Vareschi 1955 has been left out; only one species, Sphagnum magellanicum, is in common with Guaramacal bogs (Table 1).
Results Flora diversity A total of 53 morphospecies, belonging to 30 species of vascular plants, 20 species of cryptogams and 3 undetermined species of algae have been recorded from a total of 79 plots of the azonal vegetation in Páramo de Guaramacal and Páramo El Pumar, Ramal de Guaramacal, Venezuela. The vascular plants include: 13 species, belonging to 11 genera and 8 families of dicots; 15 species, 12 genera and 5 families of monocots and 2 species, 2 genera and 2 families of ferns. The identified cryptogams include 14 species, 5 gen-
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
and Clusiaceae. Sphagnaceae is the most speciose and dominant bryophyte family in the ground layer. This order is composed of two alliances: Sphagn o recu rvi–P aep alanth ion p ilo si and Carici bo n p lan d ii–Chu sq u eio n angustifoliae . Diagnostic species are Carex bonplandii and Geranium stoloniferum. Sphagnum recurvum is another important species and is present in both alliances.
era and 5 families of mosses, 2 species, 2 genera and 2 families of liverworts and 4 species, 3 genera and 3 familes of lichens. Azonal páramo plant communities The interpretation of the TWINSPAN table, based on floristic composition, affinities and species cover, allowed the recognition of six vegetation communities at association level grouped into two alliances and one order (Table 1 and 2). The azonal vegetation communities recognized in Ramal de Guaramacal are summarized as follows: GERANIO STOLONIFERUM–CARICETALIA BONPLANDII ord. nov. I. S p h a g n o re c u rv i – Pa e p a l a nth i on pilo si all. nov. 1. P a e p a l a nth o p i l osi – Ag ro sti e tu m basal is ass. nov. 1.1 o r ta c hn e to sum e re c ti fo l i ae subass. nov. 1.2. Subassociation typicum 2. S p h a g no re c urv i – Ca ri c e tum bo n p lan d ii ass. nov. 3. S p h a g no sp a rsi – Ca ri c e tu m bon p lan d ii ass. nov. 3.1. Variant with Diplostephium obtusum 3.2. Variant with Pernettya prostrata II. Carici bonplandii–Chusqueion angustifoliae all. nov. 4. C a r ic i b on pl a nd i i – Ch usq ue etu m an g u s t ifo l i a e ass. nov. III. Districho submersi –Isoëtion Cleef 1981 5. Community of Sphagnum cuspidatum 6. I s o ë t e tum ka rste n i i Cleef 1981 GERANIO STOLONIFERUM–CARICETALIA BONPLANDII ord. nov. Representative alliance: S ph a g no recu rvi– P a e p a la n t h i on pi l o si (this study). Azonal páramo vegetation of the Geranium stoloniferum – Carex bonplandii order Vegetación de páramo azonal del orden de Geranium stoloniferum y Carex bonplandii Physiognomy: The order G e ra ni o sto l on iferu m– C a r ic e t a l ia bo np l a n di i concerns the azonal páramo peat bog vegetation along the shore of lakes, and is represented by Sphagnum peat bogs predominantly covered by Carex bonplandii together with open bunchgrass patches dominated by Agrostis basalis and Ortachne erectifolia. The order also includes the bamboo páramo ‘chuscales’ of Sphagnum-Chusquea angustifolia growing close to the lake shores or at the bottom of small valleys. Composition and syntaxonomy: The order is defined on the basis of 69 relevés with 28 vascular species and 19 cryptogams. The most species diverse vascular families are Poaceae, Cyperaceae, Asteraceae
393
Ecology and distribution: Azonal páramo vegetation of the Geranium stoloniferum – Carex bonplandii order is found in Páramo El Pumar (2870–2990 m) along and close to the shores of both lakes Laguna El Pumar and Laguna Seca as well as in a small wet valley South of ‘Las Antenas’ in Páramo de Guaramacal. Sphagno recurvi–Paepalanthion pilosi all. nov. Typus: P aepalanth o pilo si–Agrostietum basalis (this study). Azonal páramo vegetation of the Agrostis basalis – Paepalanthus pilosus – alliance / Vegetación de páramo azonal de la alianza de Agrostis basalis y Paepalanthus pilosus
eschweizerbartxxx ingenta
Physiognomy and composition: Sphagnum bogs characterized by a ground layer formed by dense cushions of Sphagnum spp. and Paepalanthus pilosus with the occasional presence of a layer of variable cover of small tussock grasses, 10–25 cm tall, which may be composed by Agrostis basalis, Carex bonplandii, Rhynchospora golmerii, Xyris subulata var. acutifolia, and a layer of grasses 30–50 cm tall, formed of Agrostis perennans, Calamagrostis bogotensis, Cortaderia hapalotricha, Ortachne erectifolia, and a species of Sisyrhinchium. A layer of little shrubs may also be present, composed of: Diplostephium obtusum, Hesperomeles obtusifolia, Hypericum cardonae, H. juniperinum, H. juniperinum x cardonae and Pernettya prostrata. Syntaxonomy: Sixty relevés are recognized as belonging to this alliance, comprising a total of 21 vascular species and 13 species of cryptogams accounting for the total species richness. Diagnostic of the alliance are: Agrostis basalis, Sphagnum recurvum and Paepalanthus pilosus. This alliance contains three associations: P aepalanth o p ilo si–Agr ostietum b asalis, Sph agn o recu rvi–Caricetum bonp lan d ii and Sph agn o sparsi–Caricet um bonp lan d ii. Ecology and distribution: Vegetation belonging to this alliance may be found all over the evaporated lake “Laguna Seca” and on the humid shore of Laguna El Pumar in Páramo El Pumar (~2870–2890 m), as well as in wet areas around a pond to the South of Las Antenas in Páramo de Guaramacal at ~3080 m. 1. P aep alanth o p ilo si–Agrostietu m basalis ass. nov. Typus: Rel. No. 17 (Cuello LS26). Table 1, Fig. 2. Photo 3 (center to right).
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24
1
1 0,5
1
1
1 1
1
1 1 1 1 1
1
32
33 34 35 36
37
38 39 40 41 42 43 44
.
. .
. . .
NP1 Hesperomeles obtusifolia .
.
.
.
. .
. .
. .
. .
.
.
.
.
.
.
.
. . . . . 2 . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . 1 . . . . 5 5 1 3 . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . 1 . . . .
. . . . . . . . . . . . 1 . . .
. . . . . 4 5 5 4 4 1 . 3 5 5 5
. . . . 1 . . . . . . . . . . .
.
.
.
.
.
.
.
.
5
.
.
.
.
.
.
. . . . . .
. . .
. .
.
Sphagnum sancto-josephense H3 Xyris subulata Campylopus richardii
DS 4. Carici bonplandii - Chusqueetum angustifoliae
PLG Chusquea angustifolia
.
.
.
.
.
. .
. .
. .
. .
. .
.
.
.
.
.
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
.
H3 Calamagrostis sp. A . .
5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 2 5 2 4 5 1 . 1
CH2 Paepalanthus pilosus
.
.
.
.
.
.
1 . 4 . 4 3 . 1 1 2 1 2 . . . . . 2 5 5 5 5 5 5
DS SPHAGNO RECURVI - PAEPALANTHION PILOSI
. .
. .
.
. .
. .
.
.
. .
.
. .
. . 4 . .
.
Campylopus cuspidatus CH3 Hypericum juniperinum x cardonae CH3 Hypericum cardonae NP1 Hypericum juniperinum Sphagnum sp.(orange)
.
. .
CH3 Pernettya prostrata . .
.
.
.
. .
.
. .
. .
.
.
.
.
.
.
.
. .
. .
. .
. .
.
.
1 . 4 3 . .
.
DS 3. Sphagno sparsi - Caricetum bonplandii
. .
. . .
. . 2 . 1 .
.
. .
.
. .
. .
.
. .
. 1 .
. .
.
. . . . . . . . . . . . . . . .
.
.
. .
. .
2 5 3 . . 4 1 . 2 1 2 4 5 . . . . 1 . . . . . . 1 1 . 3 1 1 2 2 1 . . . . . . . . . 4 . . . . 4 3 2 . . 1 . . . 1 2 1 . . . . . . . . . .
.
5 1 3 5 5 5 5 5 5 5 4 5 5 1 . . . . . . . . .
1 1 4 .
.
. 4 . . . . . . . . 3 . . . . . .
.
H3 Calamagrostis bogotensis
. . 4 3 .
. 2 . 5 . . 4 4 4 5 . . . . 3 .
.
.
. . . . 1 . 1 . 5 . 3 3 2 . 4 5 5 . . . .
. .
.
.
4 4 4 .
.
.
.
.
.
.
.
.
5
.
.
.
.
.
.
.
.
5
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
1 1 1 1
45
46
47
48 49 50 51 52 53 54 55
56
57
58
59
60
61 62 63 64 65 66 67 68
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . .
. . . .
. . . .
. . . .
. . . .
. 1 . .
.
.
.
.
.
.
. 5 5 5 5
. . . .
. . . .
. . . .
. 2 . .
. . . .
. . . .
. . . .
. 4 . .
. 4 5 5 .
5 1 . .
. . . . 1
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . . . 1 . .
. . . .
. . . .
. . . .
. . . .
. . . .
. 5 . .
.
.
.
.
.
.
.
.
.
.
1
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
. . . . . . . .
. .
.
. .
. .
.
.
. .
. .
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
. .
. .
. .
. .
.
.
.
.
.
. 5 4 .
5 5 5 5 5 5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
4
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . 2
.
.
.
.
.
.
.
.
.
.
.
.
5
.
.
.
.
.
.
.
.
5
4
5
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
5
.
.
.
.
.
.
.
.
4
4
5
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
. . . . .
. . . . .
. . . . 1
. . . . .
. . . . .
. . . . .
.
.
. . . . .
. . . . .
. . . . .
.
.
. . . . .
. 1 . . . . .
.
.
.
. 4 . . . . . .
.
.
2
.
.
.
.
.
1
5
.
.
.
4
.
4
. . . 2 2 4
. . . . .
. 5 3 . .
5 5 5 . 5 4 4 .
.
.
.
.
.
.
.
.
5 5 .
3 4 5 4 4 5 3 .
.
.
.
.
.
2
5
.
.
.
5
.
4
3
.
.
.
5
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
3.2. Pernettya prostrata
5 5 4 5 4 5 5 5 5
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
3.1.Diplostephium obtusum
5 5 5 5 5 5 5 5
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . 1 . .
2 1 5 . . . 1
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . . . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
5 5 . . . . .
. . . . . . .
. . 3 . . . 2
2. Sphagno recurvi-Caricetum bonplandii
3. Sphagno sparsi - Caricetum bonplandii
.
.
.
.
.
.
.
4
1
.
1
.
.
4
5
.
.
.
5
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
5
.
.
.
.
5
3
4
.
.
.
5
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
5
.
5
.
.
5
3
5
.
.
5
5
.
.
.
.
.
.
.
. .
.
.
.
.
.
. . .
. .
. . .
. . .
. . .
. . . . . .
.
.
. .
.
.
.
69
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . 3 2 .
. . .
. . .
. . .
. . .
.
.
. .
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
. .
. 1 .
.
1 1 4 5 4 .
.
.
. . 5 4
.
5 5 5 1 5 4 4 .
. 4 5 5 4 5 5 5 5
1 .
1 .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. . 1 5 4 .
. .
. .
. . . 1 .
. . .
1 . . 1 . . . . . .
. .
. .
. .
. .
. .
. .
4. Carici - Chusqueetum
CARICI - CHUSQUEION
1 0,3 2,3 0,8 0,6 1 0,8 4 4 1 0 4 0,35 0,5 0,6 0,5 0,35 6
GERANIO STOLONIFERUM - CARICETALIA BONPLANDII SPHAGNO RECURVI - PAEPALANTHION PILOSI
.
Sphagnum recurvum
31
1 1 1 2,25 2,25 4 4 1 1 0,8 0,5 0,3 0,3 0 4 0,6 0,35 1 1
2 2 1 3 . 3 1 5 5 5 . 1 5 4 3 5 5 2 1 . . . .
1.2. typicum
1 1 1 1
1 3 1 2 . 1 2 5 5 3 2 1 5 5 4 5 4 1 1 2 2 4 1
1
Campylopus albidovirens CH2 Arenaria venezuelana CH2 Lachemila verticillata Breutelia rhythidioides DS 1.1. ortachnetosum erectifoliae H3 Ortachne erectifolia Breutelia squarrosa Polytrichum commune Cladonia dydima Cladonia andesita H2 Rhynchospora gollmeri Cladia aggregata DS 1.2. typicum Polytrichum juniperinum H3 Sisyrhinchium sp.
1.1. ortachnetosum erectifoliae
1.Paepalantho pilosi - Agrostietum basalis
1
H2 Agrostis basalis
DS 3.2.Pernettya prostrata
26 27 28 29 30
eschweizerbartxxx ingenta
Sphagnum sparsum Sphagnum magellanicum NP1 Diplostephium obtusum H3 Agrostis sp. B
25
LS L L SF S L LS L L L L L L L L L L L L L L L L SF8 SF8 P S L L PF PF PF PF S S LP LP7 L L L L L L L PF SF8 SF SF S SF P P P P P LP1 LP2 LP LP LP5 G L2 L2 L2 L2 L3 L3 L3 L3 7 L L S S 36 40 44 45 F L 6 11 S S 96 L1 S 10 S S S S S S S S S S S S S S S S 6 S S S S S S S 43 5* 88 91 F 94 L L L F L * 3 4 C 6b 6a 7a 7b 6a 6b 3a 3b 1 6 3 3 9 9 17 1 2 2 29 4 5 13 14 0 7 1 8 9 12 15 25 22 23 24 26 27 28 6 1 19 3 92 3 7 8 42 2 C * 0 1 0 * * 8 6* 1 3
DS 1.Paepalantho pilosi - Agrostietum basalis
Variant
Subassociation
Association
Alliance
Area (m2) Order
Releve number Releve (field number)
394 N. L. Cuello A. & A. M. Cleef
Table 1. Phytosociological table of azonal pรกramo vegetation of Ramal de Guaramacal, Andes, Venezuela.
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
395
Table 2. Phytosociological table of aquatic communities of Ramal de Guaramacal, Andes, Venezuela.
. . . . . 1 .
HD HD
.
2
3
4
5
6
7
8
9 10
5. Sphagnum cuspidatum Community/Association 5. Community of Sphagnum cuspidatum Sphagnum cuspidatum 5 5 5 5 5 Eleocharis acicularis . . . 5 3 black filamentous Algae . . . . 5 purple filamentous Algae 1 . . . . 6. Isoëtetum karstenii gelatinous Algae . . . . . Isoëtes karstenii . . . . .
6. Isoëtetum karstenii
1 5 . .
. 5 . .
. 4 . .
. . 5 . 4 5 . .
5 4
5 3
5 5
5 .
. .
LP, PL Laguna El Pumar, 2880 m. Páramo El Pumar LS Laguna Seca, 2890 m. Páramo El Pumar GCC Páramo de Guaramacal, 3030 m. HD Hydrophyte * Type relevé
H4 H3 H2 CH3 CH2
5
3
5
5
4 5 5 5 . . 5 . . .
5
5
. . 3 . . 5 5 .
Hemicryptophyte / caespitose ( > 30 cm) " " (10 - 30 cm) " (3 - 10 cm) Chamephyte / frutescent (10 - 30/50 cm) " (3 - 10 cm)
1 . Nanophanerophyte (30/50 - 100 cm) Phanerophytic lignified grass (30 - 100 cm) Rosullate phanerophyte (10 - 30 cm) " " (> 30 cm) NP1 PLG RP1 RP2 LP, PL, PF Laguna El Pumar, 2880 m. Páramo El Pumar LS, SL, SF, L36 Laguna Seca, 2890 m. Páramo El Pumar GCC, L26, L27, L33 Páramo de Guaramacal, 3030 m. * Representative relevé DS Diagnostic Species
5 5 5 1 5 4 4 5 5
HD HD HD HD
1
G PL LS PL LP LP13 LP8 LP9 LP LP CC 5 20 4* 12 10 11 2
.
5 5 5 1 5 5 5 5 4
. . . . . . . .
. . . .
5
. . . . . . . . . . 5 3 1 . 4
.
. 1 . . . 1 1 1 4 1 2 4 4 3 4 5
5 5 5 5 5
. . . . . . . . . . . . . . . . . . . . . . .
. . . .
.
5 1 5 5 5
5
3 4 1 5 5 5 5 5 5
5
.
. . . . . . . . . . . . . . . . . . . . . . .
.
.
.
. 5 . . . .
.
5
. . .
.
. . .
. . . . . .
.
.
. . . . . . . .
.
. .
. . .
. . . . . . . . . . . . .
.
. .
. . .
. . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . .
Rhacocarpus purpurascens . . . . . . . . . . . . . . . . H3 Agrostis perennans DS GERANIO STOLONIFERUM - CARICETALIA BONPLANDII H3 Carex bonplandii . 1 . . . . 1 1 4 5 5 5 4 5 . . CH2 Geranium stoloniferum
. . . . . . . . . . . . . . . . . .
. . . .
.
.
.
. . . . . . . . . .
.
. . . . . . .
.
.
. .
. . .
1
. . .
1
. . .
. . . . . .
.
.
. . . . . . . .
.
. .
. . .
. . . . . . . . . . . . .
.
. .
. . .
. . . . . .
. . . . . . . . . . . . . . . . . . .
.
. . .
. .
. . .
. . . .
.
. . . . . . . . . . . . . . . . . .
. . . .
.
.
.
. . . . . . . . . .
.
. . . . . . .
.
.
1 .
. . .
.
. . . . . .
1
.
1
. 1 . . . .
. .
. .
.
.
.
. . . . . . . .
.
. .
. . .
. . . . . . . . . . . . .
.
. .
. . .
. . . . . .
. . . . . . . . . . . . . . . . . . .
.
. . .
. .
. . .
. . . .
.
. . . . . . . . . . . . . . . . . .
. . . .
.
.
.
. . . . . . . . . .
.
. . . . . . .
.
.
.
. . . . . . . . . . .
.
. .
.
. . . . . . . . . . . . . . . . . .
. . . .
.
.
.
.
.
. . . . . . . . . .
.
.
.
.
. . . . . . .
.
.
. .
. 2 .
. .
. . .
. 1 1 . 1 .
1 1 . . 1 . .
. .
. .
. . . . .
.
. .
. .
. . . . . . . . . . . . . .
.
. .
. . .
. . . . . .
. . . . . . . . . . . . . . . . . . .
.
. . .
. . .
. . .
Peltigera neopolydactyla H2 Oreobolus venezuelensis H3 Hieracium avilae Jamesoniella rubricaulis CH2 Nertera granadensis H2 Ophioglossum crotalophorioides Plagiochila sp.
. . . H3 Gentianella nevadensis
.
. . . . . . . . . . . . . . . . . .
. . . .
.
.
.
. . . . . . . . . .
.
.
.
. . . . .
.
.
. . .
1
.
. . 1 .
. . 1 2 4 .
. . .
.
.
.
.
. .
. . . . . . . . . . . . . .
.
. .
. . .
. . . . . .
. . . . . . . . . . . . . . . . . . . .
. . .
. . .
.
. H4 Cortaderia hapalotricha
. . . RP1 Ruilopezia jabonensis
. .
. . . . . . . . . . . . . . . . . .
. . . .
.
.
.
. . . . . . . . . .
.
.
.
.
. . . . .
. 5 . . . .
.
.
. 1 4
Rel. Num. Releves (Field Number)
Peat bog with cushions of Paepalanthus pilosus and Agrostis basalis groundrosette – bunchgrass vegetation / Vegetación de turbera con cojines de Paepalanthus pilosus y pajonal de Agrostis basalis
eschweizerbartxxx ingenta
Physiognomy and composition: The association is made up of small patches of bunchgrass vegetation on top of a former peat bog. There is a ground layer formed by dense cushions of Paepalanthus pilosus, Arenaria venezuelana and Lachemilla verticillata. Over and among the cushions of Paepalanthus pilosus there is a diversity of bryophytes (and lichens), with the moss Campylopus albidovirens forming a dense and cespitose mat that, together with the other ground layer species constitutes a substrate for the establishment of the bunchgrasses Agrostis basalis and Ortachne erectifolia. In the ground layer, the most common cryptogamic species are: Breutelia rhythidioides, B. squarrosa, Polytrichum commune, P. juniperinum, Sphagnum magellanicum, S. recurvum and the lichens Cladonia andesita, C. dydima and Cladia aggregata. Syntaxonomy: The association is defined on the basis of 22 relevés with 10 vascular species and 11 species of cryptogams. The diagnostic species are: Agrostis basalis, Arenaria venezuelana, Lachemilla verticillata, Paepalanthus pilosus and the mosses Campylopus albidovirens, Breutelia squarrosa, B. rhythidioides and Polytrichum commune. A subassociation ortachnetosum erectifoliae and a subassociation typicum have been recognized for this association. Ecology and distribution: The vegetation of the association P aep alanth o p ilo si-Agrostietum b asalis has to date been found established solely to the North and the South side of an area of central drainage (small channel with water) to the western
396
N. L. Cuello A. & A. M. Cleef
Fig. 2. Physiognomy of the vegetation of the association of Pa e p a l a n t h o p i l o si -A g ro st i e t u m b a sa l i s. Pรกramo El Pumar, 2870 m. Lev. LS16. Ab: Agrostis basalis; Br: Breutelia rythidioides; Bs: Breutelia squarrosa; Ca: Campylopus albidovirens; Cd: Cladonia dydima; Cla: Cladonia andesita; Oe: Ortachne erectifolia; Pc: Polytrichum commune; Pp: Paepalanthus pilosus; Sm: Sphagnum magellanicum.
eschweizerbartxxx ingenta
Photo 3. Vegetation association on the northwestern edge of the Laguna Seca in Pรกramo El Pumar at ~2870 m. Center-right: P a e p a lan tho pilosi-Agrostietum basalis subassociation o rt a c h n e t o su m e re c t i f o l i a e . Left: S p h a g n o re c u rvi- C a r ic e t u m b onplandii.
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
border of the peat bog (dry lake) of the Páramo El Pumar ~2870 m. This area seems to be a site where wild fauna (probably the ‘Puma’, Puma concolor, and other mammals), that go to the site for water, are concentrated. The frequent animal footsteps seem to have caused a fragmentation and decomposition of the Sphagnum layer, thereby favoring the establishment of other plant species.
nated by cushions of Arenaria venezuelana (12–40 % cover), Lachemilla verticillata (35–85 % cover) and Polytrichum juniperinum (15–60 % cover). Sphagnum magellanicum and S. recurvum are also present in the ground layer. Syntaxonomy: The subassociation typicum of the P aep alanth o pilo si–Agrostietu m basalis is represented by 9 relevés, with 9 vascular species and 7 species of cryptogams. Polytrichum juniperinum is diagnostic. This subassociation typicum is separated from the previous subassociation by the absence of Ortachne erectifolia, a very low presence of Breutelia squarrosa and Polytrichum commune, and by a greater density and cover of Polytrichum juniperinum.
1. P a e p a l a n th o p i l osi – Ag ro sti e tu m basalis 1.1 o r t a c h n e to sum e re c ti fo l i a e subass. nov. Typus: Rel. No. 8 (Cuello LS16). Table 1, Fig. 2, Photo 3. Peat bog with cushions and Ortachne erectifolia bunchgrass vegetation / Turbera con vegetación de cojines con pajonal de Ortachne erectifolia Physiognomy and composition: The vegetation is made up of a grass layer dominated by tussocks of Ortachne erectifolia (height 30–45 cm and 30–70 % cover), small tussocks of Agrostis basalis [height 15– 25 cm and 20–30 % of cover] and other herbs (1–5 % cover) such as Carex bonplandii and Rhynchospora gollmeri. The ground layer is composed of dense cushions of Paepalanthus pilosus (10–80 % cover) and Lachemilla verticillata (3–30 % cover) with a mat of Campylopus albidovirens (2–20 (40) % cover) growing in between. Other species with variable densities and cover are Arenaria venezuelana and Geranium stoloniferum, the bryophytes Breutelia rhythidioides, B. squarrosa, Campylopus cuspidatus var. dicnemioides, Polytrichum commune, P. juniperinum, Sphagnum magellanicum and S. recurvum as well as the lichens Cladonia andesita and C. dydima. Syntaxonomy: This subassociation is represented by 13 relevés, with 8 vascular and 11 species of cryptogams. Paepalanthus pilosus (only by maximum cover), Ortachne erectifolia, Breutelia squarrosa and Polytrichum commune are diagnostic; as is the lichen Cladonia dydima. Ecology and distribution: The vegetation of the subassociation ortachnetosum erectifoliae covers a small area (approx 30–50 m2) to the northwestern edge of the Laguna Seca in Páramo El Pumar at ~2870 m. This patch is surrounded by peat of the association S p h a g n o re c urv i -Ca ri c e tu m b on pl and ii. 1. P a e p a la nth o p i l osi – Ag ro sti e tu m basalis 1.2. Subassociation typicum Typus: Rel. No. 17 (Cuello LS26). Table 1. Open and low Agrostis basalis bunchgrass vegetation on peat bog with dominance of Polytrichum juniperinum / Pajonal ralo y bajo de Agrostis basalis sobre turbera con dominancia de Polytrichum juniperinum Physiognomy and composition: Open and low vegetation with an herbaceous layer (15–25 cm height) dominated by small tussocks of Agrostis basalis (1– 20 % cover) and discrete individuals of Carex bonplandii (1–10 % cover). The ground layer is domi-
397
Ecology and distribution: The vegetation of the subassociation typicum covers a patch at the southwestern end of the dry lake peat bog of Páramo El Pumar at ~2870 m. This side of the dry lake is lower and more humid than the northern side. Near the higher and drier southern border of the dry lake, the vegetation of this association is in contact with that of the Sph agn o recu rvi–Caricetum b o n p landii association.
eschweizerbartxxx ingenta
2. Sp h agn o recu rvi–Caricetum bonplandii ass. nov. Typus: Rel. No. 35 (Cuello LS9). Table 1, Fig. 3. Sphagnum recurvum – Carex bonplandii peat bog / Turbera de Sphagnum recurvum y Carex bonplandii Physiognomy: Peat bog dominated by a dense green carpet of Sphagnum recurvum with 100 % cover. Composition and syntaxonomy: This association is represented by 24 relevés, with 13 vascular species and 8 species of bryophytes. The diagnostic species are Sphagnum recurvum and Carex bonplandii. Two provisional variants of this association are distinguished. The vegetation of variant typicum has an open aspect. This common peat bog variant is represented by 15 relevés and accounts for a total of 12 vascular species with very low cover. Carex bonplandii (height 15–25 cm, cover 35–70 %), growing on a green carpet of Sphagnum recurvum (60–100 % cover) is especially prominent. The other vascular species present (in the association but) with very low cover include: Agrostis sp. B, Arenaria venezuelana, Calamagrostis sp. Diplostephium obtusum, Gentianella nevadensis, Hypericum cardonae, Lachemilla verticillata, Nertera granadensis, Paepalanthus pilosus, Sisyrinchium sp., Xyris subulata var. acutifolia. The variant typicum lacks proper diagnostic species. The variant of Diplostephium obtusum includes only 7 vascular species. The vegetation of this variant occurs near the eastern dry edges of the evaporated lake, Laguna Seca. The presence of Diplostephium obtusum is diagnostic (5–40 % cover) with variable densities of Carex bonplandii [10–50 % (90 %)], as is the presence of Agrostis sp. B.
398
N. L. Cuello A. & A. M. Cleef
Fig. 3. Physiognomy of the vegetation of a hummock-hollow páramo peat bog of the association of (1) S p h a g n o sp a rs i- C a r ic e t u m bonplandii var. Pernettya prostrata and (2) Sp h a g n o re c u rv i -C a ri c e t u m b o n p l a n d i i at Laguna El Pumar, Páramo El Pumar, 2880 m. Cb: Carex bonplandii; Gm: Geranium stoloniferum; Hc: Hypericum cardonae; Hjxc: Hypericum juniperinum x cardonae; Pp: Paepalanthus pilosus; Ppr: Pernettya prostrata; Sm: Sphagnum magellanicum; Sr: Sphagnum recurvum. Ss: Sphagnum sparsum.
Ecology and distribution: In its typical form, the vegetation of this association is found on the humid shore of Laguna El Pumar, as well as in the central humid or semi-humid areas of the West shore of Laguna Seca in Páramo El Pumar (~2870–2890 m), and in wet areas around a pond of water in a little valley South of ‘Las Antenas’ in Páramo de Guaramacal at ~3080 m.
eschweizerbartxxx ingenta
3. S p h a g no spa rsi – Ca ri c e tum bo nplan d ii ass. nov. Typus: Rel. No. 56 (Cuello LP1). Table 1, Fig. 3, 4, Photo 3 (left to bottom). Sphagnum sparsum – Carex bonplandii peat bog / Turbera de Sphagnum sparsum y Carex bonplandii Physiognomy and composition: Peat bog that consists of an herb layer (15–25 cm in height), covering between 10–80 %, and dominated by Carex bonplandii. A ground layer with 100 % cover, formed by a continuous carpet of several Sphagnum species, among which, S. sparsum dominates, followed by S. recurvum and S. magellanicum. Also common are compact cushions of Paepalanthus pilosus, and a variable cover of Campylopus cuspidatum. In this association, a shrub layer made up of Diplostephium obtusum may be present, or a layer of very low shrubs of Hypericum juniperinum, H. cardonae, H. juniperinum x cardonae, and Pernettya prostrata. Syntaxonomy: The association of Sphagno sparsiCaricetum bonplandii is represented by 16 relevés
with 13 vascular species and 5 species of moss. The high presence and cover of Sphagnum sparsum and S. magellanicum is diagnostic. Two variants are distinguished: one with Diplostephium obtusum, the other with Pernettya prostrata. Ecology and distribution: The peat bog of this association is located at the dry northeastern shore at 1–6 m from the edge of Laguna Seca, and also on hummocks and the non-flooded edges of Laguna El Pumar in Páramo El Pumar at 2880–2890 m. 3.1. Variant with Diplostephium obtusum Representative rel.: No. 46 (Cuello LSF85). Table 1, Fig. 4. Variante con Diplostephium obtusum Physiognomy and composition: Peat bog of Sphagnum magellanicum and Carex bonplandii with a shrub layer of Diplostephium obtusum (height 30– 120 cm, cover 15–45 %). Syntaxonomy: The variant is represented by 9 relevés with a total of 7 vascular species. The diagnostic species is Diplostephium obtusum, together with an absence of Pernettya prostrata and associated species. Ecology and distribution: The vegetation of this variant is present on the higher and drier edges of the NE-SE part of the peat bog of Laguna Seca in Páramo El Pumar. This community can also be found in small peaty valleys with drainage embedded in azonal bamboo páramo of the association Carici b onplandii– Chu sq u eetu m an gustifoliae .
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
399
Fig. 4. Physiognomy of the bog of the association S p h a g n o sp a rsi -C a ri c e t u m b o n p l a n d i i var. Diplostephium obtusum. Páramo El Pumar. Laguna Seca. 2890 m. Lev. SF85. Do: Diplostephium obtusum; Cb: Carex bonplandii; Gm: Geranium stoloniferum Pp: Paepalanthus pilosus; Sm: Sphagnum magellanicum; Sr: Sphagnum recurvum Ss: Sphagnum sparsum.
3.2. Variant with Pernettya prostrata Representative rel. Cuello LP1. Table 1, Fig. 3. Variante con Pernettya prostrata Physiognomy and composition: Vegetation on hummocks near the edges of peat bog dominated by a layer of Carex bonplandii (height 15–25 cm, cover 30–80 %) with a layer of a few low shrubs (height 5–40 cm, cover 1–40 %) consisting of Pernettya prostrata, Hypericum cardonae and H. juniperinum x cardonae. Scarse young individuals of Hypericum juniperinum and Hesperomeles obtusifolia may also be present among the shrubs. A bryophytic ground layer is dominated by Sphagnum sparsum (30–100 % cover), S. recurvum (10–40 % cover) and Campylopus cuspidatum. Syntaxonomy: The variant is represented by 7 relevés with 9 vascular species and 5 moss species. Diagnostic species are: Pernettya prostrata, Hypericum cardonae and Campylopus cuspidatum. Sphagnum magellanicum has a low presence and cover when contrasted with the variant with Diplostephium obtusum. Ecology and distribution: Vegetation on hummocks in the non-flooded areas around of Laguna El Pumar at 2880 m, Páramo El Pumar. Carici bonplandii–Chusqueion angustifoliae all. nov. Typus: C a r i c i b on pl a nd i i – Ch usq ueetum ang u s t if o l ia e (this study). Azonal Carex bonplandii – Chusquea angustifolia bunchgrass-bamboo páramo alliance / Páramo azonal de pajonal-bambusal (chuscales) de la alianza de Carex bonplandii y Chusquea angustifolia
eschweizerbartxxx ingenta
Physiognomy and composition: This alliance groups azonal bamboo páramo (‘chuscales’) growing in humid level areas of low inclination dominated by Chusquea angustifolia. Syntaxonomy: This alliance is defined on the basis of 9 relevés with 14 vascular species and 5 moss species. Carex bonplandii, Chusquea angustifolia, Sphagnum sancto-josephense and Xyris subulata are the diagnostic species. The alliance contains one association so far, Carici b o n p lan d ii–Chu sq u eetu m angustifoliae . Ecology and distribution: The vegetation of the alliance Carici bonplandii–Chusqueion angustifoliae is found growing close to lakes shores in Páramo El Pumar (2870–2890 m) and on small wet valleys in both Páramo El Pumar and Páramo de Guaramacal (~2900–3100 m). 4. Carici bo n p lan d ii–Chu sq u eetu m angustifoliae ass. nov. Typus: Rel. No. 64 (Cuello L27a). Table 1, Fig. 5, Photo 3 (top). Carex bonplandii – Chusquea angustifolia bunchgrass-bamboo páramo Páramo de pajonal-bambusal de Chusquea angustifolia con Carex bonplandii Physiognomy: Dense bamboo páramo, or “chuscal”, with a bamboo layer of Chusquea angustifolia (height 1–1.5 m, cover 30–70 %), a herbaceous layer, 20–30 cm in height dominated by Carex bonplandii, and a ground layer dominated by cushions of Sphagnum sancto-josephense and S. sparsum together with other bryophytes and some lichens.
400
N. L. Cuello A. & A. M. Cleef
Fig. 5. Physiognomy of the association of Caric i b o n p l a n d i i -C h u sq u e e t u m a n g u st i f o l i a e (L27, 3030 m). Cb: Carex bonplandii; Ch: Cortaderia hapalotricha; Cha: Chusquea angustifolia; Rg: Rhynchospora gollmeri; Rj: Ruilopezia jabonensis; Ss: Sphagnum sparsum; Ssj: Sphagnum sancto-josephense; Xs: Xyris subulata.
Composition and syntaxonomy: The association of C a r i c i b o n pl a nd i i – Ch usq ue e tu m an gustifoli a e is represented by 9 relevés with 14 vascular species and 9 bryophytes. Chusquea angustifolia (dominant), Carex bonplandii and Sphagnum sancto-josephense are diagnostic of the assemblage. Agrostis perennans, Daucus montanus and Xyris subulata var. acutifolia are present in the herb layer. Paepalanthus pilosus, Arenaria venezuelana, the bryophytes Breutelia squarrosa, Campylopus subjugorum, C. pilifer, C. nivalis, Sphagnum sanctojosephense, S. sparsum, the liverworts Jamesoniella rubricaulis, Lepidozia cf. macrocolea (3034), and Plagiochila sp., and the lichens Cladia aggregata and Peltigera neopolydactyla have also been observed in the ground layer. On the canes of Chusquea angustifolia the epiphytic moss Campylopus trichophorus can be found. In this association a provisional subassociation of Xyris subulata is distinguished by the presence of Xyris subulata var. acutifolia (rel.nr. 61–65) together with a few other common species of the zonal páramo association of Rhynchospora gollmeri –Ruilopezia jabonensis which is in contact in some locations. More relevés are needed for the formal description of this Xyris subulata subassociation.
eschweizerbartxxx ingenta
Ecology and distribution: The bamboo vegetation of the association of Ca ri c i bo n p lan d ii– C h u s q u ee tum a ng usti fo l i a e is found in level or concave areas of low slope (1 to 8 degrees) with a southwestern-west exposure at altitudes between ~2880 – 3100 m. They are positioned adjacent to lake margins or covering small wet valleys. This bamboo vegetation grows on relatively deep soils (50–120 cm), with gray colors (dry) and very dark (humid), sandyloamy to loamy textures. The pH of the upper layer ranges from 3.6 to 4.2. Districho submersi–Isoëtion Cleef 1981 Table 2, rel. nrs 1–10
Alliance of submerged bryophytic-isoetid communities in páramo lakes described from the Cordillera Oriental of Colombia (Cleef 1981). 5. Community of Sphagnum cuspidatum Representative rel.: No. 4 (Cuello PL4). Table 2, rel. 1–5, Photo 4. Comunidad de Sphagnum cuspidatum Submerged aquatic community with Sphagnum cuspidatum present at great density close the peaty shores of Laguna El Pumar. Water depth ranges between 30 and 120 cm. The community is also found in a small peaty depression with flushes of water in bamboo páramo near the ‘Las Antenas’. 6. Isoëtetum karstenii Cleef 1981 Table 2, rel. 6–8 Vegetación lacustre de Isoëtes karstenii Submerged aquatic community of Isoëtes karstenii, associated with Eleocharis acicularis (sterile) and filamentous algae thriving at a depth of between 0.6–1 m in Laguna El Pumar (2890 m). In deeper areas of the lake (1–1.5 m) black filamentous algae (cf. Microspora sp.) are also present within this community. More relevés are needed in order to more clearly define a possible further subdivision of the Isoëtetum karstenii.
Discussion Phytosociological classification and methodological limitations The classification of azonal páramo vegetation of Guaramacal resulted in one new order, two new alliances, one earlier described alliance and six associations. Four of them are described as new syntaxa, one as a provisional community whilst one association (Iso ëtetu m k arsten ii Cleef 1981) was previously
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
401
Photo 4. Submerged aquatic community of Sphagnum cuspidatum in Laguna El Pumar.
eschweizerbartxxx ingenta
known from Colombia. A summary (presence) table of azonal páramo vegetation communities of Ramal de Guaramacal is shown in Table 3. The vegetation has been described on the basis of a relatively limited number of relevés from only two peat bogs and a small pond from two main páramo areas of Ramal de Guaramacal (Páramo de Guaramacal and Páramo El Pumar). Other azonal vegetation communities may be present in the páramos of Ramal de Guaramacal as other peat bogs are known to exist in the area but have not yet been reached and remain as yet unexplored. The limited accessibility of the area throughout most of the year, together with high precipitation levels and the frequency of mist, made the exploration of peat bogs areas of Ramal de Guaramacal extremely difficult, hence limiting the study of the vegetation to only the drier climatic conditions at only the most accessible sites. During these drier spells, some annual species were found in a senescent condition making taxonomic identification difficult. Some plants could even be ignored in the survey as they could already only persist as seeds in the seed bank. However, the low floristic diversity observed in azonal communities of Ramal de Guaramacal can be mainly attributed to the stress caused by extreme humidity with a subsequent dominancy of only a few well-adapted species. Also the relative isolation from the main system of the Cordillera de Mérida is probably a factor. In the Laguna Seca the substrate of the
lake bottom remains humid, even in the dry season, sometimes with a small pond. An important issue is the (almost) absence of proper diagnostic species in the Sphagno recurvi- Caricetu m bo n p lan d ii of the Agrostio-P aepalanth ion . This phenomenon corresponds to the ‘central syntaxon concept’ of Dierschke (1981, 1994). The almost absence of diagnostic species is differential against both other associations. Azonal bunchgrass patches Azonal bunchgrass páramo is represented by two small patches of vegetation belonging to associations of the new alliance P aep alanth o pilosiSph agn ion recu rvi; both of which grow on top of a former peat bog. These bunchgrass communities are very restricted in both surface area covered and spatial location in Guaramacal, thus comparison (in ecology and floristic composition) with other communities elsewhere is limited. As far as we are aware, no similar communities have been reported from páramos. The presence of these communities, just on the border of the evaporated lake in Páramo El Pumar and on both sides of a remnant pond, suggests a relationship with wildlife in the origin of these communities. Páramo El Pumar got its name by the apparent abundance of the Puma, Puma concolor, as indicated by the observed large quantities of vestiges,
402
N. L. Cuello A. & A. M. Cleef
Table 3. Presence table of azonal páramo vegetation communities of Ramal de Guaramacal, Andes, Venezuela. Associations: 1. Paepalantho pilosi–Agrostietum b a sa l i s; 2. Sp hagno recurvi-Caricetum bonplandii ; 3. S p h a g n o sp arsi–Caricetum bonplandii; 4. Carici b o n p l a n d i i – Ch usqueetum angustifoliae; 5. Community of Sphagnum cuspidatum; 6. Isoëtetum karstenii. Presence classes: I (0–20 %), II (21–40 %), III (41–60 %), IV (61–80 %) and V (81–100 %). Number of relevés
22
22
16
9
5
3
Association Agrostis basalis Campylopus albidovirens Arenaria venezuelana Lachemila verticillata Breutelia rhythidoides Ortachne erectifolia Breutelia squarrosa Polytrichum commune Cladonia dydima Cladonia andesita Rhynchospora gollmeri Cladia aggregata Polytrichum juniperinum Sisyrinchium sp. Calamagrostis bogotensis Sphagnum sparsum Sphagnum magellanicum Diplostephium obtusum Agrostis sp. B Pernettya prostrata Campylopus cuspidatus Hypericum juniperinum x cardonae Hypericum cardonae Hypericum juniperinum Sphagnum sp.(orange) Hesperomeles obtusifolia Sphagnum recurvum Paepalanthus pilosus Calamagrostis sp. A Chusquea angustifolia Sphagnum sancto-josephense Xyris subulata Campylopus richardii Ruilopezia jabonensis Cortaderia hapalotricha Gentianella nevadensis Peltigera neopolydactyla Oreobolus venezuelensis Hieracium avilae Jamesoniella rubricaulis Nertera granadensis Ophioglossum crotalophorioides Plagiochila sp. Rhacocarpus purpurascens Agrostis perennans Carex bonplandii Geranium stoloniferum Sphagnum cuspidatum Eleocharis acicularis black filamentous Algae purple filamentous Algae gelatinous Algae Isoëtes karstenii
1 V IV III III I IV III III II I I I III I I . II . . . I
2 I . I . . . . I . . . . II I . I I II I . .
3 . . . . . . . . . . . . . . . V IV II . III II
4 . . I . . . II . . . II . . . . II . . . . .
5 . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . .
. . . . . III V . . . . . . . . . . . . . . . . . III III . . . . . .
. I . . . V II . . . . . . . . . . . . . . . . . V I . . . . . .
I I I I I V II . . . I . . I I . . . . . . . . I V III . . . . . .
. . . . .
. . . . . I . . . . . . . . . . . . . . . . . . . . V II I I . .
. . . . .
I I V IV III II II II II II I I I I I I I . V II . . . . . .
. . . . . . . . . . . . . . . . . . . . 1 5 . . 5 5
eschweizerbartxxx ingenta
such as paw prints and the remains of digested prey. The evaporated lake ‘Laguna Seca’ is surrounded by patches of dwarf high Andean forest which offer shelter to these animals which appear to walk across the peat bog to drink or to hunt prey. The bunchgrass Ortachne erectifolia was previously described by the second author in 1981 as a species with a wide ecological range occurring between about 3500 and 4300 m. A bunchgrass community of Ortachne erectifolia (Lo renzochloetum er ectifoliae Cleef 1981) is known from the dry zonal bunchgrass páramos at 3550–3650 m in the Colombian Cordillera Oriental (Cleef 1981). That community, however, differs greatly in both ecology and floristic composition and limits comparisons with the subassociation ortachnetosum erectifoliae of the azonal Paepalantho p ilo si–Agrostietu m basalis from Guaramacal. The bunchgrass Ortachne erectifolia is also a common species in the zonal widespread grass páramo community of Espeletia schultzii–Aciachne acicularis in the Sierra Nevada de Mérida (Fariñas 1980, Berg 1998, Berg & Suchi, 2001). This characteristic, medium-sized bunchgrass species with stiff blades is also present in páramos of Costa Rica, Ecuador and Peru (Luteyn 1999, Briceño & Morillo 2006). The original Ortachn etum erectifo lii is considered secondary vegetation having developed after severe disturbance, probably by fire (Cleef 1981). The other lax and low bunchgrass vegetation growing on former peat bog, characterized by the presence of Agrostis basalis and Polytrichum juniperinum, the subassociation typicum, is known only from this site to date. Agrostis basalis is an endemic species described from the Sierra Nevada de Mérida páramos (Laguna Negra) (Luces 1953) and has also been reported from Distrito Federal, Mérida, Miranda and Táchira states, where it is found growing between 2100 and 4150 m (Briceno & Morillo 2006, Hokche et al. 2008). Sphagnum bogs A regional study on the Sphagnum bogs of the northern Andes is still lacking as most studies report only on local peat bog types. Some of the azonal vegetation communities reported for the páramos of the Colombian Cordillera Oriental (Cleef 1981, Franco et al. 1986, Sanchez & Rangel 1990, Rangel 2000) are also found in the lowermost superpáramos of Sierra Nevada de Mérida, such as: the Aciachnetum acicularis, the Wernerion community (Wernerietalia), communities with Carex bonplandii and communities with Gentiana sedifolia (Berg 1998, Berg & Suchi 2001). However, Sphagnum bog communities have not yet been formally reported despite being present in the páramos of the Sierra Nevada de Mérida. With regards to the Chusquea angustifolia páramos of Ramal de Guaramacal, affinities to other páramo communities and comparisons are limited. There are few species common to some of the vegetation types described for the Colombian Cordilleras (e.g. Cleef
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
1981, Cleef et al. 2005, 2008; Restrepo & Duque 1992, Franco et al. 1986, Sanchez & Rangel, 1990). Curiously, Gentiana sedifolia, present in páramo and puna bogs in the tropical Andes, is lacking in Guaramacal páramo bogs. Isolation, low altitude and a deficit of phytosociological studies account for the presence of the assemblage of species observed in Ramal de Guaramacal which remain undescribed for other páramo areas to date. Sphagnum bogs in the páramos of Ramal de Guaramacal are represented by two new associations belonging to the new alliance of Ca ri c i bo n p lan d ii – S p h a gn i on re c urv i . Sphagnum revurvum, S. sparsum, S. magellanicum, and S. sancto-josephense are the most characteristic species of the Sphagnum bogs of Guaramacal. Sphagnum cuspidatum is also common mostly in submerged conditions, whilst S. meridense is present with large cover in humid shrub páramo and adjacent dwarf forest edges. Sphagnum recurvum is the most dominant species in the peat bogs of Guaramacal. The moss cover of both associations of S p ha g n o re c urv i – Ca ri c e tum bo n p lan d ii and S p h a g n o spa rsi – Ca ri c e tum b o n p lan d ii grow together in the same peat bogs of Páramo El Pumar. The variants of each association correspond to different successional stages related decreasing humidity (see below). A Bray-Curtis cluster similarity analysis comparing species composition of azonal Guaramacal Carex bonplandii associations with those of the Carex bonplandii communities described from Colombian cordilleras and the Sierra Nevada de Mérida, Venezuela, is shown in Fig. 8. The presence of Carex bonplandii and Sphagnum spp. has been reported in peat bog vegetation in Tatamá Park in the Colombian Western Cordillera (Cleef et al. 2005). An association of C a r ic e t u m bo np l a n di i has been described from Laguna Chingaza (Franco et al. 1986, Rangel 2000) and a Sphagnum sancto-josephense – Carex bonplandii community from Páramo de Monserrate (Vargas & Zuluaga 1985), both sites being near Bogotá in the Colombian Oriental Cordillera. Despite the common presence of Carex bonplandii, Sphagnum magellanicum and S. sancto-josephense in Sphagnum peatbog communities in Colombia, there are no other common species which allow establishment of relationships to the Sphagnum bog communities of Guaramacal. It is evident that the Guaramacal Sphagnum recurvum communities are most related to each other (Fig. 8). Similarities to other Sphagnum communities collected hap-hazardly in literature deal with different habitats (with different ecology): Sphagnum bog in morainic valleys, more minerotrophic conditions with Sphagnum cover, Sphagnum fringes along glacial lake shores, and Sphagnum cover on different geological substrates. A coherent and representative body of relevés is lacking for a safe approach to classify the Sphagnum bogs of the northern Andes, as outlined above. The second author has some 60 unpublished relevés of Sphagnum bogs, mainly of the páramos of the East-
403
ern Cordillera of Colombia (Cleef 1981). However, it was not the aim of the present study to develop a rather complete syntaxonomic scheme of páramo Sphagnum bogs. This is a task for the future. And, this is also the reason that we did not like to produce presence tables in our study, because the material published so far is too scanty, making the effort not meaningful. Aquatic communities
eschweizerbartxxx ingenta
Two submerged aquatic communities were recognized in páramos of Ramal de Guaramacal: (1) the association Iso ëtetu m k arsten ii and (2) the community of Sphagnum cuspidatum (Table 2). The presence of Isoëtes karstenii of Laguna El Pumar shows a relationship of this low altitude páramo vegetation with other proper upper páramo aquatic communities observed in páramo lakes of the Sierra Nevada de Mérida and described from such lakes in the Colombian Cordillera Oriental. The aquatic association Iso ëtetu m k arsten ii was documented from cold lakes, mostly with mineral bottoms, in the grassparamo (3500- 3700 m) up to the superpáramo at 4425 m of the Sierra Nevada del Cocuy, and up to 4100 m in the Sumapaz páramo of the Colombian Cordillera Oriental (Cleef 1981). The association has also been found at 4300 m on the volcano S. Isabel in the Colombian Cordillera Central (Salamanca et al. 2003) and further south to Nariño, southern Colombia. The association Iso ëtetu m karstenii belongs to the alliance of Ditrich o sub mersi- Isoëtion (Cleef 1981). In the Sierra Nevada de Mérida in Venezuela, Isoëtes karstenii has been collected between 3430 and 4250 m (Cleef 1981, unpubl., Small & Hickey 2001). One relevé (Cleef 552A) of Isoëtetu m karsten ii ty p icu m has been made by the second author at 4250 m in the lower superpáramo of La Culata (see Table 4). Isoëtes karstenii grows submerged in permanent lakes and ponds (occasionally streams) between ca. 3300–4600 m. The occurance of Isoëtes karstenii in Guaramacal is the lowest recorded thus far and could be a relict from Glacial times. Its habitat generally corresponds to the upper páramo proper and the superpáramo. During Glacial times, it is most likely that these lakes on the top of the Ramal de Guaramacal range were part of the superpáramo. Upslope shifts under Holocene conditions was impossible because the present lake is on top of the ridge of Guaramacal. With increasing temperature and humidity (now a bamboo páramo in nature) the Isoëtes karstenii plants survived, growing on an organic lake bottom, and became associated with other plant species of peaty lake bottoms, such as Eleocharis acicularis, Sphagnum cuspidatum and diverse algae. Under these conditions we expected the presence of Isoëtes palmeri, known from lower páramo lakes with gyttja bottom in the Sierra Nevada de Mérida and the Eastern Cordillera of Colombia (Cleef 1981, Small & Hickey 2001). It would ap-
404
N. L. Cuello A. & A. M. Cleef
pear that, to date, the latter mentioned species has not yet arrived in Guaramacal. The Sphagnum cuspidatum aquatic communities of Laguna El Pumar show some relationships to other communities with S. cuspidatum described by Cleef (1981) from páramo areas in the Colombian Cordillera Oriental due to the common presence of Sphagnum cuspidatum, Eleocharis acicularis and undetermined filamentose algae. Another vegetation community with Sphagnum cuspidatum was also previously described near Bogotá by Sanchez & Rangel (1990), such as the Ca ri c i -S phagn etum c u s p i d a t i (Sanchez & Rangel l.c.). However, this is a peat bog vegetation community with only Sphagnum cuspidatum in common with the aquatic community from Guaramacal. One relevé (Cleef 54) has apparently been taken under very similar ecological conditions as in Guaramacal; however, no other species besides S. cuspidatum are common to it (see Table 5). In Sphagnum peat bog zones of Europe, the association S ph a g ne tum c u spi d a to -obesi Tüxen & von Hübschmann 1958 em. Schaminée et al. has been recognized. The stages of succession are as those contained in the association S phagn o cusp id a t i – R h yn c h osp ore tum a l b a e Osvald 1923 with subassociations marking hydroseral succession: s p h a g n e tosu m c usp i da ti and sp hagnetosu m r e c u r v i. The peat of Ca ri c e tum l i m osae Osvald 1923 em. Dierssen 1982 is slightly richer in nutrients; C a r e x b o n pl a nd i i could be a vicariant sedge species. All these European Sphagnum peatbog communities belong to the class of Scheuchzerietea Den Held, Barkman & Westhoff 1969. Some prominent
bryophyte species are common to the Sphagnum cuspidatum community from the Venezuelan Andes. The Guaramacal relevés from the Eleocharis acicularis community compare easily to the community of the same species from the Colombian Eastern Cordillera páramos at between 3550–3850 m (Cleef 1981, Table 9). In the Holarctic zone of the northern hemisphere, these communities have been described under the class Littorelletea Br.-Blanquet & Tüxen. The temperate association Litto rello uniflorae–Eleocharitetum acicu laris Malcuit 1929 and the alliance Eleocharition acicu laris Pietsch 1966 em. Dierssen 1975 are distributed from Iceland to NW Europe. Diagnostic species for the association and alliance are: Eleocharis acicularis, Elatine hexandra and Echinodorus repens. Dierssen (1975) ranks E. acicularis as a species with a wide ecology, mostly forming monospecific communities with regional companions (‘races’). This habit is apparently also shared by the neotropical plants of E. acicularis. Aquatic/bog vegetation, dominated by Eleocharis acicularis and Sphagnum recurvum, has been documented for the peat bog area of Laguna La Chonta at 2310 m in the Costa Rican Cordillera de Talamanca (Brak et al. 2005). Ruthsatz (1977) also refers to Eleocharis acicularis growth in shallow puna lakes in northern Argentina (3500–3800 m). Deil (2005) reviewed the worldwide ephemeral vegetation inclusive of the amphibic communities described thus far. With relevance to our case Sphagnum cuspidatum and Eleocharis acicularis communities have been discussed, as has the Ditrich o-Isoëtion k arsten ii Cleef 1981 alliance which also includes the Guaramacal Eleocharis acicularis – Isoëtes karstenii lake bottom vegetation.
eschweizerbartxxx ingenta
Table 4. Table of presence of Isoëtetum karstenii in páramo areas of Colombia and Venezuela. Presence classes: I (0–20 %), II (21– 40 %), III (41–60 %), IV (61–80 %) and V (81–100 %). * cover values in percentage. Sites: (1). Páramos Cocuy, Sumapaz, Colombian Cordillera Oriental (Cleef 1981); (2). Lev. A.M. Cleef & S. Salamanca # 622A and #584. Laguna de Silencio, Base de S. Isabel. Alt. 4170 – 4315 m. (Parque Los Nevados), Colombian Cordillera Central (Salamanca et al. 2003); (3). Lev. Cleef 552A (with Adelaida Chaverri & Orlando Rangel). Venezuela, Páramo La Culata, superpáramo bajo. Lagunita glaciar a 4.250 m.; (4). Laguna El Pumar, 2880 m. Ramal de Guaramacal, Andes, Venezuela. Isoëtetum karstenii Number of releves
Cord. Oriental Colombia
Cord. Central Colombia
Páramo La Culata, Mérida, Venezuela
Guaramacal Venezuela (this study)
8
2
1
3
Altitude (m)
3500–3700
4170–4350
4250
2880
Site number
1
2
3*
4
Isoëtes karstenii
V
5
(80)
5
Blindia magellanica
I
.
.
.
Ditrichum submersum
II
3
.
.
Eleocharis acicularis
.
.
.
5
Isotachis serrulata s.l.
II
.
.
.
Sphagnum cuspidatum
.
.
.
1
Algae
V
.
(1)
5
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
405
Table 5. Table of presence of the Sphagnum cuspidatum community from Guaramacal combined to those S. cuspidatum communities from páramo areas near Bogotá, Colombia. Presence classes: I (0–20 %), II (21–40 %), III (41–60 %), IV (61–80 %) and V (81–100 %). * cover values in percentage. (1 & 2) Cordillera Oriental (Cleef 1981); (3) Norte de Pantano Largo, Flanco Noroeste en el Páramo de Guargua. Colombia (Sánchez & Rangel 1990); (4) Lev. Cleef 54. Páramo de Palacio, Laguna Buitrago, 3.620 m. Cundinamarca. Colombia; (5) Laguna El Pumar, 2880 m. Ramal de Guaramacal, Andes, Venezuela (this study). Chisaca Num. relevés
Neusa
Guargua
Palacio
Guaramacal
1
1
5
1
5
3625
3690
3480–3730
3620
2890
Site
1
2
3
4*
5
Sphagnum cuspidatum
3
2
V
95
Eleocharis acicularis
5
30
Eleocharis stenocarpa
.
.
III
.
.
‘black/purple filamentous Algae’
5
1
.
.
I
‘gelatinous Algae’
5
1
.
.
I
Bartsia sp.
.
.
.
<1
.
Carex bonplandii
.
.
II
<1
.
Carex aff. pygmaea
.
.
.
10
.
Carex pichinchensis
.
.
IV
Juncus stipulatus
.
.
.
Juncus breviculmis
.
.
I
Alt. (m)
V II
. <1
. .
Lysipomia sphagnophila ssp. minor
.
.
.
<1
.
Nertera granadensis
.
.
III
.
.
Gentianella corymbosa
.
.
.
<1
.
Halenia gentianoides
.
.
.
<1
.
Lepidozia macrocolea
.
.
.
30
.
Riccardia smaragdina
.
.
.
5
.
Breutelia chrysea
.
.
.
2
.
Riccardia hansmeyeri
.
.
.
1
.
Sphagnum magellanicum
.
.
.
1
.
Campylopus cuspidatus var. dicnemoides
.
.
II
<1
.
Pleurozium schreberi
.
.
.
<1
.
eschweizerbartxxx ingenta
Also only in site 3: Campylopus pittieri (III), Peltigera sp. (III), Agrostis sp. (II), Blechnum loxense (II), Calamagrostis effusa (II), Hydrocotyle bonplandii (II), Hypericum myricariifolium (II), Lachemilla fulvescens (II), Paspalum bonplandianum (II), Pernettya prostrata (II), Plagiocheilus solivaeformis (II), Riccardia sp. (II), Rubus acanthophyllos (II), Valeriana longifolia (II), Agrostis tolucensis (I), Brachythecium sp. (I), Callitriche nubigena (I), Cortaderia bifida (I), Festuca sp. (I), Melpomene moniliformis (I), Hieracium avilae (I), Hypotrachyna sp. (I), Laestadia muscicola (I), Niphogeton ternata (I), Pentacalia abietina (I), Pentacalia nitida (I), Puya santosii (I), Rhynchospora macrochaeta (I).
Spatial distribution and succession of vegetation communities A detailed map of spatial distribution of vegetation types associated with the lakes of Páramo El Pumar are shown in Fig. 6. A scheme showing the hydroseral sequence of vegetation communities from open water in the central part of the Laguna El Pumar towards the shore is presented in Fig. 7. The submerged community of Isoëtetum karstenii is followed or surrounded by Eleocharis acicularis. Next, there are dense masses of submerged Sphagnum cuspidatum with E. acicularis. Towards the marshy shore there is the typicum variant of the Sp h agn o r e c u r v i – C a ri c e tu m association. The Sph agn o
recu rvi–Caricetum bo n p lan d ii is associated with the more humid areas of the peat bog, representing an earlier successional stage, which is fully dominated by Sphagnum recurvum in the wet shallow areas and on hummocks with the shores being first colonized by Carex bonplandii. The Sphagno sp arsii–Caricetu m bo n p lan d ii corresponds to a later successional stage and is present on drier areas as shown also in Fig. 3. The drier hummocks with the association of Sph agn o sparsi–C aricetum b o n p lan d ii near the shores are further colonized by small prostrate dwarfshrub species which form the variant of Pernettya prostrata.
406
N. L. Cuello A. & A. M. Cleef
eschweizerbartxxx ingenta
Fig. 6. Vegetation map of Laguna Seca, Páramo El Pumar, 2890 m. Ramal de Guaramacal, Andes. Venezuela.
Bamboo páramo As discussed in Cuello & Cleef (2009b), Chusquea angustifolia bamboo páramos had not previously been studied in Venezuela. Bamboo páramo communities of Chusquea angustifolia or Chusquea spencei have been reported for the wet páramos of Táchira state (Bono, 1996). Several azonal bamboo páramo communities (‘chuscales’), dominated by the bamboo species Chusquea tessellata growing in wet páramo areas, have been widely documented from Andean páramos along the Colombian cordilleras (e.g., Cleef 1981,
Rangel 2000, Rangel et al. 2006, Cleef et al. 2006, 2008). Resumen. Se estudió la vegetación de páramo azonal presente en la cima del Ramal de Guaramacal en los Andes de Venezuela, mediante observaciones, colecciones botánicas y muestreos de un total de 71 pequeñas parcelas de tamaño entre 0.25 a 6 m2. La vegetación azonal está representada en el área de estudio por habitats donde existe un estrés por exceso de agua (turberas y vegetación acuática). Se analizó las vegetaciones azonales presente en dos áreas de turberas del Páramo El Pumar (Laguna El Pumar y Laguna Seca) y en un pequeño valle con acumulación de agua cerca del área de ‘Las Antenas’ del Páramo de Guaramacal, ubicadas entre aprox. 2900 y 3000 m de altitud. Se
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
407
Fig. 7. Physiognomy and hydroseral sequence of the vegetation associations of Laguna El Pumar: (1) Association of S p h a g n o r e cu rvi-Caricetum bonplandii . (2). Community of Sphagnum cuspidatum. (3) Isoëtetum karstenii. Cb: Carex bonplandii; Ea: Eleocharis acicularis; Ip: Isoëtes karstenii; Sc: Sphagnum cuspidatum; Sr: Sphagnum recurvum. Ss: Sphagnum sparsum
eschweizerbartxxx ingenta
Fig. 8. Cluster analysis comparing species presence values of azonal Guaramacal Carex bonplandi páramo associations with those azonal Carex bonplandii páramo communities of the Colombian Cordilleras and Sierra Nevada de Mérida, Venezuela. Sites: (1) Ca r ic e t u m bonplandii, Laguna de Chingaza, Cordillera Oriental, Colombia (Franco et al. 1986); (2) C a ri c e t u m b o n p l a n d i i , Tatamá massif, Cordillera Occidental, Colombia (Cleef et al. 2005); (3) J u n c o e f f u si – C a ri c e t u m b o n p l a n d i i , Páramo Frontino, Cordillera Occidental, Colombia (Rangel et al. 2005); (4) Swamp with Carex, Llano de Paletará, Cordillera Central, Colombia (Restrepo & Duque, 1992); (5) Peat bog S of Bogotá, Chisacá, Cordillera Oriental, Colombia (Sánchez & Rangel, 1990); (6) S p h a g no – Ca r ic e tum bonplandii, Páramo de Monserrate, Colombia (Vargas & Zuluoaga, 1985); (7) Comunity of Carex bonplandii – Lachemilla sprucei, Sierra Nevada de Mérida, Andes, Venezuela (Berg, 1998); (8) S p h a g n o sp a rs– C a ri c e t u m b o n p l a n d i i , Guaramacal, Andes, Venezuela (this study); (9) Sphagno rec u rv i – C a ri c e t u m b o n p l a n d i i , Guaramacal, Andes, Venezuela (this study); (10) Carici bonplandii–Chusqueetum angustif o l i a e , Guaramacal, Andes, Venezuela (this study).
408
N. L. Cuello A. & A. M. Cleef
documentó un total de 53 morfoespecies correspondientes a 30 especies de plantas vasculares, 20 de briofitas y líquenes y 3 especies indeterminadas de algas presentes en la vegetación azonal. La interpretación de la clasificación de TWINSPAN, basada en afinidades de composición florística y cobertura de especies, permitió reconocer seis comunidades de vegetación azonal agrupadas en tres alianzas y un orden. La alianza nueva S p h a g n o recu rvi–Paepalanthion pilosi agrupa la asociación nueva de pajonal de páramo Paepalantho pilosi– A g ro st i e t u m b asalis y las dos asociaciones nuevas de turberas de Sphagnum: Sp hagno recurvi–Caricetum bonplandi i y S p h a g n o sp arsi–Caricetum bonplandii. La alianza nueva C a ri c i bonplandii–Chusqueion angustifolia contiene una asociación de páramo de bambues (‘chuscal’), Cari c i b o n p l a n dii–Chusqueetum angustifoliae, que crece cerca de las orillas de las lagunas, en áreas inundadas periódicamente, caracterizada casi exclusivamente por la presencia de Chusquea angustifolia. La alianza Districho submersi–I so ë t i o n Cleef 1981 está representada en el área de estudio por la comunidad acuática sumergida de Sphagnum cuspidatum y la asociación Iso ëtetum karstenii Cleef 1981. Acknowledgement. Financing and equipment for field work were granted to the first author through the research projects: UNELLEZ SEI-23105102, FONACIT PEM-2001002165. Thanks to INPARQUES and MARN for the corresponding permits, as well as to the Superintendent of Guaramcal National Park TSU, Amilcar Bencomo. The vegetation profile illustrations were made by Angelina Licata (UNELLEZ). Special thanks to Wilfredo Albarrán (UNELLEZ) for his collaboration in the field work and care for logistics. Invaluable field assistance was provided by guardaparques Luis Zambrano† and Ramón Caracas as well as Guaramacal inhabitant Máximo Valladares. Ross D. Morrison (University of Leicester, UK) kindly corrected and improved our English text. The UNELLEZ is acknowledged for financial contributions towards the first author stay at IBED, University of Amsterdam, to work on the elaboration of this publication.
eschweizerbartxxx ingenta
References Berg, A. (1998): Pflanzengesellschaften und Lebensformen des Superpáramo des Parque Nacional Sierra Nevada de Mérida in Venezuela. – Phytocoenologia 28: 157–203. Berg, A. & Suchi, S. (2000): Vegetación de los Páramos La Aguada, La Fría y Espejo en los Andes Venezolanos. – Plántula. 3: 47–64. Bono, G. (1996): Flora y vegetación del estado Táchira, Venezuela. – Museo Regionale di Scienze Naturali. Torino. Monografía 20: 952 pp. Bosman, A. F., van der Molen, P. C., Young, R. & Cleef, A. M. (1993): Ecology of a paramo cushion mire. – Journal of Vegetation Science 4: 663–640. Brak, B., Vroklage, M., Kappelle, M. & Cleef, A. M. (2005): Comunidades vegetales de la turbera de altura “La Chonta” en Costa Rica. – In: Kappelle, M. & Horn, S. P. (eds.): Páramos de Costa Rica. INBio. Pp. 607–630. – Santo Domingo de Heredia. Braun-Blanquet, J. (1979): Plant sociology, the study of plant communities. – Transl. by G. D. Fueller and H. S. Conard. Mc. Graw-Hill, New York. 438 pp.
Braun-Blanquet, J. & R. Tüxen (1943): Übersicht der höheren Vegetationseinheiten Mitteleuropas (unter Ausschluss der Hochgebirge). – Communication 84, SIGMA, Montpellier. 11 pp. Bray, J.R. & Curtis, J.T. (1957): An ordination of the upland forest communities of southern Wisconsin. – Ecological Monographs 27: 325–349. Briceño, B. & Morillo, G. (2002): Catálogo abreviado de las plantas con flores de los páramos de Venezuela. Parte I. Dicotiledóneas (Magnoliopsida). – Acta Bot. Venez. 25: 1–46 Briceño, B. & Morillo, G. (2006): Catálogo de las plantas con flores de los páramos de Venezuela. Parte II. Monocotiledóneas (Liliopsida). – Acta Bot. Venez. 29: 89–134. Cleef, A. M. (1981): The vegetation of the páramos of the Colombian Cordillera Oriental. – Dissert. Bot. 61: 1–320. J. Cramer. Vaduz. Cleef, A.M. & Chaverri, A. (1992): Phytogeography of the páramo flora of Cordillera Talamanca, Costa Rica. In: Balslev, H., Luteyn, J. (eds.): Páramo: an Andean ecosystem under human influence. P. 45–60. – Academic Press, London. Cleef, A. M., Rangel-Ch., J.O. & Salamanca, S. (1983): Reconocimiento de la vegetación de la parte alta del transecto Parque Los Nevados. – In: van der Hammen, T., Pérez-P. A. & Pinto, P. (eds): La Cordillera Central Colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas Tropandinos 1, pp. 150–173. – J. Cramer, Berlin, Stuttgart. Cleef, A.M, Rangel-Ch, J. O., Salamanca, S., Ariza-N, C. & van Reenen, G.B.A. (2005): La vegetación del páramo del Macizo de Tatamá, Cordillera Occidental, Colombia. – In: van der Hammen, T., Rangel-Ch., J.O. & Cleef, A. M. (eds.): La Cordillera Occidental colombiana – Transecto de Tatamá. Studies on Tropical Andean Ecosystems / Estudios de Ecosistemas Tropandinos 6, pp. 377–468. – J. Cramer/Borntraeger, Berlin-Stuttgart. Cleef, A.M., Rangel Ch., J.O. & Arellano, H. (2008): The paramo vegetation of the Sumapaz massif (Eastern Cordillera, Colombia). – In: van der Hammen, T., with Rangel-Ch., J.O. & Cleef, A. M. (eds.): La Cordillera Oriental Colombiana – Transecto Sumapaz. Studies on Tropical Andean Ecosystems / Estudios de Ecosistemas Tropandinos 7, pp. 779–913. – J. Cramer/Borntraeger, Berlin-Stuttgart. Coombes, L. & Ramsay, P.M. (2001): Vegetation of a cushion mire at 3600 m on Volcán Chiles, Ecuador. – In: Ramsay, P.M. (ed.): The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador-Colombia border. Pp. 47–54. – Pebble & Shell, Plymouth. Cuello, N. (ed.) (1999): Parque Nacional Guaramacal. – Unellez – Fundación Polar, Caracas, Venezuela. 245 Pp. – (2000): Caracterización de los bosques montanos del Parque Nacional Cruz Carrillo en los Andes de Venezuela. – Pp.127–130. Memorias del IV Congreso Latinoamericano de Ecología: Ecología y desarrollo sostenible: Reto de America Latina para el Tercer Milenio. Arequipa, Perú. – (2002): Altitudinal changes in forest diversity and composition in the Ramal de Guaramacal in the Venezuelan Andes. – Ecotropicos 15: 160–176. – (2004): Los bosques del Parque Nacional Guaramacal, estado Trujillo, Venezuela: Testigos del desarrollo sostenible dentro de la región Andina y Llanera. – Memorias del IV Simposio Internacional de Desarrollo Sustentable en los Andes. La Estrategia Andina para el Siglo XXI (CD-Rom). Sesión IV. Taller sobre selvas y bosques nublados. AMA-Mérida, Venezuela. Cuello, N. & Cleef, A.M. (2009a): The forests of Ramal de Guaramacal in the Venezuelan Andes. – Phytocoenologia 39: 109–156.
The páramo vegetation of Ramal de Guaramacal. II. Azonal vegetation.
– – (2009b). The páramo vegetation of Ramal de Guaramacal, Trujillo state, Venezuela. I. Zonal vegetation. – Phytocoenologia 39: 295–329. Deil, U. (2005): A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. – Phytocoenologia 35: 533–705. Dierschke, H. (1981): Zur syntaxonomischen Bewertung schwach gekennzeichter Pflanzengesellschaften. – In: Dierschke, H. (ed.): Syntaxonomie (Rinteln 31.1. – 3.4.1980). – Ber. Int. Symp. Int. Ver. Vegetationskd. 24: 109–122. – (1994): Pflanzensoziologie. – Grundlagen und Methoden. – Ulmer, Stuttgart. Dierssen, K. (1975): Zur Littoralvegetation oligotropher und mesotropher Gewässer in Island und Nord-Norwegen, ein Beitrag zur Soziologie und Verbreitung der Littorelletea in Nord-Europa. – Beitr. Naturkundl. Forsch. SüdwestDeutschland 34: 57–77. – (1982): Die wichtigste Pflanzengesellschaften der Moore NW-Europas. – Conservatoire et Jardin Botaniques. Genève. 382 pp. Dorr, L., Stergios, B., Smith A. R. & Cuello, N. (2000): Catalogue of the vascular plants of Guaramacal National Park, Portuguesa and Trujillo States, Venezuela. – Contributions from the United States National Herbarium 40: 1–155. Fariñas, M. & Monasterio, M. (1980): La vegetación del páramo de Mucubají. Análisis de ordenamiento y su interpretación ecológica. – In: Monasterio, M. (Ed). Estudios ecológicos en los páramos Andinos. Editorial de la Universidad de Los Andes, Mérida, pp. 264–307. Franco, P., Rangel, J. O. & Lozano, G. (1986): Estudios ecológicos en la Cordillera Oriental – II Las comunidades vegetales de los alrededores de la Laguna Chingaza (Cundinamarca). – Caldasia 15 (71–75): 219–248. Hill, M. O. (1979): Twinspan, a Fortran program for arranging multivariate data in an ordered two way table by classification of the individuals and the attributes. – Cornell University, Department of Ecology and Systematics, Ithaca, NewYork. Hokche, O., Berry, P. & Huber, O. (eds.). (2008): Nuevo catálogo de la flora de Venezuela. – Fundación Instituto Botánico de Venezuela, Caracas. 859 pp. Luces, Z. (1953): Especies de gramíneas nuevas para la Ciencia. – Bol. Soc. Venez. Ci. Nat. 15 (80): 3–20. Malcuit, G. (1929): Contribution a l’étude phytosociologique des Vosges méridionales saonoises. Les associations végétales de la vallée de la Lanterne. – Arch. Botan. (Caen) 2: 1–211. McCune, B. & M. J. Mefford. (1999): PC-ORD. Multivariate Analysis of Ecological Data. Version 4.10. – MjM Software, Gleneden Beach, OR, U.S.A. Monasterio, M. (1980): Las formaciones vegetales de los páramos de Venezuela. – In: Monasterio, M. (ed.): Estudios ecológicos en los páramos Andinos, pp. 93–158. – Ediciones de la Universidad de los Andes, Mérida, Venezuela. Moscol Olivera, M. & Cleef, A.M. (2009): A phytosociological study of the páramo along two altitudinal transects in El Carchi province, northern Ecuador. Phytocoenologia 39: 79–107. Osvald, H. (1923): Die Hochmoortypen Europas. – Veröffentl. Geobot. Inst. der ETH, Stiftung Rübel (Zürich) 3: 707–723. Pietsch, W. (1966): Bemerkungen zur Gliederung der Littorelletea-Gesellschaften Mitteleuropas. – Ber. Arbeitsgemeinsch. Sächs. Botaniker N.F. 7: 239–246.
eschweizerbartxxx ingenta
409
Ramsay, P.M. (1992): The páramo vegetation of Ecuador: the community ecology, dynamics and productivity of tropical grasslands in the Andes. Ph. D. thesis University of Wales. 247 pp. Rangel-Ch., J.O. & Franco-R., P. (1985): Observaciones fitoecológicas en varias regiones de vida de la cordillera Central de Colombia. – Caldasia 14(67): 211–249. Rangel-Ch., J. (ed.) (2000): Colombia Diversidad Biótica III, La región páramuna de Colombia. – Unibiblos, Universidad Nacional de Colombia, Bogotá. 903 pp. Rangel-Ch., J. & Ariza-N., C. (2000): La vegetación paramuna de los volcanes de Nariño. – In: Rangel-Ch., J.O. (ed.). Colombia Diversidad Biótica III. La región paramuna de Colombia. P. 754–784. Unibiblos. Universidad Nacional de Colombia. Bogotá. Restrepo, C. & Duque, A. (1992): Tipos de vegetación del Llano de Paletará, Cordillera Central Colombia. – Caldasia 17 (1): 21–34. Ruthsatz, B. (1977): Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens. – Diss. Botan. 39: 1–168. J. Cramer. Vaduz. Salamanca, S., Cleef, A. M. & Rangel, J. O. (2003): The páramo vegetation of the volcanic Ruíz-Tolima massif. – In: T. van der Hammen & A.G. dos Santos (eds.): Studies on Tropical Andean Ecosystems 5: 1–77. J. Cramer. Berlin-Stuttgart. Sánchez, R. & J. O. Rangel-Ch. (1990): Estudios ecológicos en la Cordillera Oriental colombiana V: Análisis fitosociológico de la vegetación de los depósitos turbosos paramunos de los alrededores de Bogotá. – Caldasia 16 (77): 155–192. Small, R. L. & Hickey, R. J. (2001): Systematics of the northern Andean Isoëtes karstenii complex. – Am. Fern J. 91(2): 41–69. Vareschi, V. (1955): Monografías geobotánicas de Venezuela I. Rasgos geobotánicos sobre el Pico de Naiguatá. – Acta Cient. Ven. 6: 2–23. Vargas, O. & Zuluaga, S. (1985): Estudio fitoecológico en la región de Monserrate. – In: Sturm, H. & Rangel, O. (eds.): Ecología de los páramos andinos: una visión preliminar integrada. – Biblioteca J.J. Triana, 9. Editorial Guadalupe. Bogotá. 292 pp. Walter, H. (1979): Vegetation of the earth. – 2nd. Edition. Springer-Verlag. New York. 274 pp. Weber, H. E., Moraveč, J. & Theurillat, J.-P. (2000): International Code of Phytosociological Nomenclature. 3rd edition. – Journal of Vegetation Science 11 (5): 739–768. Westhoff, V. & van der Maarel, E. (1973): The Braun-Blanquet approach. – In: Whittaker, R.H., (ed.), Handbook of vegetation science 5: 617–726. Junk, The Hague.
Addresses of the authors: Nidia L. Cuello A., Universidad Nacional Experimental de los Llanos Ezequiel Zamora (UNELLEZ-Guanare) Programa de Ciencias del Agro y del Mar, Herbario Universitario (PORT), Mesa de Cavacas, Estado Portuguesa 3323, Venezuela, e-mail: N.L.CuelloAlvarado@uva.nl; ncuello@cantv.net. Antoine M. Cleef, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands, e-mail: cleef@uva.nl.