Phytocoenologia, 41 (1), 1–34 Stuttgart, April 26, 2011
The vegetation of seasonal wetlands in extratropical and orotropical South America Ulrich DEIL, Freiburg i. Br., Germany, Miguel ALVAREZ, Bonn, Germany, Eva-Maria BAUER, Koblenz, Germany and Carlos RAMÍREZ, Santiago, Chile with 4 figures, 3 tables and 2 appendices Abstract: Until now, the vegetation of seasonal wetlands in South America has only been studied on local to regional scales. A synoptic view is lacking and the distribution of vegetation types remains unknown. Hence we attempt here to detect floristic patterns on the spatial dimension of the subcontinent and to identify the environmental factors behind them. All plot-related floristic data (phytosociological relevés) available to us were collected and stored in a TURBOVEG-database. The study area included both extratropical South America (austral-temperate and subantarctic climatic zones) and the orotropical biome of the Andean Highlands, because the amphibic habitats in the two areas have some taxa in common. Tropical lowlands were more dissimilar and thus were excluded. In total we found 573 vegetation samples in 28 bibliographic sources, published between 1960 and 2008. To achieve a consistent nomenclature was a major problem, and the taxonomic treatment of a number of habitat specific taxa is obviously in need of improvement. Classification and ordination were performed with the total data set as well as just the diagnostic taxa. The floristic structure was analysed using non-metric multidimensional scaling (nMDS) and procrustes rotation techniques to compare species combinations at the species and genus levels. The interpretation of the results is limited by the substantial floristic and ecological heterogeneity of the data (varying plot size, plots including an inundation gradient etc.) and by the spatially uneven distribution of the data. The classification revealed a higher diversity of communities than expected: 11 clusters with precise species combinations, ecology and distribution emerged from the classification: A) P l a g i o b o t h ry o -A c a e n i o n p l a t y a c a n t h a e and B) Prat ion repentis are distributed in Southern Patagonia in seasonal lagoons, respectively on inundated turfs. Moorland pools and inundated bog hollows in hard cushion mires of the Andean belt have a number of genera in common, but separate on the species level into C) Muhlenbergia fastigiata-Distichlis humilis-communities in the semi-desert highlands of NW Argentina, D) Gentiana sedifolia-Carex bonplandii and G e n t i a n o Oritro phion-communities in the Super-Páramo belt of Venezuela, E) the L i l a e o p si o n a n d i n a e in the altiplano extending from S Peru to NE Chile and NW Argentina, and F) Limosella-communities ranging from E Bolivia to Central Andean Peru. Lakeshores in the super-forest belt of the wet tropical Andes and in the mountainous parts of extratropical South America are colonized by the C ra ssu l e t a l i a p e d u n c u l a ri s-v e n e z u e l e n si s (cluster G), the amphibic zone of lakes in the temperate climate of Chile and Argentina by Li t t o re l l i o n a u st ra lis- and Senecioni zosteraefolii-Eleocha ri e t a l i a -communities (cluster H). The vegetation of vernal pools in Mediterranean Chile has been poorly studied until now, but some communities are recorded from the transition zone to temperate Chile. They are grouped in J u n c i o n p l a n i f o l i i (cluster I). Seasonal wetlands in flooded Pampa grassland of Argentina are characterized by the Ludwigia peploides-Luziola peruviana-communities (group J). Muddy river banks of River Paraná are colonized by the Li n d e rn i o d u b i a e -M e c a rd o n i e t u m (cluster K). Strong spatial patterns emerge on the continental scale, not only from vicinismus effects of the matrix vegetation surrounding the small-scale seasonal wetlands, but also for the habitat specific flora and vegetation. The main differentiating environmental factors on large scales are macroclimatic conditions and the trophic level of the substrate. Water depth, inundation duration and germination conditions in the amphibic ecophase result in a local zonation pattern. An azonal character of seasonal wetlands becomes obvious on the super-specific taxonomic rank from genera, that speciated within this environment and evolved geographical vicarious species with similar niches (e.g. Isoëtes, Limosella, Ranunculus, Hypsela, Oritrophium, Littorella, Lilaeopsis, Muhlenbeckia and Crassula). Keywords: biogeography, hydrophytes, vegetation survey, phytosociology, vernal pools, wetland ecology, Andes. Abbreviations: SW = seasonal wetlands, SWV = seasonal wetland vegetation.
Introduction Synoptic vegetation classification using the phytosociological approach (defining vegetation types according to floristic similarity) is based in Europe © 2011 Gebrüder Borntraeger, 70176 Stuttgart, Germany DOI: 10.1127/ 0340 - 269X/2011/0041 - 0491
upon enormous data sets and data of equal quality: 1) Authors sample on plots of comparable size (but see Chytrý & Otýpková 2003, Otýpková & Chytrý 2006). 2) Thereby they apply similar criteria concerning environmental homogeneity of the plots. www.borntraeger-cramer.de 0340-269X/11/0041-0491 $ 15.30
U. Deil et al.
2
3) A consistent floristic nomenclature is available for broader geographical ranges, for example referring to Flora Europaea (Tutin et al. 1996). This comfortable situation results in a well founded syntaxonomical system, accepted by most vegetation scientists (at least at the level of high ranked syntaxa such as classes and orders; but see Bruelheide & Chytrý 2000). In consequence, vegetation classification and the search for the differentiating ecological factors behind that system are no longer at the top of the agenda of vegetation science in Europe. In other continents, the situation is quite different. We realized that in the framework of a study of SW in a global scale (Deil 2005a) respectively in both Americas (Deil 2005b). A first attempt to come to a synoptic view of ephemeral wetland vegetation outside Europe was made in tropical West Africa (Müller & Deil 2005). A considerable number of phytosociological relevés (about 400) was available there, and a standardized floristic checklist for tropical Africa allowed solving taxonomic problems. In this contribution we focus on South America. As starting point we used our own observations in vernal pools in the temperate and mediterranean climate zones of Chile (Deil et al. 2007, Alvarez 2008, Alvarez et al. 2008, San Martín & Alvarez 2009). We wanted to analyse and interpret our local results in a broader geographical context and accordingly sought publications describing this habitat. Preliminary analyses (Deil 2005a, 2005b) showed that the SWV in the frost-free tropical regions of South America is floristically and ecologically very different from the extratropical areas so we have excluded the tropical lowlands from our synopsis. There are however some floristic links between the orotropical biome (the Andean Highlands above the forest line) and the austral-temperate and subantarctic climatic zones of Chile and Argentina. Character genera of SW such as Isoëtes, Limosella, annual Crassula, and members of the subfamily Lobelioideae (Pratia, Hypsela) occur in both regions. Even on the level of species, common elements exist (see for example the distribution of Lilaeopsis macloviana, incl. L. andina, Affolter 1985 and Deil 2005a). Hereby the extratropical as well as the orotropical regions of South America are taken into consideration in this study. Common ecological factors are that frost can occur in these areas and that the water supply changes over the seasons, either because of a seasonal rainfall (in the Mediterranean climate), or from snow melting in summer (in Andean-orotropical areas), or because of increasing evapotranspiration under high summer temperatures (in temperate and subantarctic climates). The temporary wetlands belong either to the seasonal pool habitat (including rock pools) or to the shoreline habitat with a fluctuating water level (see Deil 2005a for definitions and hydrological characteristics). A synopsis of the SWV in the Andes and the extratropical regions of South America must deal with several problems:
1.
2.
3.
4.
Nomenclature and taxonomy: Floristic nomenclature changes according to national floras and publication date. The taxonomical treatment of important diagnostic taxa including Isoëtes, Lilaeopsis, Limosella etc. is outdated. Access to the data: The vegetation data are published in journals of national distribution and access is difficult. Most studies are restricted to one region or a single state. A super-national synopsis of this habitat has not been available until now. Data sampling in SW was often done in the framework of regional vegetation monographs such as one about the Páramo vegetation of Colombia (Cleef 1981), the Andes of Peru (Gutte 1980, 1988), Bolivia (Seibert & Menhofer 1991, 1992), or the large-scale transect through Southern Patagonia (Faggi 1985, Méndez & Ambrosetti 1985, Roig et al. 1985a, 1985b). Or else it was done as a part of research studies about mire vegetation like the ones by Ruthsatz (1977, 1995) in Chile and Argentina, and Berg (1998) in Venezuela. Other papers concentrate on submerged aquatic and lakeshore vegetation, like those by Galán de Mera (1995) in Peru, by Eskuche (2005) in Patagonia, and by Molina et al. (2007) in Bolivia. Heterogeneity of the sample plots: Because the studies were mostly not focusing upon ephemeral wetlands but upon climax vegetation such as Puna or Páramo, or broadly distributed azonal vegetation such as hard-cushion bogs, quite large sample plots were chosen. In consequence, the plots have often been obviously heterogeneous and included a water depth gradient or sites of different inundation duration. This can be concluded from species combinations, which contain for example hard cushion bog species like Distichia muscoides, specialists of amphibic habitats like Lilaeopsis macloviana and submerged macrophytes from the genera Myriophyllum and Potamogeton all in one relevé. The restricted size and the fragmentation of the SW should create strong effects of vicinismus by the surrounding matrix vegetation, and these transgressive species might strongly affect the results of a numerical classification. Syntaxonomy and synsystematics: In most of the available studies the description of syntaxa is based upon local data sets. Often, syntaxa of higher rank were created hastily. Some authors have a strong tendency to describe vegetation units of regional or national relevance on the basis of local endemics, vicarious taxa or taxa of infraspecific rank. A stabilized syntaxonomic system is not available in South America. First efforts to gain an overview about the hitherto described syntaxa are the publications by Galán de Mera (1995) for the aquatic vegetation of Peru respectively Galán de Mera et al. (2002) for Peruvian vegetation in general, and by Galán de Mera (2005) and Galán de Mera & Vicen-
The vegetation of seasonal wetlands in extratropical and orotropical South America
5.
te Orellana (2006) for Latin America. A very brief outline of wetland vegetation in the southernmost parts of South America is presented by Collantes & Faggi (1999). These general problems of large-scale overviews of plant communities outside of Europe are exacerbated by the high intra- and inter-annual fluctuations of the floristic composition of SWV, an ecosystem-specific peculiarity of this habitat (Deil 2005a).
Despite these shortcomings of the published data and the problems mentioned above we attempted to obtain a synoptic view of the SWV to answer the following questions: 1. What pattern results from a classification according to floristic similarity? Is this pattern an intrinsic one of wetland vegetation or a pattern superimposed by the surrounding vegetation matrix? 2. Can we confirm the existing phytosociological schemes or do we get new high-ranked syntaxa (classes, orders) from our analysis? 3. What are the ecological factors behind the floristic differentiation and how are the plant communities distributed?
3
America), 2) The habitat description clearly referred to a temporarily flooded habitat and/or to a shallow lakeshore environment, and 3) Some taxa present were characteristic of seasonal wetlands according to Deil (2005a). Seashore vegetation, subjected to a tidal flooding system, was excluded (e.g. Leptinellietalia sensu Eskuche 2005), as well as halophytic shoreline vegetation of inland lakes (for example the data in Navarro 1993 from the Bolivian Altiplano). In total we found 573 vegetation samples, documented in 28 bibliographic sources (papers, books and book chapters; see Table 1). These studies have been published between 1960 (Oberdorfer 1960) and 2008 (Alvarez 2008). The number and the geographical distribution of the relevés are shown in Fig. 1. Relevés, grouped in a source publication into different plant communities or subassociations, have been summarized in separate constancy columns. The frequency of the species was calculated in percent of all relevés included in a column. Floristic data and information about the localities and environmental conditions were stored in a TURBOVEG-data bank (Hennekens & Schaminée 2001, Deil & Alvarez in press). Nomenclature
Methods Data collection We searched mainly for available phytosociological relevés but also used some species lists or data from plotless sampling (e.g. Alvarez 2008). We excluded data from transects through pools and lakes, matching all the species along a long inundation gradient in one list (for example the data in Bliss et al. 1998 from Chile, De la Barra 2003 from Bolivia, and Terneus 2002 from Ecuador). The criteria for the selection of the samples were: 1) Sampling localities were situated in the above defined study area (extratropical and orotropical South
When using vegetation data from an area where a flora for all vascular plants does not exist and exploiting publications ranging over a time span of some decades, the varying taxonomic treatment and the changing floristic nomenclature is a major and to some extent unsolvable problem. To come to a unified nomenclature of the plant species, we used the online databases “International Plant Name Index” (IPNI; www.ipni.org) and “W3TROPICOS” of the Missouri Botanical Garden (mobot.mobot.org/W3T/ Search/classicvast.html). Both data banks helped to solve some problems of synonymy. For example, we considered Crassula paludosa and C. bonariensis as synonyms of C. peduncularis (see complete list of synonyms in Appendix 1).
Table 1. Number of vegetation samples and publication sources.
Cluster A B
Samples 45 58
2 4
C D E
8 13 71
1 2 6
F G
27 105
3 6
H I J K
55 62 124 5
2 4 1 1
Publications (FAGGI 1985, ROIG et al. 1985) (MÉNDEZ & AMBROSETTI 1985, GANDULLO & FAGGI 2003, GANDULLO & FAGGI 2005, MÉNDEZ 2007) (RUTHSATZ 1977) (BERG 1998, RANGEL & ARIZA 2000) (RUTHSATZ 1977, SEIBERT & MENHOFER 1991, SEIBERT & MENHOFER 1992, RUTHSATZ 1995, GALÁN DE MERA et al. 2003, MOLINA et al. 2007) (GUTTE 1980, GUTTE 1988, SEIBERT & MENHOFER 1992) (CLEEF 1981, RANGEL & AGUIRRE 1983, CABIDO et al. 1990, SALAMANCA et al. 2003, MÉNDEZ 2007, MOLINA et al. 2007) (OBERDORFER 1960, ESKUCHE 2005) (RAMÍREZ et al. 1994, RAMÍREZ et al. 1996, SAN MARTÍN et al. 1998, ALVAREZ 2008) (LEWIS et al. 1985) (ESKUCHE 1975)
U. Deil et al.
4
Fig. 1. Number of analysed relevĂŠs and their geographical distribution in South America.
Another problem is that taxonomic concepts change through time, from region to region and from taxon to taxon. A consistent species concept however is a conditio sine qua non for a phytosociological classification. The syntaxa should reflect the floristic (dis)similarity of the stands and not author- or areaspecific nomenclature and species concepts. Lilaeopsis macloviana sensu Affolter (1985) for example is
synonymous with L. andina, L. patagonica, L. sinuata, L. hillii, L. exigua and Crantzia lineata. When a recent global treatment of a genus is available, and when the species of that genus are not sympatric, we can conclude from such a monograph which name is used today. Such monographs however are available only for a few taxa. A modern taxonomic treatment for many keystone taxa in seasonal wetland vegeta-
The vegetation of seasonal wetlands in extratropical and orotropical South America Table 2. Number of species, genera and families in each plant group of the data set.
Cyanobacteria Bryophyta Pteridophyta Gymnosperma Magnoliopsida Liliopsida Total
Families
Genera
Species
1 9 6 1 53 13 83
1 10 6 1 159 77 254
1 10 15 1 309 207 543
tion such as Limosella is lacking. Available taxonomic revisions used here were the following: For Juncaceae we consulted Kirschner (2002), for mosses the checklist of He (1998), and for the genera Isoëtes, Isolepis, Lemna, Crassula and Utricularia Desfayes (2006), Small & Hickey (2001), Musaya & Simpson (2002), Landolt et al. (1998), Bywater & Wickens (1984) and Taylor (1989), respectively. Plant species occurring also in Europe are named as in Flora Europaea (Tutin et al. 1996). The total number of taxa included in the database is documented in Table 2. Syntaxa are not typified and validated according to the ICPN (Weber et al. 2000). For plant communities we apply the names used in the publications (corrections only for obvious misspellings). For higher syntaxa we follow to a large extent the nomenclature used by Roig (1998), Deil (2005a) and Galán de Mera & Vicente Orellana (2006). Since we are dealing with taxocoenoses of vascular plants and most of the publications sampled incompletely or ignored totally other taxonomic groups, cryptogams and algae were excluded for the statistical analyses. Data analysis For a preliminary numerical classification we used a matrix with the frequency of each species in the columns. A hierarchical clustering with Ward’s algorithm and using Jaccard’s distance index was carried out (Leyer & Wesche 2007). Starting with this clustering, we further sorted the relevés manually, giving preference to seasonal wetlands species and downweighting Páramo-, Puna- and steppe species and submerged macrophytes, in order to reassemble the clusters (= community groups) and to form species groups according to their diagnostic character (Braun-Blanquet 1964, Bergmeier et al. 1991). An additional numerical classification, applying the same algorithm and distance index, was carried out considering only diagnostic (or so called character) species from the following syntaxa: Pl a g i obo th r y o - A c a e n e t a l i a and syntaxa of lower rank in this order (the species sequence Plagiobothrys calandrinoides to Scirpus spegazzianus), Pra ti o n re pentis, Muhlenbergia fastigiata-Distichlis humilis-, Marsilea
5
mollis-Eleocharis acicularis- and Gentiana sedifoliaCarex bonplandii- and Gentian o -Oritro p hioncommunities, Limoselletea australis and syntaxa of lower rank such as Lilaeo p sion maclo vianae, Limosella-communities and Crassu letalia ped u n cularis-venezu elensis (the species sequence Lilaeopsis macloviana to Soliva triniifolia), Littorellio n au stralis and Sen ecion i-Eleo charietalia (including syntaxa of lower rank like J uncion plan ifolii and Leon to d o -P ip to chaetietum), Ludwigia peploides-communities, and Lind er nioM ecardo n ietu m (see also Table 3). To look for the similarity patterns within the seasonal wetland vegetation, an ordination analysis was carried out. For that purpose we calculated the relative frequency (in percent) of each species in each vegetation unit (cluster). To reduce the vicinismuseffects by transgressive species from the surrounding matrix vegetation, we considered only the diagnostic species mentioned before. A non-metric multidimensional scaling (nMDS) with 2 dimensions and using the Bray-Curtis index as dissimilarity measure, was carried out (Kruskal 1964, Backhaus et al. 2006). To look for patterns at a coarser taxonomic level, the species-cluster-matrix was transformed into a generacluster-matrix. This matrix was ordered with the same procedure as for the species. For a direct comparison of the ordination diagrams (both according to species and genera composition), the second ordination was rotated through the Procrustes method (Peres-Neto & Jackson 2001). Both, ordination and classification analyses were carried out using the software R (R Development Core Team 2005), including the package vegan (Oksanen et al. 2009).
Results The classification procedure resulted in 11 community groups (clusters A to K) (see Table 3 and Appendix 2), which can be characterized as follows: Community group A: Plagiobothryo calandrinioidis-Acaenion platyacanthae (Table 3, col. 1 – 11) SWV at fringes and exposed bottoms of freshwater and brackish water lagoons in Southern Patagonia Diagnostic species of the class: Hordeum santacrucense, Poa atropidiformis (incl. var. patagonica), P. rigidifolia, Plantago barbata (incl. var. austroandina), Puccinellia magellanica, P. pusilla, Relbunium richardianum, Trophaeastrum patagonicum. Diagnostic species of the order and alliance: Plagiobothrys calandrinioides, Acaena platyacantha, Myosurus patagonicus, Hordeum halophilum, Pratia longiflora. This vegetation type is a dwarfish open turf in South Patagonia, colonizing the exposed bottoms of temporary lagoons and the shorelines of permanent lakes, when the water level is lowering in summer. The shallow water bodies are commonly situated in
U. Deil et al.
6
Table 3. Synoptic table of seasonal wetland communities.
258 A
257 A
257 B
257 C
324 A
324 B
324 C
324 D
307 B
311 B
311 A
82 C
82 B
187 A
187 B
187 C
323 A
188 A
188 B
189 A
189 B
82 A
297 D
297 B
85 B
297 A
188 C
84 D
84 C
CountryCode AR AR AR AR AR AR AR AR AR Nr of species 6 18 26 28 35 8 16 25 23 Nr of relevĂŠs 3 4 6 4 4 1 4 4 3 Hordeetea santacrucensis Hordeum santacrucense 67 75 84 25 50 . 75 50 34 Poa atropidiformis (incl. var. patagonica) . 50 50 . 50 100 25 100 34 Plantago barbata (incl. var. austroandina) . 25 17 25 25 . . 50 . Poa rigidifolia . . . . . . . . . Puccinellia magellanica . . 17 . . . . . . Puccinellia pusilla . . . . . . . 25 34 Relbunium richardianum . . . 25 25 . . . . Trophaeastrum patagonicum . . 17 . . . . . 34 Plagiobothryo calandrinoidis-Acaenetalia platyacanthae / Plagiobothryo-Acaenion Plagiobothrys calandrinioides 34 50 50 50 75 100 75 75 100 Acaena platyacantha 67 100 67 . 75 . . 75 100 Myosurus patagonicus . 25 34 25 25 100 75 75 67 Hordeum halophilum . 25 17 25 . 100 . . . Pratia longiflora . . . . . 100 . . . Hordeo santacrucensis-Acaenetum platyacanthae Poa spiciformis var. ibarii . . . 100 100 . . . . Rytidosperma virescens (incl. var. patagonica) . . . 75 100 . . . . Scutellaria nummulariaefolia 100 . . . 50 . . . . Deschampsio patulae-Alopecuretum aequalis Deschampsia patula . . . . . 100 100 75 34 Veronica peregrina (incl. ssp. xalapensis) . . . 25 . . 100 . 34 Adesmio pumilae-Juncetum baltici Adesmia pumila . . . . . . . . . Juncus balticus (incl. ssp. andicola) . . . . 25 . . 25 . Carex subantarctica . . . . . . . . . Eriachaenium magellanicum . . . . . . . . . Scirpus spegazzinianus . . . . . . . . . Hordeetea pubiflori Hordeum pubiflorum . . . 25 25 . . 25 34 Euphrasia antarctica . . . . . . . . . Alopecurus magellanicus . . . . . . 25 . . Eleocharis albibracteata . . . . . . . . . Azorella trifurcata . . . . . . . . . Plantago uniglumis . . . . . . . . . Festuca pallescens . . . . 50 . . 25 . Pration repentis Pratia repens . . . . . . . . . Deschampsia antarctica . . . . . . . . . Ranunculus pseudotrullifolius . . . . . . . . . Carex macrosolen . . . . . . . . . Rumex maritimus . . . . . . . . . Muhlenbergia fastigiata-Distichlis humilis-community and Marsilea mollis-Eleocharis acicularis-community Distichlis humilis . . . . . . . . . Marsilea mollis . . . . . . . . . Muhlenbergia fastigiata . . . . . . . . . Eleocharis acicularis . . . . . . . . . Bouteloua simplex . . . . . . . . . Tarasa tarapacana . . . . . . . . . Eragrostis nigricans . . . . . . . . . Rorippa nana . . . . . . . . . Dichondra argentea . . . . . . . . . Munroa decumbens . . . . . . . . . Plagiobothrys congestus . . . . . . . . . Gentiana sedifolia-Carex bonplandii- and Gentiano-Oritrophion-communities Gentiana sedifolia . . . . . . . . . Carex bonplandii . . . . . . . . . Isoetes cf. lechleri . . . . . . . . . Rhizocephalum candollei . . . . . . . . . Oritrophium limnophilum . . . . . . . . . Calamagrostis coarctata . . . . . . . . . Hypericum juniperinum . . . . . . . . . Bartsia pedicularoides . . . . . . . . . Cortaderia hapalotricha . . . . . . . . . Lycopodium schneei . . . . . . . . . Lachemilla sprucei . . . . . . . . . Oritrophium venezuelense . . . . . . . . . Calamagrostis chrysantha . . . . . . . . . Ophioglossum crotalophoroides . . . . . . . . . Lilaeopsion maclovianae Lilaeopsis macloviana . . . . . . . . . Cotula mexicana . . . . . . . . . Lachemilla diplophylla . . . . . . . . . Mimulus glabratus . . . . . . . . . Ranunculus cymbalaria . . . . . . . . . Ranunculus flagelliformis . . . . . . . . . Ranunculus limoselloides . . . . . . . . . Ranunculus trichophyllus . . . . . . . . . Isoetes boliviensis . . . . . . . . . Isoetes lechleri . . . . . . . . . Arenaria serpens . . . 25 . 100 . . . Crassula connata . . . . . . . . . Limosella americana . . . . . . . . . Limosella-communities Limosella australis . . . . . . 25 . . Limosella aquatica (incl. var. tenuifolia) . . . . . . . . . Lilaea scilloides . . . . . . . . . Muhlenbergia ligularis . . . . . . . . . Muhlenbergia peruviana . . . . . . . . . Crassulion peduncularis-venezuelensis Crassula peduncularis + venezuelensis . . . . . . . . . Lilaeopsis schaffneriana . . . . . . . . . Isoetes karstenii . . . . . . . . . Isoetes precocia . . . . . . . . . Elatine triandra . . . . . . . . . Juncus ebracteatus . . . . . . . . . Juncus pallescens . . . . . . . . . Juncus uruguensis . . . . . . . . . Limosella lineata . . . . . . . . . Soliva triniifolia . . . . . . . . . Littorellion australis and Senecioni-Eleocharietalia pachycarpae Eleocharis pachycarpa . . . . . 100 . . 34 Littorella australis . . . . . . . . . Juncus stipulatus (incl. var. chilensis) . . . . . . . . . Isolepis inundata . . . . . . . . . Senecio zosteraefolius . . . . . . . . . Equisetum bogotense . . . . . . . . . Plagiobothrys corymbosus . . . . . . . . . Anagallis alternifolia (incl. var. repens) . . . . . . . . .
256 F
258 C
256 D
256 E
258 B
256 A
258 D
256 C
258 E
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 A A A A A A A A A A A B B B B B B B B B B C C D D D D E E E E E E E E E E E E 751 748 752 747 750 745 754 753 746 755 744 756 757 758 951 952 953 954 948 947 946 266 265 566 567 568 955 569 570 572 573 264 872 870 271 869 571 926 925 256 B
Column nr. Cluster Turboveg Nr Table in bibliographic source Source
AR 33 6
AR 19 6
AR 5 1
AR 12 1
AR 11 1
AR 16 5
AR 23 8
AR 17 5
AR 16 5
AR 34 10
AR 36 12
AR 24 10
AR 13 3
AR 18 5
VE 8 4
VE 15 3
VE 14 3
CO 14 3
PE 19 10
PE 14 8
PE 11 4
PE 10 5
AR 11 6
BO 5 2
BO 10 5
BO 3 3
BO 6 4
PE 5 3
BO 6 3
BO 10 4
34 84 67 17 17 . . .
34 84 34 17 . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
17 . 17 17 .
17 17 17 50 50
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . 10 .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. 34 .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. 17 .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
34 .
. .
. .
. .
. .
. .
. 13
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
67 84 67 84 34
34 100 67 67 .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. 50 . . .
. 92 . . .
. 70 . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
17 . . . 34 . .
. . . . 50 . .
. . . 100 . . .
. . . 40 . . .
. . . . . . .
. . . . . 10 . 100 17 . 100 . . .
. . . . . . .
. . . 20 . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
67 . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . 10 . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . .
100 100 20 50 . 100 100 60 . . 100 100 . . . 100 . 100 . 100 . . . . . . . . 100 . . . . . .
100 100 100 100 . 100 100 . . . 100 . . . 100
20 . . . .
25 . . . .
40 . . . .
20 . . . .
50 . . . .
33 . . . .
30 . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
20 . . . . . . . . . . . . .
75 . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
75 50 100 50 100 . . . . . . . . .
100 100 100 33 67 67 100 100 67 33 100 100 . .
67 100 . . . 100 100 100 67 67 . . 67 67
. . . . 33 . . . . . . . . .
10 . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . 33 . .
. . . 30 . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . 20 . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
70 . 50 10 . . . . . . . . .
25 . 38 . . . . . . . 13 . .
50 . . . . . . . . . 25 . .
80 . . . . . . . . . 20 . .
. . . . .
100 . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
20 . . . . . . . 20 .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . 20 . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
33 80 100 . 33 100 100 20 33 20 33 20 33 20 100 . 33 . 33 . 66 .
100 100 17 . . 50 . . 50 50 . . . . . . . . . . . . . . . .
90 70 70 . . 50 . . 30 . . . .
66 50 33 66 100 . . . . 25 66 . 33 . 50 . . . . 50 . . . . . 100 100 . . . . . 100 100 . . . . . 75 . 75 . . . . . . 100 . . . . . . . . . 100 25 . . . . .
The vegetation of seasonal wetlands in extratropical and orotropical South America
7
84 A
84 B
85 A
73
72
48
291 A
95 A
288
95 B
95 C
297 C
323 B
323 C
323 D
291 B
291 D
291 C
308 B
308 C
308 F
308 A
308 E
308 D
88 B
88 C
88 A
67 A
67 E
67 B
77 B
77 A
313
67 D
67 C
78
250 A
250 B
250 C
250 D
250 E
250 F
250 G
155
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 E E F F F G G G G G G G G G G G G G H H H H H H H H H I I I I I I I I I J J J J J J J K 269 924 270 252 251 136 820 285 803 286 287 871 956 957 958 821 823 822 929 930 933 928 932 931 276 277 275 241 941 242 258 257 950 244 243 259 813 814 815 816 817 818 819 450
BO 13 9
BO 7 5
BO 29 21
PE 9 5
PE 4 1
AR 10 13
CO 6 7
CO 3 1
CO 7 6
CO 18 10
CO 3 2
BO 8 7
CO 8 16
CO 22 11
CO 10 6
CO 15 10
CO 20 5
CO 25 11
AR 38 10
AR 21 10
AR 42 6
AR 15 9
AR 10 4
AR 14 4
CL 9 4
CL 13 4
CL 20 4
CL 21 7
CL 34 11
CL 19 7
CL 18 2
CL 27 20
CL 53 4
CL 9 4
CL 16 5
CL 10 2
AR 9 21
AR 25 14
AR 20 15
AR 10 16
AR 16 17
AR 14 29
AR 13 12
AR 35 5
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
uk H H uk H H uk Ch
Poaceae Poaceae Plantaginaceae Poaceae Poaceae Poaceae Rubiaceae Tropaeolaceae
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
T uk T H H
Boraginaceae Rosaceae Ranunuculaceae Poaceae Campanulaceae
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
uk Poaceae H Poaceae G Lamiaceae
. .
. .
. .
. .
. .
. 30
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 75
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
H T
Poaceae Scrophulariaceae
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
Ch H uk G uk
Fabaceae Juncaceae Cyperaceae Asteraceae Cyperaceae
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
uk T H G Ch H uk
Poaceae Scrophulariaceae Poaceae Cyperaceae Apiaceae Plantaginaceae Poaceae
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
17 . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
Cr H uk H T
Campanulaceae Poaceae Ranunculaceae Cyperaceae Polygonaceae
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . 10 . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
G H H G T T T T H uk H
Poaceae Marsileaceae Poaceae Cyperaceae Poaceae Malvaceae Poaceae Brassicaceae Convolvulaceae Poaceae Boraginaceae
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
29 . . . . . . . . . . . . .
. . . . 20 . . . . . . . 20 .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. 100 . . . . . . . . . . . .
. 17 . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
T H G Ch H H Ch uk H Ch Ch H H G
Gentianaceae Cyperaceae Isoetaceae Campanulaceae Asteraceae Poaceae Clusiaceae Scrophulariaceae Poaceae Lycopodiaceae Rosaceae Asteraceae Poaceae Ophioglossaceae
89 56 44 . . . . 44 . 11 . 100 .
80 60 60 40 . . . 80 . . . . 20
. . . . . . . . . . . . .
. . 20 . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . 30 . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . 60 . . 20 . . .
. . . . . . 100 . . . . . .
. . . . . 50 . . . . . . .
. . . . . 81 . . . . . . .
. . . . . 27 . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . 10 . 10 . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . 10 . .
10 . . . . . . . . . . . .
17 . . . . . . . . . . . .
. . . . . . . . . . 100 . .
. . . . . . . 25 . . . . .
25 . . . . . . . . . 50 . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
G H H T H T uk uk
Apiaceae Asteraceae Rosaceae Scrophulariaceae Ranunculaceae Ranunculaceae Ranunculaceae Ranunculaceae
G H T uk
Isoetaceae Caryophyllaceae Crassulaceae Scrophulariaceae
. . . . .
. . . . .
76 . . 67 19
. 60 . . .
. 100 100 . .
. . 30 . .
. . . . .
. . . . .
. . . . .
20 . . . .
100 . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. 100 25 . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
G-T uk T uk T
Scrophulariaceae Scrophulariaceae Juncaginaceae Poaceae Poaceae
. . . . . 22 . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
90 . . . . . 70 50 90 50
50 30 . . . . . . . .
30 . . . 10 . . . . .
100 75 . . . . . . . .
45 27 . . . . . . . .
50 50 . . . . . . . .
70 . . . . . . . . .
10 . . . . 10 . . . .
30 . . . . . . . . .
10 . . . . . . . . .
50 . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . 25 .
100 . . . . . . . 100 .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
9 . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . 100 . . .
. . . . . . . . . .
60 . . . . . 40 . . .
100 . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
20 . . . . . . . . .
T uk uk uk T H H H T T
Crassulaceae Apiaceae Isoetaceae Isoetaceae Elatinaceae Juncaceae Juncaceae Juncaceae Scrophulariaceae Asteraceae
. . . . . . . .
. . . . . . . .
. . 10 . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . 90 . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
67 17 67 67 . 33 . 83
56 22 11 . . 67 11 .
75 . . 25 25 . 25 .
50 . 50 . . 25 50 .
. . 50 75 . . . .
25 . . 25 . 25 . .
75 25 . . 50 25 . .
10 . . . . . . .
100 . . . . . . .
70 . . . . . . .
. . . . . . . .
. . 70 . . . . .
50 . . . . . . .
. . . . . . . .
100 . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
Cr G H G uk G T H
Plantaginaceae Cyperaceae Juncaceae Cyperaceae Asteraceae Equisetaceae Boraginaceae Primulaceae
100 100 100 100 . 17 30 . 100 50 . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
100 100 10 100 80 20 30 70 70 80 10 40 10 20 60 20
LF Family
U. Deil et al.
8 Column nr. 1 2 3 4 5 6 Cluster A A A A A A Hydrocotyle chamaemorus . . . . . . Ranunculus hydrophilus . . . . . . Ranunculus trullifolius . . . . . . Azorella trifoliolata . . . . . . Juncus arcticus . . . . . . Leptophyllochloa micrathera . . . . . . Carex decidua . . . . . . Carex barrosii . . . . . . Downingia pusilla . . . . . . Eleocharis maculosa . . . . . . Isoetes savatieri . . . . . . Lythrum hyssopifolia . . . . . . Lindernia procumbens . . . . . . Elatine chilensis . . . . . . Myosurus apetalus . . . . . . Juncion planifolii, Nanojuncetea australis Navarretia involucrata . . . . . . Gratiola peruviana . . . . . . Eryngium pseudojunceum . . . . . . Centipeda elatinoides . . . . . . Plagiobothrys pratensis . . . . . . Polygonum hydropiperoides . . . . . . Rumex acetosella . . . . . . Phyla nodiflora . . . . . . Gnaphalium cymatoides . . . . . . Cyperus reflexus . . . . . . Mentha pulegium . . . . . . Leontodon taraxacoides . . . . . . Lythrum portula . . . . . . Cardamine valdiviana . . . . . . Oldenlandia uniflora . . . . . . Juncus bufonius . . . . . . Nierembergia repens . . . . . . Eryngium humifusum . . . . . . Cyperus eragrostis . . . . . . Gamochaeta spiciformis . . . . . . Cicendia quadrangularis . . . . . . Anagallis minima . . . . . . Blennosperma chilense . . . . . . Bromidium trisetoides . . . . . . Deschampsia danthonioides . . . . . . Dioscorea fastigiata . . . . . . Hydrocotyle cryptocarpa . . . . . . Lasthenia kunthii . . . . . . Lotus subpinnatus . . . . . . Micropsis nana . . . . . . Juncus procerus . . . . . . Ranunculus monanthos . . . . . . Leontodo-Piptochaetietum Piptochaetium montevidense . . . . . . Dichondra sericea . . . . . . Stipa poeppigiana . . . . . . Paspalum dasypleurum . . . . . . Juncus planifolius . . . . . . Nothoscordum gramineum . . . . . . Calotheca brizoides . . . . . . Triptilion spinosum . . . . . . Stenandrium dulce . . . . . . Sisyrinchium graminifolium . . . . . . Juncus imbricatus . . . . . . Ludwigia peploides-, Echinochloa helodes- and Luziola peruviana-communities Ludwigia peploides . . . . . . Alternanthera philoxeroides . . . . . . Polygonum punctatum . . . . . . Paspalum paspalodes . . . . . . Juncus microcephalus . . . . . . Leersia oryzoides . . . . . . Plantago myosurus . . . . . . Eryngium echinatum . . . . . . Echinochloa helodes . . . . . . Amphibromus scabrivalvis . . . . . . Paspalidium paludivagum . . . . . . Phalaris angusta . . . . . . Solanum glaucophyllum . . . . . . Luziola peruviana . . . . . . Marsilea ancylopoda . . . . . . Eleocharis viridans . . . . . . Lilaeopsis attenuata . . . . . . Lindernio-Mecardonietum herniarioidis Lindernia dubia . . . . . . Mecardonia herniarioides . . . . . . Fimbristylis squarrosa . . . . . . Eragrostis hypnoides . . . . . . Cypselea humifusa . . . . . . Scoparia aemilii . . . . . . Rorippa islandica . . . . . . Plagiocheilus tanacetoides . . . . . . Glinus radiatus . . . . . . Soliva anthemifolia . . . . . . Gamochaeta americana . . . . . . Eclipta prostrata . . . . . . CS and companions of southern Patagonian steppe vegetation (Festucetea gracillimae) Festuca gracillima . . . . 25 . Acaena poeppigiana 34 50 17 50 . . Azorella caespitosa . 25 34 25 25 . Azorella fuegiana . . . . 25 . Adesmia lotoides . 50 17 25 . . Trisetum cumingii . . . . . . Colobanthus subulatus 67 50 34 50 75 . Erophila verna . 25 . 25 25 . Hypochaeris incana . . 34 . 25 . Festuca magellanica . . 17 . 50 . Festuca pyrogea . 25 17 . 25 . Nassauvia abbreviata . 25 17 50 25 . Nassauvia darwinii . 25 17 . . . Carex patagonica . . . 50 50 . Bromus catharticus . . 17 50 25 . Poa poecila . . . 50 25 . Jarava ibarii . . . . 25 . Carex andina (incl. var. subabscondita) . . . 50 25 . Ephedra frustillata . . . . . . Stipa chrysophylla . . . . 25 . Calthetea sagittatae Caltha sagittata . . . . . . Carex gayana . . . . . . Juncus scheuchzerioides . . 17 . . . Trisetum sclerophyllum . . . . . .
7 A . . . . . . . . . . . . . . .
8 A . . . . . . . . . . . . . . .
9 A . . . . . . . . . . . . . . .
10 A . . . . . . . . . . . . . . .
11 A . . . . . . . . . . . . . . .
12 B . . . . . . . . . . . . . . .
13 B . . . . . . . . . . . . . . .
14 B . . . . . . . . . . . . . . .
15 B . . . . . . . . . . . . . . .
16 B . . . . . . . . . . . . . . .
17 B . . . . . . . . . . . . . . .
18 B . . . . . . . . . . . . . . .
19 B . . . 10 . . . . . . . . . . .
20 B . . . 100 . . . . . . . . . . .
21 B . . . . . . . . . . . . . . .
22 C . . . . . . . . . . . . . . .
23 C . . . . . . . . . . . . . . .
24 D . . . . . . . . . . . . . . .
25 D . . . . . . . . . . . . . . .
26 D . . . . . . . . . . . . . . .
27 D . . . . . . . . . . . . . . .
28 E . . . . . . . . . . . . . . .
29 E . . . . . . . . . . . . . . .
30 E . . . . . . . . . . . . . . .
31 E . . . . . . . . . . . . . . .
32 E . . . . . . . . . . . . . . .
33 E . . . . . . . . . . . . . . .
34 E . . . . . . . . . . . . . . .
35 E . . . . . . . . . . . . . . .
36 E . . . . . . . . . . . . . . .
37 E . . . . . . . . . . . . . . .
38 E . . . . . . . . . . . . . . .
39 E . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 . . . . . 33 . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. 25 25 . . 25 75 . . . . . . . . . . . . .
. . . 50 50 25 25 50 25 . 25 . . . 50 . . . 25 50
. 67 34 34 . . 67 . . 34 . . . . . . . . 34 .
. 17 . . 34 17 17 . . . . . . 17 . . . . . .
. 17 . . 17 17 50 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 50 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . 20 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . 60 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
. . 34 .
. . . .
. . . .
. 80 . .
. . . .
60 50 . .
. 58 . 8
. 100 . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. 100 . 100 100 . . .
. . 100 100 40 . . .
The vegetation of seasonal wetlands in extratropical and orotropical South America 40 E . . . . . . . . . . . . . . .
41 E . . . . . . . . . . . . . . .
42 F . . . . . . . . . . . . . . .
43 F . . . . . . . . . . . . . . .
44 F . . . . . . . . . . . . . . .
45 G . . . . . . . . . . . . . . .
46 G . . . . . . . . . . . . . . .
47 G . . . . . . . . . . . . . . .
48 G . . . . . . . . . . . . . . .
49 G . . . . . . . . . . . . . . .
50 G . . . . . . . . . . . . . . .
51 G . . . . . . . . . . . . . . .
52 G . . . . . . . . . . . . . . .
53 G . . . . . . . . . . . . . . .
54 G . . . . . . . . . . . . . . .
55 G . . . . . . . . . . . . . . .
56 G . . . . . . . . . . . . . . .
57 G . . . . . . . . . . . . . 50 .
58 H 70 10 10 60 10 10 60 10 . . . . . . .
59 H 20 50 10 . . . . . . 30 20 . . . .
60 61 62 H H H 100 . . 33 . . . . . . 100 . 100 . . 33 . . 17 . . . 11 . . . 75 17 . . . . 100 . . . . . . . . . . . .
63 H . . . 50 . . 25 . 50 . . . . . .
64 H . . . . . . . . . . . 25 . . .
65 H . . . . . . . . . . . . 25 25 25
66 H . . . . . . . . . . . . . . .
67 I . . . . . . . . . . . . . . .
68 I . . . . . . . . . . . . . . .
69 I . . . . . . . . . . . . . . .
70 I . . . . . . . . . . . . . . .
71 I . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 55 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 17 . . . . . . . . . . . . . . . . . . . . . . . . . .
. 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . .
. 30 . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 56 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 75 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 25 75 . . . . . . . . . . . . . . . .
. 50 . . 25 . . . . . . . . . . 25 . . . . . . . . . . . . . . . .
. 75 50 25 50 . . . . . . . . . 25 . 50 . . . . . . . . . . . . . . 25
50 70 50 50 . 30 10 50 10 10 70 10 . . . . . 10 . 10 . . . . . . . . . . . .
. 64 27 9 . 45 . 45 45 36 73 64 18 . . . . . 18 . . . . . . . . . . . 36 .
10 70 . 70 . 90 30 50 90 90 90 50 . . . 30 . . . . . . . . . . . . . . . .
100 50 100 100 . 50 . 50 . 100 100 100 . . . . . . . . . . . . . . . . . . 100 .
90 . . . 95 . 10 . . . 90 90 . . . . . . . 10 70 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . 75 . . . . . .
. . . . . . . . . . .
. . . . . 25 . . . . .
. . . . . . . . . . .
. . . . . . . . . . 9
. . . . . . . . . . .
50 50 100 . 50 50 . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . 70 . 30 . . . . . . . . . . . .
. . 70 . . . . . . . . . . . . . .
. . 50 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . 10 . . . . . . . . . . . .
. . . . 9 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . 30 . . .
. . . . . . 9 . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. 50 . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
72 I . . . . . . . . . . . . . . .
9
73 I . . . . . . . . . . . . . . .
74 I . . . . . . . . . . . . . . .
75 I . . . . . . . . . . . . . . .
76 J . . . . . . . . . . . . . . .
77 J . . . . . . . . . . . . . . .
78 J . . . . . . . . . . . . . . .
79 J . . . . . . . . . . . . . . .
80 J . . . . . . . . . . . . . . .
81 J . . . . . . . . . . . . . . .
82 J . . . . . . . . . . . . . . .
83 K . . . . . . . . . . . . . . .
H uk uk H H uk uk uk uk uk uk T uk T T
Apiaceae Ranunculaceae Ranunculaceae Apiaceae Juncaceae Poaceae Cyperaceae Cyperaceae Campanulaceae Cyperaceae Isoetaceae Lythraceae Scrophulariaceae Elatinaceae Ranunculaceae
100 . . . 25 . . . 50 . . . . . 40 . 100 . . . . . 20 . . 50 . . . 100 . . . . 60 . 100 . . . 100 25 20 50 100 50 . . . . 100 100 100 . . 100 . . . . 100 . . . 50 . . . . . . . . . 20 . . . . . 100 . . . 75 . . . 25 . . . 100 . . . 100 . . . 25 . . . 75 . . . 50 . . . 100 . . . 100 . . . . . 20 . . . . 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T H H H T H H H uk H H H-T T G uk T T H H H T T T T T G T T T T H uk
Polemoniaceae Scrophulariaceae Apiaceae Asteraceae Boraginaceae Polygonaceae Polygonaceae Verbenaceae Asteraceae Cyperaceae Lamiaceae Asteraceae Lythraceae Brassicaceae Rubiaceae Juncaceae Solanaceae Apiaceae Cyperaceae Asteraceae Gentianaceae Primulaceae Asteraceae Poaceae Poaceae Dioscoreaceae Apiaceae Asteraceae Fabaceae Asteraceae Juncaceae Ranunculaceae
90 70 90 30 . 30 10 10 10 30 10
25 75 75 75 . 100 50 25 25 25 100
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
H H H H H G H H H G H
Poaceae Convolvulaceae Poaceae Poaceae Juncaceae Liliaceae Poaceae Asteraceae Acanthaceae Iridaceae Juncaceae
. . . . 50 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
30 . 30 30 . . . . 90 . 30 . 50 . . . .
. 90 70 30 70 50 30 70 90 50 . 70 30 . . . .
50 50 30 30 30 50 . 30 90 30 30 30 30 90 30 30 .
70 50 50 . 30 . . . . . . . . 90 30 . .
70 70 50 90 30 30 . . . . . . . 90 30 30 .
30 30 30 90 . 30 . 30 . . . . . . 30 30 .
30 30 30 . 30 30 . . . . . . . . . 30 30
. . 80 20 . . 20 . . . . . . . . . .
Cr H H H H Cr T uk uk uk uk uk uk uk uk uk uk
Onagraceae Amaranthaceae Polygonaceae Poaceae Juncaceae Poaceae Plantaginaceae Apiaceae Poaceae Poaceae Poaceae Poaceae Solanaceae Poaceae Marsileaceae Cyperaceae Apiaceae
. . . . . . . . 10 . . .
. . . . . . . . . . . .
. . . . . . . . . . 10 .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . 80 . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
100 60 100 100 80 80 60 60 100 100 100 40
T T T T T T T T T T H T
Scrophulariaceae Scrophulariaceae Cyperaceae Poaceae Aizoaceae Scrophulariaceae Brassicaceae Asteraceae Molluginaceae Asteraceae Asteraceae Asteraceae
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
H uk Ch Ch Ch H Ch T H H uk Ch Ch uk H H uk H P uk
Poaceae Rosaceae Apiaceae Apiaceae Fabaceae Poaceae Caryophyllaceae Brassicaceae Asteraceae Poaceae Poaceae Asteraceae Asteraceae Cyperaceae Poaceae Poaceae Poaceae Cyperaceae Ephedraceae Poaceae
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
G Cr H H
Ranunculaceae Cyperaceae Juncaceae Poaceae
U. Deil et al.
10 Column nr. 1 2 3 4 5 6 7 8 9 10 Cluster A A A A A A A A A A Cortaderia pilosa var. minima . . . . . . . . . . Colobanthus quitensis . . . . . . . . . . Plantagini rigidae-Distichietea muscoidis / Hypselo reniformis-Plantaginion tubulosae and Oxychloion andinae Plantago rigida . . . . . . . . . . Distichia muscoides . . . . . . . . . . Oxychloe bisexualis . . . . . . . . . . Werneria pygmaea . . . . . . . . . . Plantago tubulosa . . . . . . . . . . Festuca rigescens . . . . . . . . . . Hypsela reniformis . . . . . . . . . . Isoetes andicola . . . . . . . . . . Gentiana prostrata . . . . . . . . . . Deyeuxia chrysantha . . . . . . . . . . Carex maritima . . . . . . . . . . Scirpus deserticola . . . . . . . . . . Scirpus atacamensis . . . . . . . . . . Ranunculus uniflorus . . . . . . . . . . Colobanthus crassifolius . . . . . . . . . . Hypsela oligophylla . . . . . . . . . . Azorella diapensioides . . . . . . . . . . Eleocharito tucumanensis-Plantaginetum tubulosae Eleocharis tucumanensis . . . . . . . . . . Calamagrostis nitidula . . . . . . . . . . Calamagrostis jamesoni . . . . . . . . . . Calamagrostis ovata . . . . . . . . . . Ourisia muscosa . . . . . . . . . . Gentianella primuloides . . . . . . . . . . Callitricho heteropodae-Alopecuretum hitchcockii Callitriche heteropoda . . . . . . . . . . Alopecurus aequalis . . . . . . 100 . . . Submerse Potamogeton-Myriophyllum-communities Potamogeton illinoensis . . . . . . . . . . Potamogeton filiformis . . . . . . . . . . Myriophyllum quitense . . . . . . . . . . Myriophyllum elatinoides . . . . . . . . . . Elodea potamogeton . . . . . . . . . . Isoetes boliviensis (incl. cf. boliviensis) . . . . . . . . . . Isoetes boyacensis . . . . . . . . . . Floating communities with Azolla filiculoides (Lemnetea) Azolla filiculoides . . . . . . . . . . Polygono punctatae-Scirpion californici Juncus effusus . . . . . . . . . . Schoenoplectus californicus . . . . . . . . . . Typha latifolia . . . . . . . . . . Hydrocotyle ranunculoides . . . . . . . . . . Bidens laevis . . . . . . . . . . Relbunium ciliatum . . . . . . . . . . Conyza uliginosa . . . . . . . . . . Jaegeria hirta . . . . . . . . . . Hypericum laricifolium . . . . . . . . . . Eleocharis stenocarpa . . . . . . . . . . Verbeno hispidae-Scirpetum gigantei Verbena hispida . . . . . . . . . . Lachemilla aphanoides . . . . . . . . . . Holcus lanatus . . . . . . . . . . Junco microcephali-Scirpetum californicae Ludwigia inclinata . . . . . . . . . . Myriophyllum aquaticum . . . . . . . . . . Ranunculus nubigenus . . . . . . . . . . Ludwigia repens . . . . . . . . . . Epilobio denticulatae-Typhetum latifoliae Epilobium denticulatum . . . . . . . . . . Rumex obtusifolius . . . . . . . . . . Plantago australis (incl. ssp. cumingiana) . . . . . . . . . . Cotula coronopifolia . . . . . . . . . . Lachemilla mandoniana . . . . . . . . . . Calamagrostis ligulata . . . . . . . . . . Potamogeton asplundii . . . . . . . . . . Isoetes palmeri . . . . . . . . . . Juncus ecuadoriensis . . . . . . . . . . Cotula minuta . . . . . . . . . . Asteretea vahlii Aster vahlii . . . . . . . . . . Isolepis cernua . . . . . . . . . . Carex darwinii (incl. var. urolepis) . . . . . . . . . . Gunnera magellanica . . . . . . . . . . Agrostis magellanica . . . . . . . . . . Alopecurus antarcticus . . . . . . . . . . Companions on flooding prairies of Santa Fe (Argentina) Aster squamatus . . . . . . . . . . Rumex crispus . . . . . . . . . . Rorippa bonariensis . . . . . . . . . . Lolium multiflorum . . . . . . . . . . Carex bonariensis . . . . . . . . . . Panicum milioides . . . . . . . . . . Companions Agrostis capillaris . . . . . . . . . . Agrostis imberbis . . . . . . . . . . Agrostis stolonifera . . . . . . . . . . Alisma plantago-aquatica . . . . . . . . . . Astragalus micranthellus . . . . . . . . . . Azorella lycopodioides . . . . . . . . . . Baccharis tricuneata . . . . . . . . . . Berberis buxifolia . . . . . . . . . . Boisduvalia subulata . . . . . . . . . . Briza minor . . . . . . . . . . Calceolaria palenae . . . . . . . . . . Callitriche terrestris . . . . . . . . . . Callitriche turfosa . . . . . . . . . . Cardamine bonariensis . . . . . . . . . . Cardamine variabilis . . . . . . . . . . Carex acaulis . . . . . . . . . . Carex fuscula (incl. var. distenta) . . . . . . . . . . Cerastium arvense . 50 34 50 100 . . 50 67 17 Cerastium fontanum (incl. ssp. triviale) . . . . . . . . . . Chamomilla recutita . . . . . . . . . . Chiliotrichum rosmarinifolium . . . . . . . . . . Chloraea chica . . . . . . . . . . Cirsium vulgare . . . . . . . . . . Cynosurus echinatus . . . . . . . . . . Eleocharis palustris . . . . . . . . . . Empetrum rubrum . . . . . . . . . . Epilobium ciliatum . . . . . . . . . . Erodium cicutarium . . . . . . . . . . Escallonia virgata . . . . . . . . . . Festuca scabriuscula . . . . . . . . . . Glyceria fluitans . . . . . . . . . .
11 A . .
12 B . .
13 14 B B . . 100 100
15 B . .
16 B . 75
17 B . .
18 B . .
19 B 100 .
20 B . .
21 B . .
22 C . .
23 C . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. .
24 D . .
25 D . .
26 D . .
27 D . .
28 E . .
29 E . .
30 E . .
31 E . .
32 E . .
33 E . .
34 E . .
35 E . .
36 E . .
37 E . .
38 E . .
39 E . .
. . . . . . . . . . . . . . . . .
. . . 100 . . . . . . . . . . . . .
. . . 63 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . 100 100 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 67 . . . . . . . . . . . . .
66 . . . . . . . . . . . . . . . .
. 50 10 40 60 . 20 . . . . . . . . . .
. 50 38 50 50 25 . . . . . . . . . . .
. . . . 100 . 50 . 25 100 . . 75 . 100 . 25 . 67 . . . . . 50 40 . . . . . . . 20 83 . 75 20 . . . . . . 50 . 67 . . . . . . 20 . 100 . . 17 . . . 100 . . . . .
. 30 . . 10 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
50 40 30 30 20 20
. . 38 38 . 50
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . 10 . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. 30
. .
100 75
. .
100 .
50 .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . 10 . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. 100 . . . . .
. . . . . . .
. . . . . . .
. . 25 . . . .
. . . . . . .
. . . . 33 . .
. . . . 100 . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
.
.
33
.
75
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . 100 . . . . . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . 20 . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . 30 . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
20 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 100 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 20 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 50 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 20 . . . . 20 . . .
. . . . . . . . . . . . . . . . 20 20 . . . . . . . . . . . . .
. 30 . . . 10 10 20 . . 30 . . . . . . 10 . . 90 . . . . 20 . . 20 30 .
. 58 . . . . 8 . . . 8 . . . . . . 25 . . 33 . . . . . . . . 50 .
. 30 . . . . . . . . . . . . . . 10 . 20 . . 10 . . . . . . 20 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 20 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The vegetation of seasonal wetlands in extratropical and orotropical South America
0
11
40 E . .
41 E . .
42 F . .
43 F . .
44 F . .
45 G . .
46 G . .
47 G . .
48 G . .
49 G . .
50 G . .
51 G . .
52 G . .
53 G . .
54 G . .
55 G . .
56 G . .
57 G . .
58 H . .
59 H . .
60 H . .
61 H . .
62 H . .
63 H . .
64 H . .
65 H . .
66 H . .
67 I . .
68 I . .
69 I . .
70 I . .
71 I . .
72 I . .
73 I . .
74 I . .
75 I . .
76 J . .
77 J . .
78 J . .
79 J . .
80 J . .
81 J . .
82 J . .
83 K . .
H Poaceae Ch Caryophyllaceae
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . 57 24 86 . . . . 29 10 . . . . 86
20 . . 20 . . 20 60 . . . . 60 . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . 100 . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . 10 . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .
Ch Ch Ch H H H H Ch T uk H G H H H G Ch
Plantaginaceae Juncaceae Juncaceae Asteraceae Plantaginaceae Poaceae Campanulaceae Isoetaceae Gentianaceae Poaceae Cyperaceae Cyperaceae Cyperaceae Ranunculaceae Caryophyllaceae Campanulaceae Apiaceae
. . . . . .
. . . . . .
52 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
uk uk H uk H uk
Cyperaceae Poaceae Poaceae Poaceae Scrophulariaceae Gentianaceae
22 .
60 .
. .
. .
100 100
30 .
. .
. .
. .
. 20
. .
30 50
. 6
. 9
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
T Callitrichaceae T-H Poaceae
. . 11 . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
90 . . 90 . . 70
. . . . . . .
. . 17 . . . .
. . . . . . .
. . . . . . .
. . 30 . 10 . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . 50 . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
Cr Cr Cr Cr uk uk uk
Potamogetonaceae Potamogetonaceae Haloragaceae Haloragaceae Hydrocharitaceae Isoetaceae Isoetaceae
11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Cr Azollaceae
. . . 11 . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . 30
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . 88
. . . 18 . . . . . 100
. . . 50 . . . . . 50
30 90 30 30 30 . . . . 10
70 50 70 50 . 10 10 10 10 10
50 70 90 50 10 10 10 10 10 .
. . . . . . . . . .
. . . . . . . . . .
. 33 . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
H G G Cr H uk uk uk uk uk
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . 55
. . 50
. . .
50 50 50
. . .
. . .
. . .
. . 17
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
uk Verbenaceae uk Rosaceae H Poacea
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . 17 .
. . . .
. . . .
. . . .
. . 13 .
. . 64 .
. . 17 .
30 30 10 30
. . . .
. . . 10
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
uk Cr uk uk
Onagraceae Haloragaceae Ranunculaceae Onagraceae
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . 17 17 . . . .
. . . . . . 10 40 10 10
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . 9 . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
50 50 10 10 . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
uk H H G uk uk Cr uk H uk
Onagraceae Polygonaceae Plantaginaceae Asteraceae Rosaceae Poaceae Potamogetonaceae Isoetaceae Juncaceae Asteraceae
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
70 10 . 10 40 .
. 30 . . 20 .
33 33 17 17 17 17
33 . . . . .
. . . . . .
. . . . 25 .
. . . . . .
. . . . . .
50 . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. 10 . . . .
. 100 . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. 30 . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
G T uk H uk uk
Asteraceae Cyperaceae Cyperaceae Gunneraceae Poaceae Poaceae
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . 70 . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. 78 . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
30 . . . . .
70 30 50 50 30 50
30 30 . 30 30 .
30 . . 30 . .
50 50 . 50 . 30
70 30 . 30 . .
30 30 . 30 . .
. . 20 . . .
uk H T T-H uk uk
Asteraceae Polygonaceae Brassicaceae Poaceae Cyperaceae Poaceae
. . . . . . . . . . . . . 11 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 6 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 67 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . .
. . . . . . . . . . . . . . . 60 50 . . . . . . . 40 . . . . . .
. . 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 67 . . . . 17 . . 33 . 17 . . . .
. . . . . . . 11 . . . . . . 33 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 25 . . . . . .
10 . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . .
9 . . 9 . . . . . . . . . . . . . . . . . . . . 9 . . . . . .
. . . . . . . . . . . . . . . . . . . 10 . . . . 30 . . . . . .
50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 . . . . . . . 10 . . . . . . . 70 . . . . . . . . . . . . . .
100 . . . . . . . . 75 . . . . . . 100 . . . . . . 25 . . . . . . .
. . . . . . . . . . . . . . . . . . . 25 . . . . 75 . . . . . .
. . . 60 . . . . . . . 40 . . . . . . . . . . . . . . . . . . .
50 . 50 . . . . . . . . . 100 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 50 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 30 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 30 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 50 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . .
. H Poaceae . H Poaceae . H Poaceae . G Alismataceae . H Fabaceae . Ch Apiaceae . Ch Asteraceae . P Berberidaceae . T Onagraceae . T Poaceae . H Scrophulariaceae 60 T Callitrichaceae . uk Callitrichaceae . G Brassicaceae . G Brassicaceae . uk Cyperaceae . H Cyperaceae . T-Ch Caryophyllaceae . T Caryophyllaceae . uk Asteraceae . P Asteraceae . G Orchidaceae . T Asteraceae . T Poaceae . G Cyperaceae . Ch Empetraceae . G Onagraceae . T Geraniaceae . P Saxifragaceae . H Poaceae . Cr Poaceae
Juncaceae Cyperaceae Typhaceae Apiaceae Asteraceae Rubiaceae Asteraceae Asteraceae Clusiaceae Cyperaceae
U. Deil et al.
12 Column nr. Cluster Glyceria multiflora Gnaphalium phaeolepis Hordeum comosum Hydrocotyle vulgaris Hypochaeris radicata Lepidophyllum cupressiforme Linum usitatissimum Lolium temulentum Luzula racemosa Medicago lupulina Myosotis arvensis Myosotis stricta Nasturtium officinale Nothoscordum bonariense Oxalis corniculata Perezia pygmaea Pernettya pumila Phleum alpinum Plantago lanceolata Poa andina Poa annua Poa pratensis Polygonum aviculare Polygonum persicaria Polypogon monspeliensis Polypogon viridis Potentilla anserina Prunella vulgaris Ranunculus obtusifolius Rorippa sylvestris Rosa rubiginosa Rumex conglomeratus Scirpus acaulis Scirpus nevadensis var. remireoides Setaria parviflora Setaria verticillata Sisyrinchium patagonicum Spergularia rubra Taraxacum officinale Trifolium dubium Trifolium repens Trifolium subterraneum Trisetum caudulatum Trisetum depauperatum Valeriana macrorhiza Veronica anagallis-aquatica Veronica serpyllifolia Vulpia bromoides Bryophytes Breutelia trianae Bryum pseudotriquetrum Calliergonella cuspidata Campylopus cavifolius Ditrichum submersum Hypnum amabile Pleurozium schreberi Rhacocarpus purpurascens Tortula monoica Warnstorfia exannulata Cyanobacteria Nostoc commune
1 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 . . . . . . . . .
3 A . . . . . 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . 17 . . . . . . . . .
4 A . . . . . . . . . . . . . . . . . . . . . 25 . . . . . . . . . . . . . . . . 25 . . . 50 . . . . .
5 A . . . . . . . . . . . 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 75 . . . 50 . . . . .
6 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 . . . . . . . . .
8 A . . . . . 25 . . . . . 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 A . . . . . 34 . . . . . 34 . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . .
10 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . 17 . . . 34 . . . . .
11 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 14 B B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . 17 .
. . . . . . . . . .
. . . . . . . . 25 .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
Annexe to Tab. 3 Abbreviations of countries: AR – Argentina, BO – Bolivia, CL – Chile, CO – Colombia, PE – Peru, VE – Venezuela. Abbreviations of life forms: Ch – chamaephyte, Cr – cryptophyte, G – geophyte, H – hemicryptophyte, M – moss, P – phanerophyte, T – therophyte, uk – unknown. Further rare species: In col. 3: Adesmia parvifolia 17; in col. 4: Carex aueri 25, Cerastium junceum 25, Chenopodium carnosulum 25; in col. 5: Descurainia sophia 25, Leucheria purpurea 25; in col. 7: Polygonum brasiliense 25; in col. 8: Chenopodium vulvaria 25; in col. 9: Carex sorianoi 34, Taraxacum gilliesii 34; in col. 10: Adesmia villosa 17, Carex incurva 34, Plantago maritima 17, Polygala darwiniana 17, Senecio filaginoides 17; in col. 11: Carex incurva 34; in col. 13: Arjona pusilla 100, Carex vallis-pulchrae 100; in col. 15: Discaria prostrata 20, Gentianella multicaulis 40, Ranunculus peduncularis 40, Scirpus macrolepis 20; in col. 16: Anemone multifida 25, Erigeron patagonicus 13, Gentianella multicaulis 88, Luzula chilensis 25, Nastanthus agglomeratus 13, Scirpus macrolepis 13; in col. 17: Epilobium nivale 40, Lepidium bonariense 20, Nastanthus agglomeratus 20, Ranunculus peduncularis 20; in col. 18:
15 B . . . . . . . . . . . . . . . . . . . . . 20 . . . . . . . . . . 20 . . . . . 40 . 20 . . . . . . .
16 B . . . . . . . . . . . . . . . . . 50 . . 13 25 . . 13 . . . . . . . 63 . . . . . 50 . 25 . . . . . . .
17 B . . . . . . . . . 20 . . 100 . . . . . . . 20 . . . 80 . . . . . . . . . . . . . . . 100 . . . . 100 . .
18 B . . . . . . . . . . . . 20 . . . . . . . 20 40 . . . . . . . . . . 20 . . . . . 40 . 60 . . . . . . .
19 B . . 10 . . . . . . . . . . . . . 20 . . 40 . . . . . . . . . . . . . . . . . . 40 . 30 . . . 40 . . .
20 B . . 33 . . . . . 25 . . . . . . . . . . . . 33 . . . . . . . . . . . . . . . . 42 . 17 . 25 . 8 . . .
21 B . . . . . . . . . . . . . . . . . 80 . 10 . 40 . . . . . . . . . . . . . . . . 20 . 50 . . . . . 20 .
22 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
66 . . 66 . . . 100 . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
10
13
.
.
.
.
.
.
.
33
.
.
Anemone multifida 20, Deschampsia caespitosa 20, Mimulus luteus 20, Senecio breviscapus 20; in col. 19: Acaena macrocephala 20, Discaria nana 10, Elymus angulatus 10, Geranium sessiliflorum 20, Olsynium junceum 10, Patosia clandestina 30, Rytidosperma glabrum 10, Senecio fistulosus var. ochroleucus 10, Senecio linariifolius 20, Silene antarctica 10; in col. 20: Acaena ovalifolia 8, A. sericea 42, Apera interrupta 17, Boopis graminea 8, Draba australis 17, Erigeron patagonicus 17, Gamochaeta stachydifolia 25, Geranium sessiliflorum 33, Hypochaeris acaulis 25, Olsynium junceum 17, Poa tristigmatica 42, Vicia magellanica 17; in col. 21: Deschampsia caespitosa 30, Epilobium barbeyanum 30, Ranunculus peduncularis 10, Stellaria alsine 10; in col. 22: Chenopodium pallidicaule 33, Portulaca perennis 33; in col. 23: Aristida humilis 20, Euphorbia ovalifolia 20, Festuca dolichophylla 60, Geranium sessiliflorum 20, Hypseocharis tridentata 20, Solanum acaule 20, Trifolium amabile 60; in col. 24: Agrostis breviculmis 75, Arctophyllum nitidum 25; in col. 25: Carex acutata 67, Pernettya prostrata 67; in col. 26: Alchemilla barbata 33, Draba pamplorrensis 33, Festuca tolucensis 67, Oritrophium paramense 67; in col. 27: Bartsia laniflora 66, Calamagrostis effusa 66, Hypericum lancioides 33, Hypochaeris sessiliflora 33, Nertera granadensis 66, Oreobolus venezuelensis 100, Xenophyllum humile 100; in col. 28: Lemna valdiviana 10; in col. 29: Puccinellia oresigena 100, Werneria pectinata 13; in col. 30: Poa perligulata 75, Werneria heteroloba 75; in col. 31: W. solivaefolia 40, W. spathulata 80; in col. 32: Juncus inflexus 83; in col. 40: Montia fontana 22; in col. 42: Aciachne pulvinata 24, Brayopsis calycina 5, Calamagrostis heterophylla 52, C. vicunarum 81, Calandrinia acaulis 5, Erigeron rosulatus 89, Gentianella brandtiana 10,
The vegetation of seasonal wetlands in extratropical and orotropical South America
13
40 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 F . . . . . . . . 10 . . . . . . 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44 F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58 H . . . . 10 . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . 30 . . 40 . . . .
59 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . .
60 H . . . . 17 . . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . 17 . . . 33 . . . . . . .
61 H . . . . . . . . . . . . . 11 . . . . . . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . .
62 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64 H . . . . . . . . . . . . . . . . . . . . . . . . . 25 . . . . . . . . . . . . . . . . . . . . 25 .
65 H . 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 . . . . . . . . . . . . . . . . . . .
66 H . . . 25 . . . . . . . . . . . . . . . . . . . . . . 75 . . 25 . . . . . . . . . . . . . . . . . .
67 I 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . 30 . . . . . . . . . .
68 I 27 . . . 9 . . . . . 18 . . . 9 . . . 9 . . . . 18 . . . . . . . 18 . . 9 . . 36 . . . . . . . . . .
69 I . . . . . . . . . . . . . . 10 . . . 30 . . . . 10 . . . . . . . . . . . . . 70 . . . . . . . . . .
70 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 . . . . . . . . . . . .
71 I . . . . . . 10 10 . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . 10 . . . . . . .
72 I . . . . . . . 75 . . . . . . . . . . 100 . . . . . . . . . . . . . . . . . . . . 25 . 25 . . . . . 50
73 I . . . . . . . . . . . . . . . . . . . . . . 25 . . . . . . . . 25 . . 75 . . . . . . . . . . . . .
74 I . . . . . . . . . . 20 . . . . . . . . . . . . 20 . . . . . . . . . . . . . . . . . . . . . 40 . .
75 I 50 . . . . . . . . . . . . . . . . . . . . . 100 . . . . . . . . . . . . . . . . . . . . . . . . .
76 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 . . . . . . .
81 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83 K . Cr Poaceae . uk Asteraceae . H Poaceae . H Apiaceae . H Asteraceae . P Asteraceae . T Linaceae . T Poaceae . H Juncaceae . T Fabaceae . T-H Boraginaceae . T Boraginaceae . Cr Brassicaceae . uk Liliaceae . T Oxalidaceae . uk Asteraceae . Ch Ericaceae . H Poaceae . H Plantaginaceae . H Poaceae . T Poaceae . H Poaceae . H Polygonaceae . T Polygonaceae . uk Poaceae . uk Poaceae . H Rosaceae . Ch Lamiaceae . uk Ranunculaceae . G Brassicaceae . uk Rosaceae . H Polygonaceae . uk Cyperaceae . Cr Cyperaceae . uk Poaceae . T Poaceae . uk Iridaceae . Ch-T Caryophyllaceae . H Asteraceae . T Fabaceae . H Fabaceae . T Fabaceae . H Poaceae . uk Poaceae . H Valerianaceae . Cr Scrophulariaceae . H Scrophulariaceae . T Poaceae
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . 10
. . . . . . . . . .
. . . . . . . . . .
. . 10 . 10 . . . . 10
. . . . . . . . . .
. . . . . . . . . .
. . . . . . 6 . . .
. . . . . 27 91 . . 36
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. 30 . . . . . . . .
. 20 . . . . . . . .
. 17 . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
M M M M M M M M M M
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
Hypochaeris robertia 52, Lachemilla pinnata 100, Nototriche mandoniana 33, Poa chamaeclinos 29, Pycnophyllum filiforme 14, P. molle 43, Scirpus rigidus 48, Werneria apiculata 24; in col. 53: Alchemilla orbiculata 18, Anthoxanthum odoratum 9, Carex acutata 9, Galium canescens 18, Paspalum bonplandianum 9, Plagiocheilus solivaeformis 18, Sisyrinchium convolutum 9; in col. 54: Carex acutata 100; in col. 55: Cortaderia bifida 10; in col. 56: Phytolacca bogotensis 10, Vasquezia anemonifolia 10; in col. 57: Ageratina gracilis 10, Carex pichinchensis 10, Juncus capillaceus 10, Oenothera multicaulis 10, Solanum nigrum 10; in col. 58: Agrostis leptotricha 10, Habenaria pauciflora 10, Hordeum chilense 10, Plantago carrenleofuensis 10, Senecio trifurcatus 10; in col. 59: Fonkia uliginosa 40; in col. 60: Agrostis exasperata 17, Carex aematorhyncha 50, C. curta 17, C. macloviana 33, C. magellanica 17, Epilobium puberulum 17, Juncus burkartii 50, Polypogon australis 83, Valeriana leucocarpa 17; in col. 62: Cardamine tenuirostris 25; in col. 63: Polypogon australis 25; in col. 66: Habenaria paucifolia 25, Ranunculus obtusatus 25, Triglochin striata 25; in col. 68: Echinochloa crus-galli 9, Lotus uliginosus 9, Panicum capillare 18, Polypogon australis 9, Ranunculus bonariensis var. trisepalus 9; in col. 72: Euphorbia minuta 50, Herbertia lahue 100, Hordeum berteroanum 75, Linum chamissonis 50, Oenothera acaulis 25, Pasithea caerulea 50, Phalaris amethystina 100, Plantago firma 50, Ranunculus bonariensis var. trisepalus 100, Setaria pumila 75; in col. 76: Cyperus corymbosus 30; in col. 77: Anthemis cotula 30, Hordeum euclaston 30, Hypochaeris microcephala 30, Modiolastrum gilliesii 30, Sisyrinchium pachyrhizum 30, Verbena gracilescens 30; in col. 79: Sagittaria montevidensis 50; in col. 80: Paspalum dilatatum 30; in col. 81: Pas-
Bartramiaceae Bryaceae Amblystegiaceae Dicranaceae Ditrichaceae Hypnaceae Hylocomiaceae Rhacocarpaceae Pottiaceae Amblystegiaceae Nostocaceae
palum vaginatum 30, Sporobolus indicus 30; in col. 82: Chaetotropis chilensis 30, Paspalum vaginatum 70; in col. 83: Acicarpha tribuloides 20, Alternanthera paronychioides 100, Cuphea racemosa 40, Cynodon dactylon 20, Cyperus luzulae 100, Eryngium divaricatum 40, Euphorbia serpens 20, Heliotropium procumbens 60, Hyptis lappacea 20, Lepidium aletes 20, Mikania periplocifolia 60, Polycarpon tetraphyllum 80, Salix humboldtiana 20, Scoparia montevidensis 100, Sisyrinchium iridifolium 20, Spergula platensis 20, Tessaria integrifolia 60.
14
depressions originating from deflation processes, in depressions resulting from thermokarst (melting of dead ice after the Pleistocene), or in depressions over basaltic bedrock (Auer 1960, Roig et al. 1985a, Collantes & Faggi 1999). Water level fluctuations depend on snow melting and seasonality in rainfall. Precipitations are relatively low (about 250 mm per year), with maxima in summer (January) and autumn (May) (Faggi 1985). Mean annual temperature is about 6.8 °C (reference from Río Gallegos, 25.9 m a.s.l.). Duration of inundation and a gradient from freshwater to brackish water determine the species composition (Roig et al. 1985a, Faggi 1985, Collantes & Faggi 1999). Physical disturbances like aeolian erosion and sedimentation in the temporary ponds or wave effects at lakeshores result in an open vegetation canopy and a high proportion of pioneer plant species. Some species like Scutellaria nummularieafolia grow on soils compacted and degraded by trampling of pasturing herbivores. H o r d e o - A ca e ne tum is the central association of the alliance. Subassociation typicum (col. 2 + 3) colonizes the centre of deflation depressions, subassociation s c u te l l a ri e tosu m (col. 1) occurs on gravel at lakeshores (Faggi 1985). The subassociation p o e t o s u m d use ni i (col. 4 + 5) represents an advanced and more closed succession stage in temporary ponds, colonizing sites with low erosion. Des c h a m p s io p a tul a e -Al o pe c u re tu m a eq u alis (col. 7) represents an early stadium in the hydroseries, growing under long inundation periods. The perennial grass Deschampsia patula and the annual herb Veronica peregrina ssp. xalapensis characterize the D e s c h a m psi o -Al op e c ure tum , the Poetum a t r o p i d if o r m i s (col. 8) and the communities with Eleocharis pachycarpa and Plagiobothrys calandrinioides (col. 6 + 9) (Roig et al. 1985a). A last subtype of the Pl a g i ob oth ryo -A caen io n , the A d e s mi o p um i l a e -Ju nc e tu m baltici (col. 10 + 11) sensu Faggi (1985), is differentiated by Adesmia pumila, Juncus balticus (incl. ssp. andicola), Carex subantarctica, Eriachaenium magellanicum and Scirpus spegazzinianus. Most of these species are helophytes, colonizing the gravels of lakeshores. These communities are affected by a higher substrate dynamic through wave motion. The P la g i o b oth ryo -Ac a e n i on -communities are embedded into Patagonian steppe vegetation, belonging to the class Fe stuc e te a g ra c i l l i mae, or are in contact to wet grasslands (the class H ord eet e a p u b if l o r i ). Their occurrence is probably linked to the distribution of Magellan and Fuegian steppes sensu Oliva et al. (2001a) (South of Río Gallegos and the northern part of Tierra del Fuego). In higher altitudes they are replaced by Pra ti o n re p entiscommunities (see next chapter) and on saline soils by communities with Suaeda patagonica and Heliotropium patagonicum.
U. Deil et al.
Community group B: P ration repentis (Table 3, col. 12 – 21) SWV on seasonally inundated turfs in Southern Patagonia Diagnostic species: Pratia repens, Ranunculus pseudotrullifolius, Rumex maritimus, Deschampsia antarctica, Carex macrosolen. On the shores of lakes with fluctuating water level and in seasonal lagoons (local names: “mallines”, “vegas”), situated at the leeward side of the Southern Argentinean Andes between 52° and 33° S, communities with Pratia repens occur. Like Pratia longiflora further to the south in the P lagiob o th ry o -Acaenion, this species from Campanulaceae (Lobelioideae) indicates temporary inundation. It colonizes badly drained peat soils with a low pH and sometimes slightly saline conditions (Roquero 1968, Méndez & Ambrosetti 1985, Collantes & Faggi 1999, Gandullo & Schmid 2001, Gandullo & Faggi 2003, Gandullo & Faggi 2005, Méndez 2007). The plant cover is dominated by low growing chamaephytes, hemicryptophytes and mosses, while therophytes and geophytes are poorly represented. These turfs are submitted to a high pasture pressure (Collantes & Faggi 1999). In the southern geographic range (near Río Turbio), these communities have been observed between 100 and 700 m a.s.l. (Méndez & Ambrosetti 1985), while in the north (in the province Neuquén, Argentina) they rise up to the montane belt (1,400 to 3,250 m a.s.l.) (Gandullo & Schmid 2001, Gandullo & Faggi 2003, 2005, Méndez 2007). The yearly precipitations in both geographical ranges are very different: In South Patagonia they reach about 400 mm per year, the lagoons become dry in midsummer (Oliva et al. 2001b, Gandullo & Schmid 2001). In the Provincial Park Copahue (Neuquén) the precipitation exceeds 1,000 mm per year (Gandullo & Faggi 2003). The P ratio n -communities (col. 12 to 18) are in contact to perennial wetlands of the class Calthetea sagittatae and to steppe vegetation of the class Festucetea gracillimae. A hydroseries was observed by Méndez & Ambrosetti (1985), with the zonation No sto co-Limoselletu m australis and Junco scheuchzerioides-Caricetum macrosolenis to Rumeci maritimi-Desch amp sietu m antarcticae, from wetter to drier conditions. The alliance P ration rep entis was subordinated by Méndez & Ambrosetti (1985) to the Hordeetea pu b iflo ri, a steppe vegetation class in the humid zones of Southern Patagonia, but the authors underline the weak floristic linkage to this class. Other communities with Pratia repens such as Co rtaderietum p ilo sae (col. 19), Azorello trifo lio lataeP lantaginetum un iglumis (col. 20) and Carici gayanae-Eleocharietum alb ibracteatae (col. 21), have been included by Gandullo & Faggi (2005) into the Calthetea sagittatae (and its alliances Calthion sagittatae and J u n cio n lesueu-
The vegetation of seasonal wetlands in extratropical and orotropical South America
r i i respectively) (see Appendix 2). With more data available in the future and a stricter delimitation of the sampling plots to the amphibic environment, the communities with Pratia repens might sort out as an independent syntaxon of high rank. The special habitat conditions for species adapted to seasonal inundation are also indicated by the occurrence of diagnostic species from other SWV such as Arenaria serpens, Navarretia involucrata and Limosella australis. Moorland pools and inundated bog hollows in hard cushion mires of the Andean belt: Community groups C to E The climax formations of the Andean belt above the forest line are Páramo and Puna. In contact to this zonal vegetation hard cushion mires, fens and swamps occur at edaphically wet sites such as down slopes with soaking water or depressions in the intramontane plains (often endorheic) and kettle holes. This azonal vegetation type, ranging from Venezuela to Chile and Argentina, was summarized in the class P la n t a g in i r i gi d a e -D i sti c hi e te a m usco idis (Rivas Martínez & Tovar 1982). Embedded into these bog and fen vegetation complexes we find pools with submerged macrophytes (when permanently inundated) or SW-species colonizing the amphibic zone (when seasonally submerged). The seasonal wetland bog hollows and muddy pools at high altitudes of the Andes are created by cryoturbation, by solifluction and by snow melting. The SWV does not have species in common all over the Andean chain, but vicarious representatives from several genera such as Oritrophium, Isoëtes, Limosella, Lachemilla, Muhlenbergia and Ranunculus. The community groups D and E are linked together by the matrix species of the hard cushion mires such as Distichia muscoides, Plantago rigida and Oxychloe bisexualis, which are surrounding the bog hollows (Ruthsatz 1995, Galán de Mera et al. 2003). Common elements can also be found among the submerged macrophytes with Potamogeton (P. illinoensis and P. filiformis), Myriophyllum (M. quitense, M. elatinoides) and Isoëtes (I. boliviensis, I. boyacensis). Community group C: Muhlenbergia fastigiata-Distichlis humilis-communities (Table 3, col. 22 – 23) Seasonal pools in the semi-desert highlands of NW Argentina Diagnostic species: Distichlis humilis, Marsilea mollis (= M. punae), Muhlenbergia fastigiata, Eleocharis acicularis, Bouteloua simplex, Tarasa tarapacana, Eragrostis nigricans, Rorippa nana, Dichondra argentea, Munroa decumbens, Plagiobothrys congestus. The vegetation of seasonal freshwater lakes in the Altiplano of NW Argentina was studied by Ruthsatz (1977). Shallow depressions in the Puna at an altitude between 3,500 and 3,800 m a.s.l. are filled with water during summer up to a depth of 30 to 50 cm, and are
15
desiccating in winter. The plant cover is dominated by dwarfish geophytes (Distichlis humilis, Eleocharis acicularis) and hemicryptophytes (Muhlenbergia fastigiata, Festuca dolichophylla, Marsilea mollis, Plagiobothrys congestus), with sporadic annuals such as Rorippa nana, Tarasa tarapacana and Munroa decumbens. The Poacee Muhlenbergia fastigiata is regarded as the most characteristic species of this vegetation type by Ruthsatz (1977), because Distichlis humilis (the most constant species) also occurs under saline conditions. Some of the diagnostic species, first of all the annuals, are not restricted to SWV, but occur also in weed communities (Eragrostis nigricans) and in annual pastures. Bouteloua simplex, Tarasa taracapana, Munroa decumbens amd Plagiobothrys congestus are ranked by Navarro & Maldonaldo (2002) as character species of the different associations of the Taraso taracap anae-M uh len b ergion p eruvianae (Ch o n d ro so mo simp licis-M uh len b ergietea p eruvianae), a therophytic pasture class of Andean distribution. Two communities are distinguished: The Marsilea puna-Eleocharis acicularis-community in the long inundated and late emerging central parts of the depressions, and the Muhlenbergia fastigiata-Distichlis humilis-community s.str. at the outer fringes. The latter community has the annuals Crassula peduncularis (= C. paludosa) and Limosella lineata in common with the Crassu letalia pedu n cularis-venezu elensis-communities. Community group D: Gentiana sedifolia-Carex bonplandii- and Gentian o -Oritro p h ion -communities (Table 3, col. 24 – 27) Bog hollows and seasonal flooded turfs in the Super-Páramo of Venezuela and Páramo of Colombia Diagnostic species: Gentiana sedifolia, Carex bonplandii, Isoëtes cf. lechleri, Rhizocephalum candollei, Oritrophium limnophilum, O. venezuelense, Calamagrostis coarctata, Hypericum juniperinum, Bartsia pedicularoides, Cortaderia hapalotricha, Lycopodium schneei, Lachemilla sprucei, Calamagrostis chrysantha, Ophioglossum crotalophoroides. In his vegetation monograph about the SuperPáramo-vegetation (above 4,000 m a.s.l.) of the Sierra Nevada de Mérida in Venezuela, Berg (1998) described the following SWV: Rhizocephalum candollei-bog community (an impoverished uppermost outlier of the Oritrophio limnophilae-Wernerietum pygmaeae Cleef 1981) (col. 24), Carex bonplandiiLachemilla sprucei-community in the variant with Ophioglossum crotalophoroides under stagnant water (col. 26), and an open turf, subjected to heavy grazing, with Oritrophium venezuelense as dominant species (col. 25). A quite similar community is recorded from the Páramo belt (3,300 to 3,800 m a.s.l.) in the Eastern Cordillera of Colombia by Rangel & Ariza (2000) as Oritrop h io peruvianae-Oreo boletu m venezu elensis (col. 27).
16
Fragments of SW in cushion mires in the Páramo-belt of Colombia and Ecuador are mentioned by different authors: Diagnostic species in bogs of the Western Cordillera of Colombia are Isoëtes andina and Eryngium humile (Rangel et al. 2005), on Volcan Chiles at the border of Ecuador and Colombia Sphagnum ssp. and Juncus stipulatus (Coombes & Ramsay 2001), and in Central Colombia Cotula minima and Oritrophium limnophilum (Salamanca et al. 1992). Sporadically occurring SWV-species are recorded from bogs in the surroundings of Bogotá (Colombia) by Sánchez & Rangel (1990). Several diagnostic species of community group D such as Gentiana sedifolia, Cortaderia hapalotricha and Oritrophium spp. seem to be diagnostic taxa of the G e n t i a n o - O r i trop hi o n sensu Cleef (1981) in Colombia respectively are considered by Moscol Oliveira & Cleef (2009) as character species of the P a e p a l a n t h o m u sc o si -O re ob ol i o n cleefii, a vegetation type of cushion bogs with muddy hollows, embedded into the bunch grass Páramo of northern Ecuador. Community group E: Lilaeopsion andinae (= L. maclovianae) (Table 3, col. 28 – 41) SWV in hollows of hard cushion bogs of the altiplano from S Peru to NE Chile and NW Argentina Diagnostic species: Lilaeopsis macloviana, Cotula mexicana, Lachemilla diplophylla, Mimulus glabratus, Ranunculus cymbalaria, R. flagelliformis, R. limoselloides, R. trichophyllus, Isoëtes lechleri, I. boliviensis, Arenaria serpens, Crassula connata, Limosella americana. In their vegetation monograph about the settlement area of the ethnic group Kallawaya in the Bolivian altiplano N of Lake Titicaca (in the actual National Park Ulla Ulla), Seibert & Menhofer (1991, 1992, 1993) described provisionally the alliance Lila e o p s i o n a n di n a e . Lilaeopsis macloviana (syn. L. andina) is a dwarfish, creeping Apiaceae with Juncuslike leaves. It colonizes muddy amphibious substrates over a peat layer or fresh sediments with mineral soil. In the tropical climates of South America this species is restricted to the high altitudes of the Andes, in the austral-temperate parts of South America it declines to the planar and colline belt (Affolter 1985). The vegetation records assembled here in the Lil a e o p s io n are restricted to the Andean part of the distribution of Lilaeopsis macloviana. It includes both wet and dry Puna (sensu Galán de Mera et al. 2003), located in the Andean highlands (altiplano) over 3,000 m a.s.l. and between 15° and 25° S. This zone includes SE Peru, E Bolivia, NW Argentina and NE Chile. The mean annual temperatures vary between 10 °C and 5 °C, approximately. Frequent frost at night, cryoturbation, solifluction, and needle ice formation are physical stress factors at these altitudes. The seasonal wetlands are mostly flooded with oligotrophic to mesotrophic freshwater by snow melting
U. Deil et al.
(Galán de Mera et al. 2003) or delivered with water from springs. Beside the hydrogeophytic life form (Lilaeopsis macloviana, Isoëtes lechleri), annuals (Crassula connata, Ranunculus flagelliformis, Muhlenbergia spp., Limosella ssp.) and dwarfish rosulate hemicryptophytes (Cotula mexicana, Lachemilla diplophylla) dominate this vegetation type. The typical associations of the Lilaeo p sion seem to be Ranu nculetu m flagellifo rmis (col. 35) and Crassuletum con n atae (col. 40). The first association occurs in oligotrophic bog hollows at 4,200 to 4,350 m a.s.l. It is also recorded from the province of Cochabamba in Bolivia by Molina et al. (2007) (under Callitriche heteropoda-Ranunculus flagelliformis-community, col. 36). In the Páramo-belt of Colombia, Ranunculus flagelliformis is associated with Lilaeopsis schaffneriana (Rangel & Ariza 2000, see cluster G). The Crassu letu m con n atae occurs in 3,800 to 4,250 m a.s.l., in shallow (up to 20 cm deep) freshwater pools, desiccating in the dry season (April to October). At longer submerged sites respectively in the aquatic phase the Crassu letu m con n atae is replaced by the Isoëtes lechleri-community (col. 38), Hyd rocotyletum ranu n culoides (col. 39), an d Ranuncu letu m tricho p h y lli (col. 41) (Seibert & Menhofer 1991). The sites are subjected to heavy grazing by lamas and alpacas. Eutrophication promotes the abundance of Hydrocotyle ranunculoides (Ramírez & Beck 1981). According to our syntaxonomic synopsis (Appendix 2) the following rankless communities should be included into the Lilaeo p sion : The Hypsela oligophylla-community, variant with Lilaeopsis macloviana and Ranunculus cymbalaria from NW Argentina (col. 32, Ruthsatz 1977), Ranunculus uniflorus-Potamogeton filiformis- and Lachemilla diplophylla-Lilaeopsis macloviana-communities from Bolivia (col. 33 and 34) (Molina et al. 2007). The Ran u n culetu m limo selloidis (col. 37), arranged by Galán de Mera et al. (2003) into the P otamion illin o ensis, seems to be better included into the Lilaeo p sion . It is part of a group of bog hollow communities with vicarious Ranunculus species: Ranunculus madonianus in central Peru (Galán de Mera 1995), R. limoselloides in southern Peru (Galán de Mera et al. 2003), central and northern Colombian high plains (Cleef & Rangel 1986, PintoZárate & Rangel 2010), and R. trichophyllus in NE Bolivia (Seibert & Menhofer 1992). A SWV with Ranunculus uniflorus, R. cymbalaria, Lachemilla diplophylla, Cotula mexicana and Gentiana prostrata, embedded into a cushion mire of Oxychloe bisexualis and Werneria pygmaea, is recorded from the altiplano in NE Chile by Luebert & Gajardo (2005). The occurrence of Lilaeop sion -communities can be further concluded from the transect data, sampled by De la Barra (2003) in the Bolivian altiplano and by Terneus (2002) in Ecuador. The micro-patches of seasonal wetlands, located in small hollows within Distichia-hard cushion mires,
The vegetation of seasonal wetlands in extratropical and orotropical South America
along small intermittent water runnels and drainage lines, and at the fringes of minerotrophic fens with Plantago tubulosa, Werneria pygmaea and Eleocharis tucumanensis, were treated by most authors as variants or synusia of annuals in a matrix of perennial bog respectively fen species, but not as separate vegetation types. The following units contain dwarfish annuals on muddy, poorly aerated soils, embedded into fens on the Andean and Subandean belt (4350 – 4450 m a.s.l.): E le o c h a ri to tuc um a n e n si s-Pl a ntagin e t u m t u b u lo sa e from Bolivia (Seibert & Menhofer 1992; col. 28), We rn e ri o py g m a e a e - P u cc i n e l li e t u m o r e si g e na e from Peru (Galán de Mera et al. 2003; col. 29), Lilaeopsis-variants of the O x y c h l o e t u m a n di n a e and the D i sti c hietu m m u s c o id i s in NE Chile (Ruthsatz 1995, col. 31 and 30; see also Ruthsatz 1977 and Luebert & Gajardo 2005 for NE Chile, and L a c he m i l l o -L i l aeop s i d e t u m a n d i n ae sensu Rivas-Martínez & Tovar 1982 for Peru). In the We rne ri o-Puc c i n e l l i etum, occurring in endorheic depressions, Lilaeopsis macloviana grows in brackish and saline water. The phytogeographical pattern with D i sti c hi o n m usc oides in the North and Central Andes, and O x yc hlo ion a n d in a e ( = Wern e ri o n p yg m a e a e ) in the South Andes (Ruthsatz 1995), linked to the shift from summer precipitation maximum in the north to a winter maximum in the south, is not reflected in the SWV of the L i la e o psi o n. The syntaxonomic position of the L i l a e o psio n sensu Seibert & Menhofer (1991) is unclear at the moment. Galán de Mera et al. (2002) consider it as synonymous with Ti l l a e i o n p a l u do si sensu Cleef (1981). This is not supported by our data. Seibert & Menhofer (1992) discuss the possibility to describe a class of its own for annual turfs in the Puna and to include L i l a e o psi o n into this class. Such a class is mentioned by Galán de Mera (1995), the C r a s s u l e t e a c o nn a ta e , with therophyte and pioneer communities in the altiplano (Ta ra so tarap a c a n a e - M u h l enb e rg i on , Cho nd rosomo s i m p l ic i s - M u h l e nb e rg i e ta l i a pe ruv i a n ae) respectively in the coastal deserts of Peru and Northern Chile (C r a s s u le ta l i a c o nn a ta e ). Open patches in swamps, at lakeshores and at riversides in Peru with Isolepis cernua, Muhlenbergia ligularis and Cotula minima, mentioned by Gutte (1986) from Central Peru, will also belong to this unit. Finally, a number of diagnostic species of the H y pse l o re ni fo r misP l a n t a g in i o n t u bu l osa e such as Hypsela reniformis, H. oligophylla, Ranunculus uniflorus, Gentiana prostrata and Carex maritima might turn out to be character species of SWV. More relevés, sampled on smaller, more homogenous plots are necessary to decide whether L i la e o psi o n, Ta ra so-Muh l e nb erg i o n and H y p s e l o-Pl a n ta g i ni o n should be kept as different entities and to which higher syntaxon they belong. Community group F: Limosella-communities (Table 3, col. 42 – 44)
17
SWV in hollows of hard cushion bogs of the altiplano from E Bolivia to Central Andean Peru Diagnostic species: Limosella australis, L. aquatica (incl. var. tenuifolia), Lilaea scilloides, Muhlenbergia ligularis, M. peruviana. These communities hold a transitional position between the community groups E and G. They are at the moment recorded from the wet Puna belt in Eastern Bolivia to the Andes of Central Peru, in altitudes between 4,100 and 4,450 m a.s.l. They have a pioneer character, colonising muddy substrates with a very short terrestrial ecophase (Gutte 1980, Gutte 1988, Seibert & Menhofer 1992). These patches, dominated by dwarfish annuals (Limosella spp., Muhlenbergia spp., and Lilaea scilloides), are microhabitats, embedded into hard cushion mires dominated by Distichia muscoides and Plantago tubulosa. To the deeper parts of the pools, the Limosella vegetation is in contact with communities floating in shallow water. The Callitrich o hetero p odaeAlo p ecu retum hitch cockii (= A. aequalis) is recorded by Gutte (1988) for shallow (up to 1 m deep) oligotrophic lakes in the High Andes of Central Peru, at altitudes between 4,200 and 4,400 m a.s.l. A subassociation with Lilaea scilloides (= Lilaeeto su m subu latae sensu Gutte 1988) and Crassula peduncularis occurs in amphibic situations on the lakeshores (col. 44). The Limoselletu m aqu aticae sensu Ramírez & Beck (1981) colonizes the amphibic shores of eutrophic lakes in the Bolivian Altiplano. It is replaced by the M yriop h y lletum elatinoidis and the M yriop h y llo -P otametum st ricti in permanently shallow water. The Juncaginaceae Lilaea scilloides seems to be a good indicator for the transitional amphibic situation (Cabido & Acosta 1986, Cabido et al. 1990). Community group G: Limoselletea australis, Crassuletalia p edu n cularis-venezu elensis (Table 3, col. 45 – 57) Amphibic habitats at lakeshores in the super-forest belt of the wet tropical Andes and mountainous parts of extratropical temperate South America Diagnostic species: Crassula peduncularis, C. venezuelensis, Lilaeopsis schaffneriana, Elatine triandra, E. chilensis, Isoëtes karstenii, I. precocia, J. bufonius, J. ebracteatus, J. pallescens, J. uruguensis, Limosella australis, L. lineata, Soliva triniifolia, Lilaea scilloides. Amphibic habitats at lakeshores and in shallow pools with fluctuating water level in the Andes, colonized and dominated by annual Crassula (= Tillaea) species, were first described by Cleef (1981) from the Eastern Cordillera in Colombia, and arranged provisionally in the Limo selletea australis. This class and its syntaxa of lower rank were recently validated by Cleef et al. (2008). Because Crassula peduncularis and C. venezuelensis are often difficult to differentiate morphologically and because both species can co-
18
occur and have a similar ecological and sociological behaviour (Bywater & Wickens 1984), we could not separate them within the data set and merged both taxa. Besides the annual Crassula species, Lilaeopsis schaffneriana is another taxonomic uncertainty in the data set. Without ripe fruits, the species is hard to separate from L. macloviana (Affolter 1985). Field records in the relevés are often based upon sterile material and it is therefore not unequivocal which Lilaeopsis-species occurs where. Cleef et al. (2008) use both Crassula species to define and name the central community Crassu let u m p e d u n cul a ri s-v e ne z u e l e nsi s, including Til la e e t u m p al u do sa e sensu Cleef (1981) (col. 49) and C r a s s ul e tum p e d un c u l a ri s sensu Salamanca et al. (2003) (col. 48). Both records come from Colombia, from the Eastern Cordillera respectively the Ruiz-Tolima Massif, and from altitudes between 3,330 and 4,250 m a.s.l. According to Cleef (1981), the community is expected to be distributed from Colombia and Venezuela via Ecuador and Peru to Northern Argentina, on nutrient poor sandy soils at the amphibic shores of oligo- to mesotrophic freshwater lakes and small pools. Limosella australis is a rare member of these communities, but exclusively restricted to this habitat (Cleef et al. 2008). A Limosella australis-community is documented by Cleef (1981; col. 50) from the Eastern Cordillera in Colombia, and recorded by Cleef et al. (1983) for the Central Cordillera. Dwarfish turfs in the littoral zone of oligotrophic lakes in the Chingaza National Park in the Eastern Cordillera of Colombia were described by Rangel & Ariza (2000) as L i l a e op si o sch affn e r ia n a e - R a n u nc ul e tum fl a g e l l i fo rm is (col. 52), R a n u n c u l o n ub i g e no ri s-Ca ri c e tu m bo n p l a n d ii (col. 53) and H yd roc oty l o ra nu ncu loid i s - C a r i c e t u m a c u ta ta e (col. 54) and included by these authors in the alliance Cra ssul o -E l e o charit i o n s t e n o c a rp a e . These records confirm and specify earlier observation by Franco et al. (1986). In seasonal pools on rock outcrops in the Cordoba Mountains in NW Argentina (a mountain range in the East of the Andes at the 31° 20’ S), Crassula peduncularis is associated with Limosella lineata (Cabido 1985, Cabido et al. 1990; col. 45). It is the southernmost record of this vegetation type. The Ranunculus cymbalaria-Crassula venezuelensis- and the Elatine triandra-Crassula venezuelensis-communities sensu De la Barra (2003) can be included into the C r a s s u li o n p e d un c u l a ri s-v e n e z ue l ensis. C r a s s u li o n pe du nc ul a ri s-v e ne z u e l en sis is the most widespread type of SWV in our study area, distributed in the Páramo (Colombia), the dry Puna (E Bolivia) and in the Córdoba mountains (Central Argentina). It ranges from 5° N to 32° S (Fig. 3). In the tropical parts of the Colombian Andean Cordillera and in the Bolivian Altiplano, the L i m o se lleteacommunities grow above the forest belt. In extratropical Argentina they decline to the mountainous belt (1,900 m a.s.l.; Cabido et al. 1990).
U. Deil et al.
Limo selletea au stralis-communities are part of a zonation complex at lakeshores. Towards the centre of the lake, they are replaced in shallow water by submerged macrophyte communities characterized by Myriophyllum quitense, M. elatinoides, Potamogeton illinoensis, P. filiformis, Elodea potamogeton, Isoëtes boliviensis, I. precocia and I. bocaycensis, in deeper water by Ditricho su b mersiIsoëtio n karsten ii-communities (see Appendix 2). Such transitional stands are documented by col. 46 (M yriop h y llo elatino ides-P o tamo getonetum illino ensis from Lake Tota in Colombia, Rangel & Aguirre 1983), and col. 47 (Isoë tetum karsten ii and Isoëtetu m p almeri in the Eastern Cordillera in Colombia, Cleef 1981) (for a recent synopsis about Isoëtes karstenii-vegetation see Cuello & Cleef, 2009). This hydroseries resembles the sequence from Iso ëto-Nan o jun cetea to Potamogeto n etea and Isoëto-Litto relletea in the Northern Hemisphere. Towards the terrestrial gradient, Limo selletea au stralis-communities are in contact with marsh vegetation, dominated by perennial helophytes such as Juncus ecuadorensis, J. uruguensis, J. achalensis, and Eleocharis macrostachya. Rangel & Aguirre (1983) studied helophyte and hydrophyte vegetation at Lake Tota in the Eastern Cordillera of Colombia, at 3,000 m a.s.l. Mechanical disturbance by strong wave movement creates open patches with sandy soils or peat in the littoral rush communities (P olygon o pu n ctati-Scirp ion (= Sch oenop lectio n ) califo rn ici). The open patches are colonized in the amphibic ecophase by SW species such as Crassula peduncularis, Elatine chilensis, Juncus bufonius, Lilaeopsis schaffneriana, Hydrocotyle ranunculoides, Cotula coronopifolia and Ranunculus flagelliformis. These dwarfish annuals are missing, when the amphibic lakeshores are not disturbed by wave movement and when nutrient rich substrate favours tall-growing, productive annuals and perennial rhizomatous geo- and helophytes. Such a situation is documented by Hernández-R. & Rangel (2009) from a wetland in the surroundings of Bogotá in Colombia at 2,500 m a.s.l. They described the P o lygon o pu n ctati-Bidention laevis. It has some species in common with the P o lygon o -Scirp ion and with the Ludwigia peploides-communities in the Paraná lowland (cluster J), such as Polygonum punctatum, Bidens laevis, Ludwigia peploides and Hydrocotyle ranunculoides. Community group H: Littorellio n australis and Sen ecion i-Eleo charietalia pach y carpae (Table 3, col. 58 – 66) SWV on shores of oligotrophic and mesotrophic lakes in the temperate climate of Chile and Argentina Diagnostic species: Littorella australis, Eleocharis pachycarpa, Juncus stipulatus (incl. var. chilensis), Isolepis inundata, Senecio zosteraefolius, Equisetum
The vegetation of seasonal wetlands in extratropical and orotropical South America
bogotense, Plagiobothrys corymbosus, Anagallis alternifolia (incl. var. repens), Hydrocotyle chamaemorus, Ranunculus hydrophilus, R. trullifolius, Azorella trifoliolata, Juncus arcticus, Leptophyllochloa micrathera, Carex decidua, C. barrosii, Downingia pusilla, Eleocharis maculosa, Isoëtes savatieri, Lythrum hyssopifolia, Lindernia procumbens, Elatine chilensis, Myosurus apetalus. On both sides of the Andean chain between 38° and 42° S we find lakes with oligo- to mesotrophic water with a fluvio-glacial hydrological regime. The fluctuations of the water level in this temperate climate zone are moderate, depending from interannual variations in rainfall and snow melting in spring. Substrates on the shores of these lakes, which are remnants of big glaciers reaching the Andean foreland during the Pleistocene, are sand and gravel. The vegetation colonising the transition zone from shallow water to seasonal terrestrial habitats has been studied by Oberdorfer (1960) in the 9th region of Chile (first of all around Lake Villarica, Province of Temuco) and by Eskuche (2005) in NW Patagonia in Argentina (first of all around Lake Nahuel Huapi, Province of Neuquén). The S e n e c i o ni z o ste ra e fo l i i -L i ttore l letu m a u s t r a l is ( c o l . 5 9 ) is most of the time submerged. The A r e n a r i o se rp e n ti s-Az o re l l e tum trif ol ia t a e (col. 61) is an open vegetation type with creeping hemicryptophytes, colonizing sandy shores submitted to wave effects. Further to the land, it is replaced by the C a ri c i de c i d ua e -S e n e c i onetum z o s t e r a e f o l ii (col. 58), a dwarfish turf reaching high cover values (95 to 100%). Cra ssul o ped u n c u l a r i s - L i m o s el l e tum l i ne a ta e (col. 63) and D o w n in g i o pu si l l a e -Isoë te tu m sa v atieri (col. 62) grow on rocky littoral shores with soaking water. The H y dro c o tyl o c ha m a e m ori -Juncet um a r c t ic i (col. 60) is a community with heterogeneous floristic composition and unclear ecology. All these communities are hitherto recorded only from Argentina (Eskuche 2005). Oberdorfer (1960) described from Chile the G ra ti ol o pe ruvian iL it t o r e ll e t u m a u stra l i s (col. 66), situated in the mean water level, and the S c i rpo i n un da t i-Lim o s e l le t u m a q ua ti c a e (col. 65), located further to the landside. Ju nc e tu m pl a ni fo l i i (col. 64) is a fragmentary community along ditches, footpaths, furrows and other secondary habitats. Community group H is linked together by species such as Eleocharis pachycarpa, Equisetum bogotense, Juncus stipulatus, Isolepis inundata a.o., which range over a broader inundation gradient. Other species are either restricted to the aquatic (Littorella australis, Anagallis alternifolia, Hydrocotyle chamaemorus, Ranunculus hydrophilus) respectively the semi-terrestrial environment (Downingia pusilla). With more vegetation data available in the future and with a stricter application of abiotic homogeneity to the sample sites, community group H might be split into two high ranked syntaxa, corresponding to the provisional class L i tto re l l e te a a ustra-
19
lis sensu Oberdorfer (1960) for the aquatic and the order Sen ecion i zo steraefolii-Eleo charietalia pach y carp ae sensu Eskuche (2005) for the amphibic habitats. At the moment all the vegetation samples of community group H are restricted grosso modo to 40° S both in temperate Chile and on the east side of the Andes in Argentina (Fig. 3), but this vegetation might have a wider geographical distribution in the temperate pre-Andean zone of South America where oligotrophic lakes occur. Some diagnostic taxa of the Senecioni-Eleocharietalia grow also in the tidal zone of seashores along the Magellan Straits (the character species of the class Asteretea vahlii sensu Eskuche 2005). Community group I: J un cio n p lan ifolii, Nanoju n cetea australis (Table 3, col. 67 – 75) SWV of vernal pools in the temperate and mediterranean climate of Chile Diagnostic species: Navarretia involucrata, Gratiola peruviana, Eryngium pseudojunceum, Centipeda elatinoides, Plagiobothrys pratensis, Polygonum hydropiperoides, Rumex acetosella, Phyla nodiflora, Gnaphalium cymatoides, Cyperus reflexus, Mentha pulegium, Leontodon taraxacoides, Lythrum portula, Cardamine valdiviana, Oldenlandia uniflora, Juncus bufonius, Nierembergia repens, Eryngium humifusum, Cyperus eragrostis, Gamochaeta spiciformis, Cicendia quadrangularis, Anagallis minima, Blennosperma chilense, Bromidium trisetoides, Deschampsia danthonioides, Dioscorea fastigiata, Hydrocotyle cryptocarpa, Lasthenia kunthii, Lotus subpinnatus, Micropsis nana, Juncus procerus, Ranunculus monanthos. Like in other regions of the world with a winter rain precipitation regime, shallow depressions which are inundated in winter and early spring can be expected in the mediterranean and submediterranean climate of Chile. These seasonal wetlands belong to the vernal pool type (Deil 2005a). They dry out in early summer. The most important season concerning aboveground biomass and flowering is late spring. The existence of such communities with a unique floristic composition, not occurring elsewhere in South America, can be concluded from the paper of Bliss et al. (1998) and was confirmed by a recent survey in Central Chile ranging from 32° to 40° S (Deil & Alvarez in prep.). However the data published by Bliss et al. (1998) could not be included in the data set analysed here because they are floristically incomplete and the data were either sampled on transects or the complete vernal pool with the whole inundation gradient was taken as one sample plot. At the moment, phytosociological data from vernal pools in Chile are available from 39° to 41° S, representing the transition zone between temperate and submediterranean bioclimate of Chile. The localities are mostly situated in the rain shadow of the coastal ranges (Ramírez et al. 1994, San Martín et al. 1998).
20
Seasonal wetlands occur in shallow depressions and in intermittent water runnels over clayish and sandy sediments. Geophytes, hemicryptophytes and short living annuals are the dominating life forms amongst the vascular plants. The best studied association is the L e on to d o s a x a t i li s - P i p t oc ha e ti e tum m on te v id ense ( c h i le n s is ) (Ramírez et al. 1994, Alvarez 2008). In a micro relief similar to the Australian gilgai soils (Alvarez 2008), the subassociation na v a rretieto s u m i n v o lu c ra ta e (col. 71 and 72) colonizes the lower parts, embedded into a matrix of non-inundated grassland (L e on tod o-Pi pto c h a e ti e tu m mic r o p s ie t o s u m). The latter unit is similar to the annual grassland in Central Chile described by Deil et al. (2007). Further communities in vernal pools in the 8th region of Chile are the E l e oc ha ri e tu m pach y c a r p a e (col. 68), the Eleocharis pachycarpa-Lythrum portula-community (col. 74) and the Eryngium pseudojunceum-Centipeda elatinoides-community (col. 70). Both are replaced in the centre of the pools by the E le o c h a r ie tu m m a c ro sta c hy a e (San Martín et al. 1998; col. 67). The G n a p ha l i o c y matoidi s - P o l y g o n etum h yd rop i pe roi d i s (col. 69) is a therophyte community, germinating later in spring. Soils compacted by trampling and severe grazing are colonised by pioneer species like in the Phyla nodiflora-community (col. 73), and the Pol y g o no avicul a r e - C r a s s u l e tum p a l u do sa e (Ramírez et al. 1996, San Martín et al. 1998; col. 75). At the moment, the communities of cluster I are included into the Jun c i o n p l a n i fol i i (Nano j u n c e t e a a u s t ra l i s) (Appendix 2). Both syntaxa were described by Oberdorfer (1960) in a preliminary way. Cleef (1981) and Galán de Mera (2005) consider the class N a no j un c e te a a u stra l i s as synonymous to L im o se l l e te a a ustra l i s. With more relevés available from Central Chile, a new class of Chilean vernal pools might turn out, characterized by Navarretia involucrata, Plagiobothrys spp., Eryngium humifusum, Cicendia quadrangularis, Anagallis minima, Blennosperma chilensis, Hydrocotyle cryptocarpa and Lasthenia kunthii. This unit is vicarious to the vernal pool vegetation in California (Deil 2005b). Community group J: Ludwigia peploides-, Echinochloa helodes- and Luziola peruviana-communities (Table 3, col. 76 – 82) SWV in flooded Pampa grassland in the River Salado Basin, Santa Fe province, Argentina Diagnostic species: Ludwigia peploides, Alternanthera philoxeroides, Polygonum punctatum, Paspalum paspalodes, Juncus microcephalus, Leersia oryzoides, Plantago myosurus, Eryngium echinatum, Echinochloa helodes, Amphibromus scabrivalvis, Paspalidium pludivagum, Phalaris angusta, Solanum glaucophyllum, Luziola peruviana, Marsilea ancylopoda, Eleocharis viridans, Lilaeopsis attenuata. In the floodplain west of river Paraná near Santa Fe (Argentina), seasonal ponds and lakes are embed-
U. Deil et al.
ded into a Pampa grassland, dominated by Stipa spp. (Stipa hyalina, S. neesiana, S. papposa). According to Batista & León (1992) and Perelman et al. (2001), this seasonal flooded Pampa grassland is a vegetation type restricted to the river Salado basin in Santa Fe province, but a similar vegetation pattern was recorded already by Burkart et al. (1990) from the Rio Salado Basin in the Province of Buenos Aires. Both regions are flat plains with a microrelief of some decimetres difference of altitude, resulting in a mosaic of never, short and long inundated habitats. The basin is drained to the river Paraná. Mean annual temperatures in Santa Fe area vary between 13.8 °C and 15.9 °C (from South to North), while the precipitation reaches about 900 mm per year (Perelman et al. 2001), with a maximum in summer and autumn. The drought period is in spring and early summer (León & Burkart 1998). The gleyic soils are shallow, with a low infiltration capacity and relatively high sodium saturation (Batista & León 1992). Lewis et al. (1985) documented the vegetation types of the Rio Salado basin by a constancy table. All plots were sampled twice a year and both data sets were merged, so seasonal dynamic is not visible from the data. For the temporary ponds they describe three rankless communities. The differentiating factors are duration of the flooding period, water depth and salinity. All these communities are dominated by rhizomatous perennials. Above ground biomass is developed only in the wet season. The Echinochloa helodes-community (col. 76 to 78) occurs on the edges of lakes with a medium flooding season. The Luziola peruviana-community (col. 79 and 80) forms a dense turf on sites with a shorter inundation period. The Paspalum distichum-community (col. 81) colonizes wet soils, flooded very shortly. The Eleocharis macrostachya-Lilaeopsis attenuata-community (col. 82) grows in small, shallow ponds, which dry out rarely. Lilaeopsis attenuata is vicarious to L. schaffneriana and L. macloviana in other SWV in South America. Perelman et al. (2001) confirmed the floristic and ecological results of Lewis et al. (1985) by a numerical classification of the data. They obtaining two clusters that can be included grosso modo in community group J. According to Lewis et al. (1985) these communities seem to be restricted to the Pampean phytogeographic province, nevertheless some species like Juncus microcephalus, Plantago myosurus, Paspalum paspalodes and Polygonum punctatum suggest a floristic linkage with group K. Some of the diagnostic species of community group J are also recorded from the lower reaches and the delta of the river Paraná (Kandus et al. 2003). Floristic links with seasonally flooded dune slaks at the Atlantic coast south of Buenos Aires are not strong, but exist. Eleocharis viridians for example occurs there in a Hydrocotyle bonariensis-community (Fontana 2005).
The vegetation of seasonal wetlands in extratropical and orotropical South America
Community group K: L i nd e rn i o du bi a e -M ec a r d o n ie t u m he rni a ri oi d e s (Table 3, col. 83) SWV on the emergent banks of the River Paraná Diagnostic species: Lindernia dubia, Mecardonia herniarioides, Fimbristylis squarrosa, Eragrostis hypnoides, Cypselea humifusa, Scoparia aemilii, Rorippa islandica, Plagiocheilus tanacetoides, Glinus radiatus, Soliva anthemifolia, Gamochaeta americana, Eclipta prostrata. The flood pulse of the Mato Grosso is also influencing the water level of the middle and lower reaches of the river Paraná. Eskuche (1975) studied the vegetation colonizing the river banks of Paraná near Corrientes in NE Argentina in summer and autumn, when the water level is falling and river banks become amphibic. He described the L i n de rni o dub iaeM e c a r d o n ie t u m h e rn i a ri o i de s. The fluctuation of the water level is frequent but irregularly distributed in time. The climate is hot (summer temperatures can reach over 50 °C, mean annual temperature is 22.1 °C (reference from Formosa, 65 m a.s.l.) (Rivas-Martínez & Rivas y Sáenz 2009) and is more of thermo-tropical than of extratropical character. The L i n d e r ni o -Me c a rdo ni e tum is dominated by annual herbs. Both name-giving species are Scrophulariaceae, and Eskuche (1975) underlines the role of annual taxa from the tribus Gratioleae as colonizers of muddy substrate in different parts of the world. The chorospectrum of this association includes endemics (Mecardonia herniarioides, Scoparia aemilii, and Plagiocheilus tanacetoides), taxa ranging to Mexico (Eragrostis hypnoides, Cypselea humifusa) and species widespread in the warm tropical and subtropical regions (Lindernia dubia, Rorippa islandica, Alternanthera paronychioides). L in d e r n io - M e c a rd on i e tu m was separated in a cluster of its own by the endemic taxa, but has some common species with community group J (Paspalum paspalodes, Polygonum punctatum, Plantago myosurus) and group I (Rorippa islandica, Glinus radiatus and Gamochaeta americana). Seasonal turfs in desiccating streambeds of the River Paraná in Argentina and pioneer communities, colonizing open patches within Panicum prionitis-tall grassland after extraordinary floods, have some species in common with clusters J and K (Lewis et al. 1987, Fontana 1991, Franceschi & Lewis 1991, Franceschi et al. 2000).
Discussion Classification and ordination with subsets of the data and at different taxonomic levels To evaluate the manual sorting of the data (Table 3) and to validate the resulting 11 community groups A to K, the TURBOVEG-data set was submitted to several numerical classification and ordination procedures (for details see Alvarez & Deil in prep.): 1)
21
Classification and ordination of the complete species composition, 2) Ordination at the genus level, and 3) Classification based upon a data subset of the diagnostic species (for delimitation see chapter methods). Process 2 was performed to look for common taxa within genera, which evolved regional endemics (e.g. within the genera Ranunculus, Isoëtes, Lilaeopsis, Limosella and Crassula). This should not only help to reduce the effects of taxonomic ambiguities (within genus Isoëtes for example), but also to search for sections or subgenera which evolved and speciated within the seasonal vegetation habitats. Process 3 was performed to reduce the vicinismus effect of the surrounding matrix vegetation for the habitat-internal differentiation of the seasonal wetland communities. Neither the classification based upon the complete species composition nor the classification using only diagnostic species resulted in identical community groups as elaborated by subjective manual sorting of the columns in Table 3. Well discriminated community groups are A, E, G and J by using all the species and A, B, D, E and J by classifying only with the diagnostic species. The better congruence with the manual classification was found using all the species. However, a consistent classification of the vegetation types cannot be expected for two reasons: 1) The heterogeneity of the available data: Plot size changes considerably according to authors and vicinismus effects are obvious. 2) The high inter-annual fluctuations and the strong phenological dynamic of the floristic composition on the same plot: This is a general character of SWV. In a particular year and depending on the season and the ecological conditions triggering the germination, very different species assemblages can be stimulated from the seed bank (Alvarez 2008). Nevertheless, the manual sorting is to a large extent confirmed by numerical clustering. The possibility of a phytosociological classification and characterisation is further restricted by the limited quality of the data and by the insufficient knowledge of SWV in South America. A syntaxonomic classification based on the actual data remains tentative. The ordination of the clusters is shown in Fig. 2. At both taxonomic levels (species respectively genera), some community groups are clearly separated: A and B (SWV in seasonal lagoons and on turfs in Southern Patagonia), J (flooded Pampa grassland in Central Argentina) and K (seasonal dwarfish turfs on the emerging muddy river banks of Paraná). The vegetation of moorland pools and that of inundated bog hollow in hard cushion mires of the Andean belt (groups C to F) are moderately separated, with the floristically impoverished vegetation of bog hollows in the Super-Páramo of Venezuela and the Páramo of Colombia (group D) being more different. The communities of amphibic habitats around lakes with fluctuating water level in the super-forest belt of the wet tropical Andes and in mountainous regions of extratropical South America (group G) are floristically closely related to the ephemeral lakeshore vegetation of temperate climatic regions of Chile and Argentina
U. Deil et al.
22
Fig. 2. Ordination plot according to non-metric multidimensional scaling (nMDS) of the vegetation clusters using species respectively genera composition (left plot). The species composition was used as target matrix (stress factor = 13.16) and the genus composition (stress factor = 11.50) was adapted using procrustean rotation (sum of squares = 0.1972). The bars (right plot) show the distances in the ordination diagram between both data sets (species and genera) for each cluster.
(group H). Vernal pool vegetation in the Mediterranean parts of Chile (group I) differs on the genus level more clearly from the lakeshore vegetation in the temperate bioclimates of Chile (group H) than on the species level. In general, the arrangement of the clusters at genus level is not very different from that based upon species composition. According to the floristic composition of the groups, the procrustes errors seem to be related with the number of congeneric species within the diagnostic ones, for example lower procrustes errors can be observed in community groups E and F, having many congeneric species in the genera Ranunculus, Limosella and Muhlenbergia, while high error rates are observed in the groups D and K, including no congeneric species (for details see Alvarez & Deil in prep.). Floristic differentiation of SWV in South America and an outline of phytosociological classes The classification of the available phytosociological data from seasonal wetlands in the extratropical and orotropical parts of South America resulted in a higher diversity of community groups as expected. In his global survey on SWV, Deil (2005a, Table 3) supposed the existence of two main syntaxa in the study area, namely the “amphibic habitats in the Andean belt and seasonal wetlands of the temperate lowlands” (corresponding to community groups G, H and I) and the “temporary moorland pools within hard cushion mires in the Andes” (groups C to E). At the moment, the available data do not allow a definitive classification and the establishment of a complete hierarchical syntaxonomical scheme according to the Braun-Blanquet system (Braun-Blanquet 1964) of floristic (dis)similarity from three reasons:
1) The data are too heterogeneous concerning plot size and the ecological conditions of the sample plots, 2) The taxonomic treatment of a number of frequent and diagnostic taxa is insufficient, 3) The spatial distribution of the sample plots is strongly clumped and large areas are not yet studied until now (see Fig. 1). In spite of these shortcomings, some high-ranked syntaxa can be outlined (see Appendix 2), without validating them according to the International Code of Phytosociology (Weber et al. 2000). According to the original bibliographic sources, the communities of the groups A and B are included into the classes of the surrounding matrix vegetation such as Hordeetea san tacru cen sis (wet meadows), Hordeetea pu b iflo ri (steppe vegetation) and Calth etea sagittatae (wet fens) (Faggi 1985, Méndez & Ambrosetti 1985, Roig et al. 1985a, Méndez 2007). With a more rigid definition of ecological homogeneity of the sample plots and a stronger separation of vegetation dominated by perennials respectively annuals, the communities of the seasonal wetlands in Patagonia might be separated in the future from the perennial steppe vegetation on non-flooded sites not only at the alliance level as at the moment, but might merit its own class. A similar situation like for the community groups A and B can be stated for the groups C, D, E and F: They have been included by most of the authors into the class of the Andean hard cushion mires (Plantagini rigidae-Distich ietea mu scoidis) or treated as rankless units. The inclusion into the Plantagini-Distichietea ignores the fact, that the floristic composition and life forms in the bog hollows and the ecological conditions there are very different from the surrounding hard cushion mire vegetation. The communities with Lilaeopsis macloviana (group E = Lilaeo p sion and inae sensu Seibert & Men-
The vegetation of seasonal wetlands in extratropical and orotropical South America
hofer 1991) and those with Limosella spp. (group F) might be raised to higher syntaxa. Such a class or order has only a few character species in common, but has a number of character taxa at the level of genera, subgenera or sections. Vicarious and habitat equivalent regional endemics with similar ecological traits can be found for example within amphibic annual Ranunculus (R. trullifolius, R. pseudotrullifolius, R. cymbalaria, R. flagelliformis, R. bonariensis, R. limoselloides, R. trichophyllus), Limosella (L. americana, L. australis, L. aquatica, L. lineata) and Crassula species, and shortly emerging hydrogeophytes like Lilaeopsis (L. macloviana, L. schaffneriana, L. attenuata). Further example can be found within the genera Muhlenbergia, Oritrophium, Plagiobothrys, Elatine, Eleocharis, Pratia, Hypsela, Myosurus a.o. Such a classification, based upon super-specific taxa, was applied for example by Pignatti (1969) to oromediterranean garrigues and by Deil (1994) to cliff communities with dripping and soaking water conditions. It underlines the common evolutionary history of such communities (Deil 1999). Vicariance pattern within the seasonal wetland flora are mentioned by Cleef (1981) by comparing South America and Africa and by Deil (2005a) on a global scale. To clarify are also the classes for the clusters G, H and I. Cluster G (Cra ssul e ta l i a p e d un c u larisv e n e z u e l e n s i s ) seems well placed in the Limo s e ll e t e a a u s t r a l i s sensu Cleef et al. (2008). It remains open at the moment whether community group F has to be included into this class and how the L im o s e l le t e a a u stra l i s sensu Cleef (Cleef 1981, Cleef et al. 2008) are delimitated from clusters H and I respectively the L i ttore l l e te a a ustralis and N a n o ju n c e te a a ustra l i s sensu Oberdorfer (1960). Finally, the alliance name Jun c i o n pl a nifolii does not seem to be justified, because Juncus planifolius is not an important diagnostic species for cluster I (see Table 3). And some communities of this group (e. g. L e o n t o do sa x a ti l i s-Pi p toc ha e ti etum n a v a r r e t ie t o s um ) can be considered as the southernmost outliers of a separate (still undescribed) class for the vegetation of vernal pools in Mediterranean Chile (Deil & Alvarez in prep.). The clusters J and K might remain as independent syntaxa. In the future, cluster K might be grouped into a tropical SWV class, when classified together with data from the Mato Grosso floodplain. The Pampean floodplain communities of cluster J seem to be related to tall herb vegetation at lakeshores in the montane belt of Colombia. The Pol y g o no p uncat i - B id e n t i o n l a e v i s-communities (HernĂĄndezR. & Rangel (2009) and the Pol y g o no pu nctatiS c ir p io n c a l iforn i c i -communities (Rangel & Aguirre 1983), both described from Colombia, but occurring elsewhere in South America, might belong to a not yet described class, vicarious to the B ident e t e a t r ip a r t it a e in the Western Palearctic region.
23
Distribution of the community groups and the differentiating environmental factors We expected a quite azonal character of the seasonal wetland vegetation and the distribution of some plant communities or community groups over a broad range of macroclimatic conditions. Such a spatial pattern can only be stated for the flora of moorland pools and bog hollows of hard cushion mires of the Andean belt (clusters C to E) and for the amphibic zone of oligo- to mesotrophic lakes in the Andean Altiplano (cluster G) (Fig. 3 and 4). The other clusters show a quite restricted range and close relationships to a biogeographical map of South America (Cabrera & Willink 1980) respectively to a vegetation map, documenting the distribution of the zonal climax vegetation (Hueck & Seibert 1981). The latter correspondence could be explained by the effect, that most of the sample plots were not restricted to the amphibic environment, but included also the surrounding matrix vegetation. However, the distinct geographical pattern emerges also within the diagnostic species, i.e. within the habitat specific flora. The environmental conditions of amphibic habitats and seasonal water bodies seem to be more strongly related to the macroclimatic conditions than alluvial forests for example. The large-scale pattern of the community groups will be presented briefly (see also Fig. 3, 4 and geographical annotations to the syntaxa in Appendix 2) and the distribution will be discussed in relation to the differentiating environmental factors. The distribution will be compared with the zonal vegetation pattern according to Hueck & Seibert (1981) and with the biogeographical structure of South America according to Cabrera & Willink (1980). The latter paper uses quite coarse biogeographical units. Provincia Altoandina for example is divided in a number of subunits by GalĂĄn de Mera et al. (2003). The clusters A and B are embedded into the Patagonian steppes and semi-deserts of Southern Argentina and their distribution is linked to these matrix vegetations. The distribution is congruent with the Patagonian Province sensu Cabrera & Willink (1980). P lagiob o th ry o -Acaenion (cluster A) is hitherto known only from lower altitudes and from the southernmost part of Patagonia, where the Magellan and Fuegia steppes sensu Oliva et al. (2001a) occur. It is replaced further to the North and in mid altitudes by P ration repentis (cluster B). Bog hollows in southern Patagonia with IsoĂŤtes savatieri, Littorella australis, Ranunculus trullifolius a.o. have been poorly studied until how (Roig et al. 1985b), as is also the case for amphibic plants colonizing beaver ponds in Tierra del Fuego (Werner et al. 2009). The clusters C to E are floristically related, especially on the genus level. They are restricted to the Andean Orobiome (Fig. 4) and are embedded into mires and fens. The syntaxa of this cluster group with a broader geographical range are Lilaeop sion an-
24
U. Deil et al.
Fig. 3. Tentative geographical distribution of seasonal wetland vegetation types in extratropical and orotropical South America.
The vegetation of seasonal wetlands in extratropical and orotropical South America
25
Fig. 4. Altitudinal and latitudinal distribution of community groups (clusters A to K) in South America.
d in a e (cluster E) and the Limosella-communities (Cluster F), both ranging from Venezuela via S Peru to NE Chile and NW Argentina. This distribution pattern is congruent with the biogeographical provinces Altoandina & Puneña sensu Cabrera & Willink (1980) respectively the Andean High Mountain vegetation sensu Hueck & Seibert (1981) (Puna and Páramo vegetation). The clusters C and D are geographically isolated and floristically impoverished. C is restricted to the semi-desert highlands with Puna vegetation in the Córdoba mountains in NW Argentina (Provincia Puneña sensu Cabrera & Willink 1980, corresponding to the Sierra Pampeana according to Cabido et al. 1990). Cluster D occurs in the Super-Páramo level of the Merida Mountains in Venezuela and the Eastern Cordillera in Colombia (Provincia Altoandina). The most widespread SWV-type of the study area is C r a s s u le t a l ia p e d un c u l a ri s-v e n e z ue lensis (cluster G). It is recorded until now from shoreline habitats in the super-forest belt of the wet tropical Andes in Colombia and Venezuela via Bolivia to the Cordoba Mountains in NE Argentina (Provincia Altoandina sensu Cabrera & Willink 1980, respectively Andean vegetation belt sensu Hueck & Seibert 1981) (Fig. 3 and 4). According to the distribution of some of its diagnostic species, this alliance can be expected also from other parts of the Andean orobiome. Further studies will show, whether the disjunctive distribution of this alliance is the result of missing observations in between or represents a true pattern of disjunction (Pampean-Andean arch sensu Cabido et al. 1990) with a gap in the desert and semidesert Andes sensu Galán de Mera et al. (2003).
The Crassuletalia p edu n cularis-venezuelensis are replaced further to the south by Littorellio n - and Sen ecion i-Eleo charietalia-communities (cluster H), which grow also in the littoral and amphibic zone of meso- to oligotrophic lakes, but now in lower altitudes and in the biogeographical province Subantarctica. These lakes with a fluvio-glacial hydrological regime have been studied until now only near 40° S on both sides of the Andean Chain (Eskuche 2005 in Argentina, Oberdorfer 1960 and Finckh 1996 in Chile). They are embedded into Nothofagus- and Araucaria-climax forests. The central parts of Chile with mediterranean climate (winter rain precipitation regime) belong to the Provincia Chilena sensu Cabrera & Willink (1980). Evergreen broadleaved sclerophyllous forests and Acacia caven-open woodlands (“espinales”) are the widespread formations (Hueck & Seibert 1981). Seasonal wetlands belong to the vernal pool type, which is characteristic also for other Mediterranean biomes such as in California or the European-NorthAfrican Mediterranean area. Observations of this cluster I (J un cio n p lan ifolii) are preliminary and hitherto restricted to the transition zone to the temperate climate in the 9th region of Chile, where these communities are impoverished in comparison to the mediterranean bioclimate. The distribution of cluster I in Fig. 3 is based upon the data in Bliss et al. (1998) and unpublished studies by Deil & Alvarez (in prep.). Vernal pool vegetation was observed from the coastal semi-arid areas (Norte Chico) via the Central valley between Santiago, Talca and Los Angeles up to Temuco (Alvarez 2008). The clusters J and K are floristically (see Table 3 and Fig. 2), geographically (Fig. 3) and ecologically
U. Deil et al.
26
clearly separated from all the other clusters. The habitats are flooded during summer and dry out in autumn under high temperatures. The Ludwigia peploides-Echinochloa helodes- and Luziola peruviana-communities (cluster J) are embedded into Pampa grassland. They are documented in our data set from the Santa Fe Province in Argentina, but can be expected also from both rims of Rio de la Plata (Argentina and Uruguay) and the lower reaches of river Paraná. Such a distribution is congruent with the Provincia Pampeana sensu Cabrera & Willink (1980). According to the distribution of some diagnostic species like Hydrocotyle cryptocarpa (Alvarez et al. 2008) and Juncus pallescens (Kirschner 2002), we can expect some linkages in the distribution of syntaxa between Mediterranean Chile and Uruguay. The Lindernio-Mecardonietum (cluster K), at the moment only recorded from the middle reaches of river Paraná near Corrientes in Argentina, can be expected also from other parts of the alluvial plain of river Paraná, which is subjected to the flood pulse from the Mato Grosso basin. The most important factor for the presence of SWV is the seasonality between a wet and a dry period over the year (Deil 2005a). Such conditions can be created by a seasonality of rainfall (like in the Mediterranean parts of Chile), by raising temperature and snow melting in summer (like in high altitudes of the Andes), by seasonal variations in evapotranspiration in a general semi-arid to subhumid climate (like in Southern Patagonia, situated in the rain shadow of the Andes) or by a flood pulse of an allochthonous river (like the Paraná basin). Besides the large scale patterns documented by Fig. 3 and 4, small scale spatial patterns are characteristic for seasonal wetlands. We find a zonation according to water depth, duration of inundation and time of emergence. Such patterns in South America are summarized by Deil (2005a, p. 614 – 617) and not further discussed here. Most of the SWV analysed here occur in natural or semi-natural sites. Anthropo-zoogenic impacts are changes in the hydrological regime, eutrophication and high pasture pressure. Such impacts can threaten steno-endemics like Trophaeastrum patagonicum in South Patagonia (Roig et al. 1985a) and Soliva triniifolia in the Córdoba Mountains (Cabido et al. 1990). On the other hand, seasonal wetland specialists are adapted to disturbance such as trampling and wave motion on lakeshores. They have characters of pioneers respectively r-strategists (high seed output, long living seed bank, short life cycles). To some extent the dwarfish and low competitive plants of SWV even depend on the creation of open substrates by erosion and sedimentation. The communities of cluster H for example are mostly present in man-made wetlands formed after cutting of swamp forests of the class Win t e ro-N oth ofa g e te a (Ramírez et al. 1996, San Martín et al. 1998, San Martín & Alvarez 2009). Only the vegetation of little depressions by Cholchol is supposed as natural (Ramírez et al.
1994). Trampled sites in South Chile are colonized by the P o lygon o aviculare-Crassu letu m palud o sae in (Ramírez et al. 1996). Crassula peduncularis-communities in the Córdoba Mountains occur in areas of trampling and overgrazing (Cabido et al. 1990). The Scirpus hieronymii-Limosella aquaticacommunity recolonizes peat land after turf extraction in Central Peru (Gutte 1980). Acknowledgements: U. Deil would like to thank the German Research Foundation (DFG, Az DE 404/5 – 1) for financing a field trip to Chile, M. Alvarez the German Academic Exchange Service (DAAD) for funding his PhD, and the Otti-Wilmanns Foundation, the Scientific Society of Freiburg, and the Faculty of Biology in Freiburg for financing travel expenses in Chile. The support by Julia Schwarz and Anne Weyand in literature search is gratefully acknowledged. We thank Hiltrud Brose, Dr. Heike Culmsee, Dr. Jonas Müller, Markus Hall, Arne Saatkamp, Thomas Stalling, Anne Weyand and Inge Paulini for establishing the data base, checking the floristic nomenclature and running preliminary classification programs. We are indebted to Prof. Dr. Antoine Cleef (Amsterdam) and Prof. Dr. Antonio Galán de Mera (Madrid) for valuable comments on the manuscript and to Dr. Randy Cassada for the linguistic revision of the text.
References Affolter, J.M. (1985): A monograph of the genus Lilaeopsis (Umbelliferae). – Syst. Bot. Monogr. 6: 1 – 140. Alvarez, M. (2008): Diasporenbank und Ökologie der Vegetation temporärer Gewässer im Cholchol-Gebiet (9. Region, Chile), J. Cramer, Berlin, Diss. Bot. 407, 87pp. Alvarez, M. & Deil, U. (in prep.): Classification of seasonal wetland vegetation in South America – patterns emerging from different methods. – JAVS. Alvarez, M., Ramírez, C. & Deil, U. (2008): Ecología y distribución de Hydrocotyle cryptocarpa Speg. en Sudamérica. – Gayana Bot. 65: 138 – 143. Auer, V. (1960): The Quaternary history of Fuego-Patagonia. – Proc. Roy. Soc. London B, Biol. Sci. 152: 507 – 516. Backhaus, K., Erichson, B., Plinke, W. & Weiber, R. (2006): Multivariate Analysemethoden. – Springer, Berlin. Batista, W.B. & León, R.J.C. (1992): Asociación entre comunidades vegetales y algunas propiedades del suelo en el centro de la Depresión del Salado. – Ecología Austral 2: 47 – 55. Berg, A.L. (1998): Pflanzengesellschaften und Lebensformen des Superpáramo des Parque Nacional Sierra Nevada de Mérida in Venezuela. – Phytocoenologia 28: 157 – 203. Bergmeier, E., Härdtle, W., Mierwald, U., Nowak, B. & Peppler, C. (1991): Vorschläge zur syntaxonomischen Arbeitsweise in der Pflanzensoziologie. – Kieler Not. Pflanzenkunde Schleswig-Holst. 20: 92 – 103. Bliss, S.A., Zedler, P.H., Keeley, J.E. & Arroyo, M.T.K. (1998): A floristic survey of the temporary wetlands in the Mediterranean-climate region of Chile. – In: McComb, A.J. & Davis, J.A. (eds.): Wetlands for the future, Gleneagles, Adelaide. pp. 219 – 228. Braun-Blanquet, J. (1964): Pflanzensoziologie, Grundzüge der Vegetationskunde. – Springer, Wien. Bruelheide, H. & Chytrý, M. (2000): Towards unification of national vegetation classifications: a comparison of two methods for analysis of large data sets. – J. Veg. Sci. 11: 295 – 306.
The vegetation of seasonal wetlands in extratropical and orotropical South America Burkart, S.E., León, R.J.C. & Movia, C.P. (1990): Inventario fitosociológico de un pastizal de la depressión del Salado (Prov. Bs. As.) e un area representativa de sus principales ambientes. – Darwiniana 30: 27 – 69. Bywater, M. & Wickens, G.E. (1984): New world species of the genus Crassula. – Kew Bulletin 39: 699 – 728. Cabido, M. (1985): Las comunidades vegetales de la Pampa de Achala, Sierras de Cordoba, Argentina. – Doc. Phytosoc. N.S. 9: 431 – 456. Cabido, M. & Acosta, A. (1986): Contribución al conocimiento fitosociológico del sub-piso superior de pastizales y bosquecillos de altura de las Sierras de Córdoba. – In: Eskuche, U.G. & Landolt, E. (eds.): Contributions to the knowledge of flora and vegetation of northern Argentina, Stiftung Rübel, Zürich, Veröff. Geobot. Inst. ETH 91: 118 – 140. Cabido, M., Acosta, A. & Díaz, S. (1990): The vascular flora and vegetation of granitic outcrops in the upper Córdoba Mountains, Argentina. – Phytocoenologia 19: 267 – 281. Cabrera, A.L. & Willink, A. (1980): Biogeografía de America Latina. – Secretaria General de la Organización de los Estados Americanos. 2nd. Ed., 117pp. Chytrý, M. & Otýpková, Z. (2003): Plot sizes used for phytosociological sampling of European vegetation. – J. Veg. Sci. 14: 563 – 570. Cleef, A.M. (1981): The vegetation of the Páramos of the Colombian Cordillera Oriental. – J. Cramer, Vaduz, Dissertationes Botanicae 61, 320pp. Cleef, A.M. & Rangel, J.O. (1986): La vegetación del páramo del noroeste de la Sierra Nevada de Santa Marta. – In: Van der Hammen, T. & Ruiz, P.M. (eds.): La Sierra Nevada de Santa Marta (Colombia). Ecoandes = Estudios de Ecosistemas Tropandinos 2, Borntraeger, Berlin/Stuttgart, pp. 203 – 266. Cleef, A.M., Rangel, J.O. & Arellano, H. (2008): The páramo vegetation of the Sumapaz Massif (Eastern Cordillera, Colombia). – In: Van der Hammen, T. (ed.): Cordillera Oriental Colombiana. Transecto Sumapaz. = Studies on Tropical Andean Ecosystems 7, Borntraeger, Berlin/Stuttgart, pp. 799 – 913. Cleef, A.M., Rangel, J.O. & Salamanca, S. (1983): Reconocimiento de la vegetación de la parte alta del transecto Parque de Los Nevados. – In: Van der Hammen, T., Pérez-P., A. & Pinto, P. (eds.): La cordillera central colombiana. Transecto Parque de Los Nevados. = Estudio de Ecosistemas Tropandinos 1, Borntraeger, Berlin/Stuttgart, pp. 150 – 173. Collantes, M.B. & Faggi, A.M. (1999): Los humedales del sur de Sudamérica. – In: Malvárez A.I. (ed.): Tópicos sobre humedales subtropicales y templados de Sudamérica, UNESCO, Montevideo, pp. 1 4 – 24. Coombes, L. & Ramsay, P.M. (2001): Vegetation of a cushion mire at 3600m on Volcán Chiles, Ecuador. – In: Ramsay, P.M. (ed.): The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador-Colombia border: 47 – 54, Plymouth. Cuello, N.L. & Cleef, A.M. (2009): The páramo vegetation of Ramal de Guamacal, Trujillo State, Venezuela. II. Azonal vegetation. – Phytocoenologia 39: 389 – 409. Deil, U. (1994): Klassifizierung mit supraspezifischen Taxa und symphylogenetische Ansätze in der Vegetationskunde. – Phytocoenologia 24: 677 – 694. Deil, U. (1999): Synvikarianz und Symphylogenie – Zur Evolution von Pflanzengesellschaften. – Ber. d. Reinh.-TüxenGes. 11: 223 – 244. Deil, U. (2005a): A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. – Phytocoenologia 35: 533 – 705. Deil, U. (2005b): Ephemere Feuchtgebiete im weltweiten Vergleich – unter besonderer Berücksichtigung der Pflanzenge-
27
sellschaften auf den amerikanischen Kontinenten. – Ber. d. Reinh.-Tüxen-Ges. 17: 113 – 135. Deil, U. & Alvarez, M. (in press): A database for the study of the ephemeral wetland vegetation in extratropical South America. – Biodivers. Ecol. Deil, U. & Alvarez, M. (in prep.): Vernal pool vegetation in Mediterranean Chile. Deil, U., Alvarez, M. & Paulini, I. (2007): Native and non-native species in annual grassland vegetation in Mediterranean Chile. – Phytocoenologia 37: 769 – 784. De la Barra, N. (2003): Clasificación de la vegetación acuática en ambientes lacustres de Bolivia. – Rev. Bol. Ecol. 13: 65 – 93. Desfayes, M. (2006): Bibliography and list of Isoëtes species with complete synonymy, including fossils. – http://micheldesfayes.org/isoetesbiblio&list.html. Eskuche, U.G. (1975): Análisis corológico y sistemático del Lindernio-Mecardonietum herniarioidis. – Phytocoenologia 2: 261 – 269. Eskuche, U.G. (2005): Las comunidades vegetales litorales de los lagos patagónicos y de los canales magallánicos. – Folia Bot. et Geobot. Correntesiana 18: 1 – 31. Faggi, A.M. (1985): Las comunidades vegetales de Río Gallegos, Santa Cruz. – In: Boelcke, O., Moore, D.M. & Roig, F.A. (eds.): Transecta botánica de la Patagonia Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (Gran Bretaña), Buenos Aires, pp. 592 – 633. Finckh, M. (1996): Die Wälder des Villarrica-Nationalparks (Südchile). Lebensgemeinschaften als Grundlage für ein Schutzkonzept. – Dissertationes Botanicae 259, Berlin, Stuttgart. Fontana, J.L. (1991): Las comunidades vegetales de una laguna chaqueña del valle del río Paraná. – Fol. Bot. Geobot. Correntesiana 6: 1 – 17. Fontana, S.L. (2005): Coastal dune vegetation and pollen representation in south Buenos Aires province, Argentina. – J. Biogeogr. 32: 719 – 735. Franceschi, E.A. & Lewis, J.P. (1991): Early stages in the Paraná river tall grasland recovery after an extraordinary flood. – Coenoses 6: 47 – 52. Franceschi, E.A., Torres, D.S., Prado, D.E. & Lewis, J.P. (2000): Disturbance, succession and stability: a ten year study of temporal variation of species composition after a catastrophic flood in the river Paraná, Argentina. – Community Ecology 1: 205 – 214. Franco, P., Rangel, J.O. & Lozano, C. (1986): Estudios ecológicos en la Cordillera Oriental II. Las comunidades vegetáles des los alrededores de la Laguna de Chingaza (Cundinamarca). – Caldasia 15: 219 – 248. Galán de Mera, A. (1995): Ensayo sintaxonómico sobre las comunidades vegetales acuáticas del Perú. – Arnaldoa 3: 51 – 58. Galán de Mera, A. (2005): Clasificación fitosociológica de la vegetación de la región del Caribe y América del Sur. – Arnaldoa 12: 86 – 111. Galán de Mera, A., Cáceres, C. & González, A. (2003): La vegetación de la alta montaña andina del sur del Perú. – Acta Bot. Malacitana 28: 121 – 147. Galán de Mera, A., Rosa, V.M. & Cáceres, C. (2002): Una aproximación sintaxonómica sobre la vegetación del Perú. Clases, órdenes y alianzas. – Acta Bot. Malacitana 27: 75 – 103. Galán de Mera, A. & Vicente Orellana, J.A. (2006): Aproximación al esquema sintaxonómico de la vegetación de la región del Caribe y América del Sur. – Anales de Biología 28: 3 – 27.
28
Gandullo, R. & Faggi, A.M. (2003): Análisis fitosociológico de los mallines del piso andino del Parque Provincial Copahue, Neuquén, Argentina. – Kurtziana 30: 45 – 55. Gandullo, R. & Faggi, A.M. (2005): Interpretación sintaxonómica de los humedales del noroeste de la Provincia de Neuquén, Argentina. – Darwiniana 43: 10 – 29. Gandullo, R. & Schmid, P. (2001): Analisis ecológico de mallines del Parque Provincial Copahue, Neuquén, Argentina. – Agro Sur 29: 83 – 99. Gutte, P. (1980): Beitrag zur Kenntnis zentralperuanischer Pflanzengesellschaften. II. Die hochandinen Moore und ihre Kontaktgesellschaften. – Feddes Repertorium 91: 32 7 – 336. Gutte, P. (1986): Beitrag zur Kenntnis zentralperuanischer Pflanzengesellschaften. III. Pflanzengesellschaften der subalpinen Stufe. – Feddes Repertorium 97: 319 – 371. Gutte, P. (1988): Zu einigen Wasserpflanzen- und Röhrichtgesellschaften in den Hochanden Zentralperus. – In: Müller, G.K., Gutte, P., Müller, C. & Schulz, D.L. (eds.): Catalogus Herbarii Lipsiensis, Karl-Marx-Universität, Leipzig, Plantae Neotropicae 1: 45 – 48. He, S. (1998): A checklist of the mosses of Chile. – J. Hattori Bot. Lab. 85: 10 3 – 189. Hennekens, S.M. & Schaminée, J.H.J. (2001): TURBOVEG, a comprehensive data base management system for vegetation data. – J. Veg. Sci. 12: 589 – 591. Hernández-R., J. & Rangel, J.O. (2009): La vegetación del humedal de Jaboque (Bogotá, D.C.). – Caldasia 31: 355 – 379. Hueck, K. & Seibert, P. (1981): Vegetationskarte von Südamerika 1:2.000.000, mit Erläuterungen. – Fischer, Stuttgart. 2nd. Ed., 69pp. Kandus, P., Malvárez, A.I. & Madanes, N. (2003): Study on the herbaceous plant communities in the Lower Delta Islands of the Paraná River (Argentina). – Darwiniana 41: 1 – 16. Kirschner, J. (2002): Juncaceae, Australian Biological Resources Study, Canberra, Species Plantarum. – Flora of the World 6 – 7. Kruskal, J.B. (1964): Nonmetric multidimensional scaling: a numerical method. – Psychometrika 29: 115 – 129. Landolt, E., Jäger-Zürn, I. & Schnell, R.A. (1998): Extreme Adaptations in angiospermous hydrophytes. – Berlin, Stuttgart, Handbuch der Pflanzenanatomie 13, 290pp. León, R.J.C. & Burkart, S.E. (1998): El pastizal de la pampa deprimida: estados alternativos. – Ecotropicos 11: 121 – 130. Lewis, J.P, Collantes, M.B. Pire, E.F., Carnevale, N.J., Boccanelli, S.I., Stofella, S.L. & Prado, D.E. (1985): Floristic groups and plant communities of southeastern Santa Fe, Argentina. – Vegetatio 60: 67 – 90. Lewis, J.P. Franceschi, E.A. & Prado, D.E. (1987): Effects of extraordinary floods on the dynamics of tall grasland of the river Paraná valley. – Phytocoenologia 15: 235 – 251. Leyer, I. & Wesche, K. (2007): Multivariate Statistik in der Ökologie. – Springer, Berlin. Luebert, F. & Gajardo, R. (2005): Vegetación alto andina del Parinacota, norte de Chile y una sinopsis de la vegetación de la Puna meridional. – Phytocoenologia 35: 79 – 128. Méndez, E. (2007): La vegetación de los altos Andes II. Las vegas del flanco oriental del Cordón del Plata (Mendoza, Argentina). – Boletín de la Sociedad Argentina de Botánica 42: 273 – 294. Méndez, E. & Ambrosetti, A.J. (1985): Las comunidades vegetales de Río Turbio, El Turbio, Santa Cruz. – In: Boelcke, O., Moore, D.M. & Roig, F.A. (eds.): Transecta botánica de la Patagonia Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (Gran Bretaña), Buenos Aires, pp. 634 – 694.
U. Deil et al. Molina, J.A., Navarro, G., De la Barra, N. & Lumbreras, A. (2007): Andean aquatic vegetation in central Bolivia. – Phytocoenologia 37: 753 – 768. Moscol Oliveira, M.C & Cleef, A.M. (2009): A phytosociological study of the páramos along two altitudinal transects in El Carchi Province, northern Ecuador. – Phytocoenologia 39: 79 – 107. Müller, J.V. & Deil, U. (2005): The ephemeral vegetation of seasonal and semi-permanent ponds in tropical West Africa. – Phytocoenologia 35: 327 – 388. Musaya, A.M. & Simpson, D.A. (2002): A monograph of the genus Isolepis R.Br. (Cyperaceae). – Kew Bulletin 57: 257 – 362. Navarro, G. (1993): La vegetación de Bolivia: el Altiplano meridional. – Rivasgodaya 7: 69 – 98. Navarro, G. & Maldonaldo, M. (2002): Geografia Ecológica de Bolivia. Vegetación y Ambientes Acuáticos. – Fundación Simón Patiño. Santa Cruz, 719pp. Oberdorfer, E. (1960): Pflanzensoziologische Studien in Chile. – J. Cramer, Weinheim, Flora et Vegetatio Mundi 2, 208pp. Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. & Wagner, H. (2009): Vegan: community ecology package. – URL: < http://cran.r-project.org/package = vegan> Oliva, G., González, L., Rial, P. & Livraghi, E. (2001a): El ambiente en la Patagonia Austral. – In: Borreli, P. & Oliva, G. (eds.): Ganadería ovina sustentable en la Patagonia Austral, INTA, Centro Regional Patagonia Sur, Santa Cruz. pp. 17 – 80. Oliva, G., Noy-Meir, I. & Cibils, A. (2001b): Fundamentos de ecología de pastizales. – In: Borreli, P. & Oliva, G. (eds.): Ganadería ovina sustentable en la Patagonia Austral, INTA, Centro Regional Patagonia Sur, Santa Cruz. pp. 81 – 98. Otýpková, Z. & Chytrý, M. (2006): Effects of plot size on the ordination of vegetation samples. – J. Veg. Sci. 17: 46 5 – 472. Perelman, S.B., León, R.J.C. & Oesterheld, M. (2001): Crossscale vegetation pattern of flooding Pampa grasslands. – J. Ecol. 89: 562 – 577. Peres-Neto, P. R. & Jackson, D. A. (2001): How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the mantel test. – Oecologia 129: 169 – 178. Pignatti, S. (1969): Die Bedeutung der Familien für die Bearbeitung pflanzensoziologischer Tabellen. – Vegetatio 17: 83 – 88. Pinto-Zárate, J.H. & Rangel, J.O. (2010): La vegetación de los páramos del norte de Colombia (Sierra Nevada de Santa Marta, Serrania de Perijá). – In: Rangel, J.O. (ed.): Colombia. Diversidad biótica 10: 289 – 410. B ogotá. R Development Core Team (2005) R: a language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna, http://www.R-project.org. Ramírez, C. & Beck, S. (1981): Makrophytische Vegetation und Flora in Gewässern der Umgebung von La Paz, Bolivien. – Arch. Hydrobiol. 91: 82 – 100. Ramírez, C., San Martín, C., Contreras, D. & San Martín, J. (1994): Estudio fitosociológico de la vegetación pratense del valle del río Chol-Chol (Cautín, Chile). – Agro Sur 22: 41 – 56. Ramírez, C., San Martín, C. & Keim, M.L. (1996): La vegetación espontánea del antiguo basural de Ovejería (Osorno, Chile). – Medio Ambiente 13: 42 – 57. Rangel, J.O. & Aguirre, J. (1983): Comunidades acuáticas altoandinas. I. Vegetación sumergida y de ribera en el lago de Tota, Boyaca, Colombia. – Caldasia 13: 719 – 742. Rangel, J.O. & Ariza, N.C. (2000): La vegetación del parque nacional natural Chingaza. – In : Rangel, J.O. (ed.): La región
The vegetation of seasonal wetlands in extratropical and orotropical South America de vida páramuna de Colombia. – Colombia. Diversidad biótica 3: 720 – 753. Rangel, O.J., Sanchez, D. & Ariza, N.C. (2005): La vegetación del páramo de Frontino. – In: Van der Hammen, T., Rangel, O.J. & Cleef, A.M. (eds.): La Cordillera Occidental Colombiana. Transecto Tatama = Ecoandes, Studies on Tropical Andean Ecosystems 6: 813 – 832. St uttgart. Rivas-Martínez, S. & Rivas y Sáenz, S. (2009): Worldwide bioclimatic classification system. – Phytosociological Research Center. URL: < www.globalbioclimatics.org> Rivas-Martínez, S. & Tovar, O (1982): Vegetatio Andinae I. Datos sobre las comunidades vegetales altoandinas de los Andes Centrales de Péru. – Lazaroa 4: 161 – 187. Roig, F. A. (1998): La vegetación de la Patagonia. – In: Correa, M. (ed.): Flora Patagonia. – Colecc. Cient. I.N.T.A. 8(1): 48 – 166. M endoza. Roig, F.A., Anchorena, J., Dollenz, O., Faggi, A.M. & Méndez, E. (1985a): Las comunidades vegetales de la transecta botánica de la Patagonia Austral. Primera parte: la vegetación de área continental. – In: Boelcke, O., Moore, D.M. & Roig, F.A. (eds.): Transecta botánica de la Patagonia Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (Gran Bretaña), Buenos Aires, pp. 350 – 456. Roig, F.A, Dollenz, O. & Mendez, E. (1985b): Las communidades vegetales de la Transecta Botanica de la Patagonica Austral, Secunda parte: La vegetation de los canales. – In: Boelcke, O., Moore, D.M. & Roig, F.A. (eds.): Transecta Botanica de la Patagonia Austral, Buenos Aires, pp. 457 – 518. Roquero, M.J. (1968): La vegetación del Parque Nacional Laguna Blanca (Estudio fitosociológico preliminar). – Anales Parques Nacionales 9 (2a): 129 – 207, Buenos Aires. Ruthsatz, B. (1977): Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens. – J. Cramer, Vaduz, Dissertationes Botanicae 39, 168 pp. Ruthsatz, B. (1995): Vegetation und Ökologie tropischer Hochgebirgsmoore in den Anden Nord-Chiles. – Phytocoenologia 25: 185 – 234. Salamanca, S., Cleef, A.M. & Rangel, J.O. (1992): La vegetación de páramo. – In: Salamanca, S. (ed.): La vegetación del páramo y su dinamica en el Macizo colcanico Ruiz – Tolima (Cordillera Central, Columbia). – Analysis Geograficos 21: 38 – 66. Salamanca S., Cleef A.M. & Rangel J.O. (2003): The Páramo vegetation of the volcanic Ruiz-Tolima massif. – In: van der Hammen, T. & dos Santos, A.G. (eds.): La Cordillera Central Colombiana, transecto Parque Los Nevados, J. Cramer, Berlin. = Studies on Tropical Andean Ecosystems 5: 1 – 77. Sánchez, R. & Rangel, J.O. (1990): Estudios ecológicos en la cordillera oriental colombiana V: Análisis fitosociológico de la vegetación de los depósitos turbosos paramunos en los alrededores de Bogotá. – Caldasia 16: 155 – 192. San Martín, C. & Alvarez, M. (2009): Floristic composition of anthropogenic seasonal wetlands in the coastal mountain range of Cautín, Chile. – Agro Sur 37: 9 – 25. San Martín, C., Ramírez, C. & Ojeda, P. (1998): La vegetación de lagunas primaverales en las cercanías de Temuco (Cautín, Chile). – Acta Bot. Malacitana 23: 99 – 120. Seibert, P. & Menhofer, X. (1991): Die Vegetation des Wohngebietes der Kallawaya und des Hochlandes von Ulla-Ulla in den bolivianischen Anden. Teil I. – Phytocoenologia 20: 145 – 276. Seibert, P. & Menhofer, X. (1992): Die Vegetation des Wohngebietes der Kallawaya und des Hochlandes von Ulla-Ulla in
29
den bolivianischen Anden. Teil II. – Phytocoenologia 20: 289 – 438. Seibert, P. & Menhofer, X. (1993): Nachtrag zu Seibert, P. & Menhofer, X.: Die Vegetation des Wohngebietes der Kallawaya und des Hochlandes von Ulla-Ulla in den bolivianischen Anden. – Phytocoenologia 22: 275 – 278. Small, R.L. & Hickey, R.J. (2001): Systematics of the Northern Andean Isoëtes karstenii complex. – Am. Fern J. 91: 4 1 – 69. Taylor, P. (1989): The Genus Utricularia – a taxonomic monograph. – Kew Bulletin Additional Series 14, 724pp. Terneus, E. (2002): Comunidades des plantas acuáticas en las lagunas de los páramos del norte y sur del Ecuador. – Caldasia 24: 379 – 391. Tutin, T., Burges, N., Chater, A., Edmonson, J., Heywood, V., Moore, D., Valentine, D., Walters, S. & Webb, D. (1996): Flora Europaea. – Cambridge University Press, Cambridge, 5 vols. Weber, H. E., Moravec, J. & Theurillat, J.P. (2000): International Code of Phytosociological Nomenclature. 3. Ed. – J. Veg. Sci. 11: 739 – 768. Werner, R., Jax, K. & Böhmer, H.J. (2009): Vegetationsdynamik verlandeter Bieberteiche auf der Insel Navarino (Feuerland Archipel, Chile). – Tuexenia 29: 277 – 296. Addresses of authors Prof. Dr. Ulrich Deil*, Dept. of Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany Dr. Miguel Alvarez, Vegetation Ecology, INRES, University of Bonn, Nußallee 9, 53115 Bonn, Germany Dipl. Biol. Eva-Maria Bauer, Federal Institute of Hydrology, 56068 Koblenz, Germany Prof. Dr. Carlos Ramírez, Department of Ecology, Faculty of Biological Sciences, Catholic University of Chile, Av. Liberador Bernardo O´Higgins 340, Santiago, Chile * Corresponding author, e-mail: ulrich.deil@biologie.unifreiburg.de
U. Deil et al.
30
Appendices
Appendix 1: List of Synonyms (For complete names (including authors) see “International Plant Name Index” (IPNI; www.ipni.org) and “W3TROPICOS” of Missouri Botanical Garden (mobot.mobot.org/W3T/Search/classicvast.html) as references). Names used in bibliographic sources Alopecurus hitchcockii Baccharis magellanica Breutelia allionii Callitriche deflexa Carex incurva Ceratophyllum chilense Coprosma granadensis Crassula bonariensis Crassula paludosa Cyperus entrerianus Deyeuxia eminens Drepanocladus exannulatus Eclipta alba Eleocharis macrostachya Elymus andinus Eupatorium epilobioides Festuca scirpifolia Gamochaeta spicata Gentiana brandtiana Hierochloe redolens Isoëtes glacialis Isoëtes socia Juncus achalensis Juncus brunneus Juncus chilensis Juncus dombeyanus Juncus lesueurii Kardanoglyphos nana Koeleria grisebachii Lachemilla barbata Lachemilla orbiculata Leersia hexandra Leptinella scariosa Lilaea subulata Lilaeopsis andina Lilaeopsis hillii Lilaeopsis sinuata Limosella subulata Lindernia pyxidaria Marsilea concinna Marsilea punae Muhlenbergia minuscula Myriophyllum brasiliense Nierembergia minima Nothoscordum striatellum Oxychloe andina Paspalum disticum Phylloscirpus acaulis Poa dusenii Potamogeton striatus Rorippa nasturtium-aquaticum Rorippa palustris Rosa eglanteria Scirpus californicus Scirpus cernuus Scirpus hieronymii Scirpus inundatus Setaria parvifolia
Adopted names Alopecurus aequalis Baccharis tricuneata Breutelia trianae Callitriche terrestris Carex maritima Ceratophyllum demersum Nertera granadensis Crassula peduncularis Crassula peduncularis Cyperus luzulae Calamagrostis eminens Warnstorfia exannulata Eclipta prostrata Eleocharis palustris Elymus angulatus Ageratina gracilis Festuca dolichophylla Gamochaeta americana Gentianella brandtiana Anthoxanthum redolens Isoëtes lechleri Isoëtes precocia Juncus pallescens Juncus ebracteatus Juncus stipulatus var. chilensis Juncus pallescens Juncus balticus ssp. andicola Rorippa nana Trisetum caudulatum Alchemilla barbata Alchemilla orbiculata Leersia oryzoides Cotula scariosa Lilaea scilloides Lilaeaopsis macloviana Lilaeopsis macloviana Lilaeopsis macloviana Limosella australis Lindernia procumbens Marsilea ancylopoda Marsilea mollis Muhlenbergia ligularis Myriophyllum aquaticum Nierembergia repens Nothoscordum gramineum Oxychloe bisexualis Paspalum paspalodes Scirpus acaulis Poa spiciformis var. ibarii Potamogeton pectinatus Nasturtium officinale Rorippa islandica Rosa rubiginosa Schoenoplectus californicus Isolepis cernua Scirpus atacamensis Isolepis inundata Setaria parviflora
The vegetation of seasonal wetlands in extratropical and orotropical South America Names used in bibliographic sources Spergularia platensis Stipa ibarii Stylites andicola Stylites gemmifera Tillaea paludosa Trisetum lechleri Tropaeolum patagonicum Werneria humilis
31
Adopted names Spergula platensis Jarava ibarii Isoëtes andicola Isoëtes andicola Crassula peduncularis Trisetum caudulatum Trophaeastrum patagonicum Xenophyllum humile
Appendix 2 Syntaxonomic scheme CG = community group Bibliographic source
column number
CG A: Plagiobothryo calandrinioidis-Acaenion platyacanthae Hordeetea santacrucensis FAGGI et al. in BOELCKE et al. 1985 <Seasonal wetland vegetation at fringes and dry bottoms of freshwater and brackish water lagoons in Southern Patagonia> Plagiobothryo calandrinioidis-Acaenetalia platyacanthae FAGGI in BOELCKE et al. 1985 Plagiobothryo calandrinioidis-Acaenion platyacanthae FAGGI in BOELCKE et al. 1985 <very open pioneer vegetation in deflation depressions> Hordeo santacrucensis-Acaenetum platyacanthae FAGGI 1985 scutellarietosum nummulariaefoliae FAGGI 1985 .................................................................................... 256 B col. typicum............................................................................................................................................................. 256 C col. poetosum dusenii FAGGI 1985 [= Poa spiciformis var. ibarii] ................................................................... 256 A col. Deschampsio patulae-Alopecuretum aequalis FAGGI 1985 .......................................................................... 256 E col. Poetum atropidiformis FAGGI 1985 .................................................................................................................. 256 D col. Adesmio pumilae-Juncetum baltici FAGGI 1985 ............................................................................................. 256 F col. Acaena platyacantha-comm. ROIG et al. 1985 ..................................................................................................... 258 E col. Poa dusenii-comm. ROIG et al. 1985 .................................................................................................................... 258 D col. Eleocharis pachycarpa-comm. ROIG et al. 1985 ................................................................................................... 258 B col. Plagiobothrys calandrinioides-comm. ROIG et al. 1985 ......................................................................................... 258 C col. Eriachaenium magellanicum comm. ROIG et al. 1985 .......................................................................................... 258 A col.
1 3 5 7 8 10 2 4 6 9 11
CG B: Pration repentis Hordeetea pubiflori ROIG et al. in BOELCKE et al. 1985 (= Hordeetea lechleri ROIG et al. in BOELCKE et al. 1985) <Steppe vegetation of humid zones in southern Patagonia (Argentina), south of Santa Cruz> Hordeetalia pubiflori ROIG et al. in BOELCKE et al. 1985 <seasonal inundated turfs in Southern Patagonia> Pration repentis MENDEZ & AMBROSETTI 1985 (incl. Hordeion lechleri ROIG et al. in BOELCKE et al. 1985) <seasonal lagoons in the montane Andean belt> Nostoco communis-Limoselletum australis MENDEZ & AMBROSETTI 1985 ............................................ 257 A Junco scheuchzerioidis-Caricetum macrosolenis MENDEZ & AMBROSETTI 1985 ................................... 257 B Rumici maritimi-Deschampsietum antarcticae MÉNDEZ & AMBROSETTI 1985 ....................................... 257 C Calthetea sagittatae ROIG et al. in BOELCKE et al. 1985 <perennial herb communities and fens in wet depressions in Southern Patagonia, in former glaciated areas> Calthetalia sagittatae ROIG et al. in BOELCKE et al. 1985 Calthion sagittatae ROIG et al. in BOELCKE et al. 1985 Cortaderietum pilosae(-minimae) GANDULLO & FAGGI 2003 ..................................................................... 307 B Juncion lesueurii GANDULLO & FAGGI 2005 [= Juncus balticus ssp. andicola] Azorello trifoliolatae-Plantaginetum uniglumis GANDULLO & FAGGI 2005 ............................................. 311 B Carici gayanae-Eleocharietum albibracteatae GANDULLO & FAGGI 2005 ................................................. 311 A
col. 12 col. 13 col. 14
col. 19 col. 20 col. 21
U. Deil et al.
32
rankless communities Werneria pygmaea-comm. MÉNDEZ 2007............................................................................................................ 324 Plantago uniglumis-comm. MÉNDEZ 2007 ........................................................................................................... 324 Eleocharis albibracteata-comm. MÉNDEZ 2007 ................................................................................................... 324 Carex gayana-comm. MENDEZ 2007 ................................................................................................................... 324
A B C D
col. col. col. col.
15 16 17 18
CG C: Muhlenbergia fastigiata -Distichlis humilis -communities <seasonal pools in the semi-desert highlands of NW Argentina> rankless communities Marsilea puna (= mollis)-Eleocharis acicularis-comm. RUTHSATZ 1977............................................................... 82 C Muhlenbergia fastigiata-Distichlis humilis-comm. RUTHSATZ 1977 ...................................................................... 82 B
col. 22 col. 23
CG D: Gentiana sedifolia -Carex bonplandii- and Gentiano-Oritrophion-communities <Bog hollows and seasonally flooded turfs in the Super-Páramo of Venezuela and Colombia> Plantagini rigidae-Distichietea muscoidis RIVAS MARTÍNEZ & TOVAR 1982 Oritrophio-Wernerietalia CLEEF 1981 Gentiano-Oritrophion CLEEF 1981 Oritrophio peruvianae-Oreoboletum venezelensis RANGEL & ARIZA 2000 ............................................................. 323 A rankless communities Werneria pygmaea-comm. BERG 1998 .................................................................................................................. 187 A Carex bonplandii-Lachemilla sprucei-comm. BERG 1998 Oritrophium venezuelense-subcomm. BERG 1998 ......................................................................................... 187 B typicum BERG 1998 ....................................................................................................................................... 187 C
col. 27
col. 24 col. 25 col. 26
CG E: Lilaeopsion andinae ? class ? order Lilaeopsion andinae SEIBERT & MENHOFER 1991 [= Lilaeopsis macloviana] <SWV in hollows of hard cushion bogs of the Altiplano, from S Peru to NE Chile and NW Argentina> Ranunculetum flagelliformis SEIBERT & MENHOFER 1992 ........................................................................... 85 Callitriche heteropoda-Ranunculus flagelliformis-comm. MOLINA et al. 2007 ...................................................... 297 Isoëtes lechleri-comm. SEIBERT & MENHOFER 1991 ............................................................................................ 84 Hydrocotyletum ranunculoidis SEIBERT & MENHOFER 1991 ........................................................................ 84 Crassuletum connatae SEIBERT & MENHOFER 1991 ........................................................................................ 84 Ranunculetum trichophylli SEIBERT & MENHOFER 1991 ............................................................................... 84 Ranunculetum limoselloidis GALÁN DE MERA et al. 2003 ............................................................................ 188 Hypsela oligophylla-comm. RUTHSATZ 1977 .......................................................................................................... 82 Ranunculus uniflorus-Potamogeton filiformis-comm. MOLINA et al. 2007 ........................................................... 297 Lachemilla diplophylla-Lilaeopsis macloviana-comm. MOLINA et al. 2007 ......................................................... 297
B A D C A B C A D B
Plantagini rigidae-Distichietea muscoidis RIVAS MARTÍNEZ & TOVAR 1982 <hard cushion mires with temporary moorland pools, Altiplano of the Andes, from Venezuela to Argentina and Chile> Plantaginetalia tubulosae GUTTE 1985 Hypselo reniformis-Plantaginion tubulosae GALÁN DE MERA et al. 2003 Eleocharito tucumanensis-Plantaginetum tubulosae SEIBERT & MENHOFER 1992 ................................ 188 A Oxychloion andinae RUTHSATZ 1995 [= Oxychloe bisexualis] Wernerio pygmaeae-Puccinellietum oresigenae GALÁN DE MERA et al. 2003 .......................................... 188 B Oxychloetum andinae RUTHSATZ 1995 Lilaeopsis andina-variant ................................................................. 189 B Distichion muscoidis RUTHSATZ 1995 Distichietum muscoidis RUTHSATZ 1995 Lilaeopsis andina-variant .............................................................. 189 A
col. col. col. col. col. col. col. col. col. col.
35 36 38 39 40 41 37 32 33 34
col. 28 col. 29 col. 31 col. 30
The vegetation of seasonal wetlands in extratropical and orotropical South America
33
CG F: Limosella -communities Plantagini rigidae-Distichietea muscoidis RIVAS MARTÍNEZ & TOVAR 1982 <hard cushion mires with temporary moorland pools, Altiplano of the Andes, from Venezuela to Argentina and Chile> Plantaginetalia tubulosae GUTTE 1985 Hypselo reniformis-Plantaginion tubulosae GALÁN DE MERA et al. 2003 Plantago tubulosa-comm. SEIBERT & MENHOFER 1992 ..................................................................................... 85 A rankless communities Scirpus hieronymii-Limosella aquatica-comm. GUTTE 1980 [= Scirpus atacamensis] ........................................... 73 Callitricho heteropodae-Alopecuretum hitchcockii GUTTE 1988 lilaeetosum subulatae GUTTE 1988 [= Lilaea scilloides] .............................................................................. 72
col. 42
col. 43 col. 44
CG G: Limoselletea australis, Crassuletalia peduncularis-venezuelensis Limoselletea australis (ex CLEEF 1981) CLEEF et al. 2008 <Amphibic habitats around ponds, shallow pools and small lakes; supraforest belt of the wet tropical Andes and extratropical temperate parts of South America> Crassuletalia peduncularis-venezuelensis (ex CLEEF 1981) CLEEF et al. 2008 (= Tillaeetalia paludosae CLEEF 1981) Crassulion peduncularis-venezuelensis (ex CLEEF 1981) corr. CLEEF et al. 2008 (= Tillaeion paludosae CLEEF 1981) Crassuletum peduncularis-venezuelensis (ex CLEEF 1981) corr. CLEEF et al. 2008 (= Tillaeetum paludosae CLEEF 1981) ................................................................................................................ 95 B col. 49 (= Crassuletum peduncularis SALAMANCA et al. 2003) .................................................................................. 288 col. 48 Limosella australis-comm. CLEEF 1981.................................................................................................................. 95 C col. 50 Crassula peduncularis-Limosella lineata-comm. CABIDO et al. 1990 .................................................................... 48 col. 45 Crassulo venezuelensis-Eleocharition stenocarpae RANGEL & ARIZA 2000 Lilaeopsio schaffnerianae-Ranunculetum flagelliformis RANGEL & ARIZA 2000 .................................... 323 B col. 52 Ranunculo nubigenoris-Caricetum bonplandii RANGEL & ARIZA 2000 .................................................... 323 C col. 53 Hydrocotylo ranunculoidis-Caricetum acutatae RANGEL & ARIZA 2000 .................................................. 323 D col. 54 Potamogetonetea pectinati R. TX. & PRSG. 1942 corr. OBERD. 1979 Nymphaeetalia amplae KNAPP 1964 Potamion illinoensis BORHIDI in BORHIDI et al. 1983 (= Myriophyllo elatinoides-Potamogetion illinoensis R ANGEL & AGUIRRE 1983) (syn. Potamogeto illinoense-Myriophyllion quitensis CLEEF et al. 2008 prov.) Myriophyllo elatinoides-Potamogetonetum illinoensis RANGEL & AGUIRRE 1983 ................................. 291 A col. 46 Xyrido-Typhetea O. BOLOS et al. 1991 Equiseto-Typhetalia domingensis O. BOLÒS et al. 1991 Equiseto-Typhion domingensis O. BOLÒS et al. 1991 (incl. Polygono-Scirpion californici sensu RANGEL & AGUIRRE 1983) Junco microcephali-Scirpetum californicae RANGEL & AGUIRRE 1983[= Schoenoplectus c.] .................... 291 B col. 55 Verbeno hispidae-Scirpetum gigantei RANGEL & AGUIRRE 1983 ............................................................... 291 D col. 56 Epilobio denticulatae-Typhetum latifoliae RANGEL & AGUIRRE 1983 ...................................................... 291 C col. 57 ? class ? order Ditricho submersi-Isoëtion karstenii CLEEF 1981 <permanently submerged communities with Isoëtes spp. Sect. Laeves in oligotrophic waters of the High Andes> Isoëtetum karstenii CLEEF 1981 (incl. Isoëtetum andicolae sensu CLEEF 1981) ....................................... 95 A
col. 47
rankless community Alopecurus hitchcockii-Juncus stipulatus-comm. MOLINA et al. 2007 ................................................................. 297 C
col. 51
U. Deil et al.
34
CG H: Littorellion australis and Senecioni zosteraefolii-Eleocharietalia pachycarpae <shoreline vegetation of oligo- and mesotrophic lakes in the temperate climate of Chile and Argentina> Littorelletea australis OBERDORFER 1960 ? order ? alliance Gratiolo peruviani-Littorelletum australis OBERDORFER 1960 ...................................................................... 88 A
col. 66
Nanojuncetea australis OBERDORFER 1960 prov. Nanojuncetalia australis OBERDORFER 1960 prov. Juncion planifolii OBERDORFER 1960 prov. Juncetum planifolii OBERDORFER 1960 prov. ................................................................................................... 88 B Scirpo inundati-Limoselletum aquaticae OBERDORFER 1960 prov. [= Isolepis inundata] ........................... 88 C
col. 64 col. 65
Asteretea vahlii ESKUCHE 2005 Senecioni zosteraefolii-Eleocharietalia pachycarpae ESKUCHE 2005 Senecionion zosteraefolii ESKUCHE 2005 Carici deciduae-Senecionetum zosteraefolii ESKUCHE 2005 ........................................................................ 308 Senecioni zosteraefolii-Littorelletum australis ESKUCHE 2005 .................................................................... 308 Hydrocotylo chamaemori-Juncetum arctici ESKUCHE 2005 prov............................................................... 308 Arenario serpentis-Azorelletum trifoliatae ESKUCHE 2005 .......................................................................... 308 Downingio pusillae-Isoëtetum savatieri ESKUCHE 2005 ............................................................................... 308 Crassulo peduncularis-Limoselletum lineatae ESKUCHE 2005 ..................................................................... 308
B C F A E D
col. col. col. col. col. col.
58 59 60 61 62 63
A E B B
col. col. col. col.
67 68 69 70
A
col. col. col. col. col.
71 72 73 74 75
col. col. col. col. col. col. col.
76 77 78 79 80 81 82
CG I: Juncion planifolii, Nanojuncetea australis <vernal pool vegetation in the temperate and mediterranean climate of Chile> rankless communities Eleocharietum macrostachyae SAN MARTÍN et al. 1998 .................................................................................. 67 Eleocharietum pachycarpae SAN MARTÍN et al. 1998 ...................................................................................... 67 Gnaphalio cymatoidis-Polygonetum hydropiperoidis SAN MARTÍN et al. 1998 ......................................... 67 Eryngium pseudojunceum-Centipeda elatinoides-comm. SAN MARTÍN et al. 1998 ................................................ 77 Leontodo saxatilis-Piptochaetietum chilensis RAMÍREZ et al. 1994 navarretietosum involucratae RAMÍREZ et al. 1994 ................................................................................... 77 navarretietosum involucratae RAMÍREZ et al. 1994 ................................................................................. 313 Phyla nodiflora-comm. SAN MARTÍN et al. 1998 .................................................................................................. 67 Eleocharis pachycarpa-Lythrum portula-comm. SAN MARTÍN et al. 1998 ............................................................ 67 Polygono aviculare-Crassuletum paludosae RAMÍREZ et al. 1996 ................................................................. 78
D C
CG J: Ludwigia peploides -, Echinochloa helodes - and Luziola peruviana -communities <seasonally flooded pampa grassland in the River Salado Basin, Santa Fe province, Argentina> rankless communities Echinochloa helodes-comm. LEWIS et al. 1985 ..................................................................................................... 250 Echinochloa helodes-comm. LEWIS et al. 1985 ..................................................................................................... 250 Echinochloa helodes-comm. LEWIS et al. 1985 ..................................................................................................... 250 Luziola peruviana-comm. LEWIS et al. 1985 ....................................................................................................... 250 Luziola peruviana-comm. LEWIS et al. 1985 ....................................................................................................... 250 Paspalum distichum-comm. LEWIS et al. 1985 ..................................................................................................... 250 Eleocharis macrostachya-Lilaeopsis attenuata-comm. LEWIS et al. 1985.............................................................. 250
A B C D E F G
CG K: Lindernio dubiae-Mecardonietum herniarioides <annual turf on the emerging banks of the River Paraná, Argentina> ? class ? order ? alliance Lindernio dubiae-Mecardonietum herniarioides ESKUCHE 1975 ................................................................ 155
col. 83