Historia de la Física

Page 1

Por: Juan Camilo Rosales Ni単o

1


Índice Titulo

Pagina

Historia de la física………………………………… 4

Física en los siglos XVI y XVII…………………… 5

Siglo XVIII: termodinámica y óptica………….. 6

Siglo XIX: electromagnetismo……………………. 7

Siglo XX: segunda revolución de la física……. 8

Física del siglo XXI………………………………….. 10

2


Titulo

Pagina

Grandes físicos y grandes aportes

Albert Einstein …………………………………. 12

Isaac Newton …………………………………….. 13

Galileo Galilei …………………………………….. 14

Marie Curie ……………………………………….. 15

Nikola Tesla ……………………………………..... 16

Stephen Hawking ……………………………….. 17

Johannes Kepler …………………………………. 18

3


Se conoce que la mayoría de las civilizaciones de la antigüedad trataron desde un principio de explicar el funcionamiento de su entorno; miraban las estrellas y pensaban cómo ellas podían regir su mundo. Esto llevó a muchas interpretaciones de carácter más filosófico que físico; no en vano en esos momentos a la física se le llamaba filosofía natural. Muchos filósofos se encuentran en el desarrollo primigenio de la física, como Aristóteles, Tales de Mileto o Demócrito, por ser los primeros en tratar de buscar algún tipo de explicación a los fenómenos que les rodeaban.1 A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas, estas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la Iglesia católica de varios de sus preceptos, como la teoría geocéntrica o las tesis de Aristóteles.

4


Física en los siglos XVI y XVII En el siglo XVI nacieron algunos personajes como Copérnico, Stevin, Cardano, Gilbert, Brahe, pero fue Galileo quien, hasta principios del siglo XVII, impulsó el empleo sistemático de la verificación experimental y la formulación matemática de las leyes físicas. Galileo descubrió la ley de la caída de los cuerpos y del péndulo, se le puede considerar como el creador de la mecánica, también hizo las bases de la hidrodinámica, cuyo estudio fue continuado por su discípulo Torricelli que fue el inventor del barómetro, el instrumento que más tarde utilizó Pascal para determinar la presión atmosférica. Pascal precisó el concepto de presión en el seno de un líquido y enunció el teorema de transmisión de las presiones. Boyle formuló la ley de la compresión de los gases (ley de Boyle-Mariotte). En óptica, René Descartes estableció la ley de la refracción de la luz, formuló una teoría del arco iris y estudió los espejos esféricos y las lentes. Fermat enunció el principio de la óptica geométrica que lleva su nombre, y Huygens, a quién también se le deben importantes contribuciones a la mecánica, descubrió la polarización de la luz, en oposición a Newton, para quién la luz es una radiación corpuscular, propuso la teoría ondulatoria de la luz. Hooke estudió las franjas coloreadas que se forman cuando la luz atraviesa una lámina delgada; también, estableció la proporcionalidad. A finales del siglo XVII la física comienza a influir en el desarrollo tecnológico permitiendo también el avance de la física.

5


Siglo XVIII: termodinámica y óptica A partir del Siglo XVIII Boyle y Young desarrollaron la termodinámica. En 1733 Bernoulli usó argumentos estadísticos, junto con la mecánica clásica, para extraer resultados de la termodinámica, iniciando la mecánica estadística. En 1798 Thompson demostró la conversión del trabajo mecánico en calor y en 1847 Joule formuló la ley de conservación de la energía. En el campo de la óptica el siglo XVIII comenzó con la teoría corpuscular de la luz de Newton expuesta en su famosa obra Opticks. Aunque las leyes básicas de la óptica geométrica habían sido descubiertas algunas décadas antes, el siglo XVIII fue bueno en avances técnicos en este campo produciéndose las primeras lentes acromáticas, midiéndose por primera vez la velocidad de la luz y descubriendo la naturaleza espectral de la luz. El siglo concluyó con el célebre experimento de Young de 1801 en el que se ponía de manifiesto la interferencia de la luz demostrando la naturaleza ondulatoria de ésta. más rápido de la propia física.

6


Siglo XIX: electromagnetismo y estructura atómica La investigación física de la primera mitad del siglo XIX estuvo dominada por el estudio de los fenómenos de la electricidad y el magnetismo. Coulomb, Luigi Galvani, Faraday, Ohm y muchos otros físicos famosos estudiaron los fenómenos dispares y contraintuitivos que se asocian a este campo. En 1855 Maxwell unificó las leyes conocidas sobre el comportamiento de la electricidad y el magnetismo en una sola teoría con un marco matemático común mostrando la naturaleza unida del electromagnetismo. Los trabajos de Maxwell en el electromagnetismo se consideran frecuentemente equiparables a los descubrimientos de Newton sobre la gravitación universal y se resumen con las conocidas, ecuaciones de Maxwell, un conjunto de cuatro ecuaciones capaz de predecir y explicar todos los fenómenos electromagnéticos clásicos. Una de las predicciones de esta teoría era que la luz es una onda electromagnética. Este descubrimiento de Maxwell proporcionaría la posibilidad del desarrollo de la radio unas décadas más tarde por Heinrich Hertz en 1888. En 1895 Roentgen descubrió los rayos X, ondas electromagnéticas de frecuencias muy altas. Casi simultáneamente, Henri Becquerel descubría la radioactividad en 1896. Este campo se desarrolló rápidamente con los trabajos posteriores de Pierre Curie, Marie Curie y muchos otros, dando comienzo a la física nuclear y al comienzo de la estructura microscópica de la materia. En 1897 Thomson descubrió el electrón, la partícula elemental que transporta la corriente en los circuitos eléctricos proponiendo en 1904 un primer modelo simplificado del átomo.

7


Siglo XX: segunda revolución de la física El siglo XX estuvo marcado por el desarrollo de la física como ciencia capaz de promover el desarrollo tecnológico. A principios de este siglo los físicos consideraban tener una visión casi completa de la naturaleza. Sin embargo pronto se produjeron dos revoluciones conceptuales de gran calado: El desarrollo de la teoría de la relatividad y el comienzo de la mecánica cuántica.

En 1905 Albert Einstein, formuló la teoría de la relatividad especial, en la cual el espacio y el tiempo se unifican en una sola entidad, el espacio-tiempo. La relatividad formula ecuaciones diferentes para la transformación de movimientos cuando se observan desde distintos sistemas de referencia inerciales a aquellas dadas por la mecánica clásica. Ambas teorías coinciden a velocidades pequeñas en relación a la velocidad de la luz. En 1915 extendió la teoría especial de la relatividad para explicar la gravedad, formulando la teoría general de la relatividad, la cual sustituye a la ley de la gravitación de Newton. En 1911 Rutherford dedujo la existencia de un núcleo atómico cargado positivamente a partir de experiencias de dispersión de partículas. A los componentes de carga positiva de este núcleo se les llamó protones. Los neutrones, que también forman parte del núcleo pero no poseen carga eléctrica, los descubrió Chadwick en 1932.

8


En los primeros años del Siglo XX Planck, Einstein, Bohr y otros desarrollaron la teoría cuántica a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En esta teoría, los niveles posibles de energía pasan a ser discretos. En 1925 Heisenberg y en 1926 Schrödinger y Dirac formularon la mecánica cuántica, en la cual explican las teorías cuánticas precedentes. En la mecánica cuántica, los resultados de las medidas físicas son probabilísticos; la teoría cuántica describe el cálculo de estas probabilidades. La mecánica cuántica suministró las herramientas teóricas para la física de la materia condensada, la cual estudia el comportamiento de los sólidos y los líquidos, incluyendo fenómenos tales como estructura cristalina, semiconductividad y superconductividad. Entre los pioneros de la física de la materia condensada se incluye Bloch, el cual desarrolló una descripción mecanocuántica del comportamiento de los electrones en las estructuras cristalinas (1928).

La teoría cuántica de campos se formuló para extender la mecánica cuántica de manera consistente con la teoría especial de la relatividad. Alcanzó su forma moderna a finales de los 1940s gracias al trabajo de Feynman, Schwinger, Tomonaga y Dyson. Ellos formularon la teoría de la electrodinámica cuántica, en la cual se describe la interacción electromagnética. La teoría cuántica de campos suministró las bases para el desarrollo de la física de partículas, la cual estudia las fuerzas fundamentales y las partículas elementales. En 1954 Yang y Mills desarrollaron las bases del modelo estándar.

9


Física del siglo XXI La física sigue enfrentándose a grandes retos, tanto de carácter práctico como teórico, a comienzos del siglo XXI. El estudio de los sistemas complejos dominados por sistemas de ecuaciones no lineales, tal y como la meteorología o las propiedades cuánticas de los materiales que han posibilitado el desarrollo de nuevos materiales con propiedades sorprendentes. A nivel teórico la astrofísica ofrece una visión del mundo con numerosas preguntas abiertas en todos sus frentes, desde la cosmología hasta la formación planetaria. La física teórica continúa sus intentos de encontrar una teoría física capaz de unificar todas las fuerzas en un único formulismo en lo que sería una teoría del todo. Entre las teorías candidatas debemos citar a la teoría de supercuerdas.

10


11


1.Albert Einstein (1879-1955) fue un físico alemán de origen judío, nacionalizado después suizo y estadounidense. Es considerado como el científico más conocido y popular del siglo XX. Einstein firmó la Teoría de la Relatividad General, que supuso una auténtica revolución en el entendimiento de la gravedad. Años antes, el científico había formulado la Teoría de la Relatividad Especial, inspirada en aportaciones previas de los investigadores Henri Poincaré y Hendrik Lorentz. Otras deducciones muy famosas de Einstein fueron las relacionadas con el movimiento Browniano, el efecto fotoeléctrico o la equivalencia masa – energía. Además, fue pionero con su Teoría del Quántum en la Radiación, esencial para el funcionamiento de la tecnología láser, y los tan de moda Sistemas de Posicionamiento Global (GPS). Premio Nobel de Física en 1921, Albert Einstein también está considerado el padre de la bomba atómica, aunque en sus escritos se reveló como un firme defensor de los movimientos pacifista, socialista y sionista.

12


2.Isaac Newton (1643-1727) fue un físico, filósofo, teólogo, inventor, alquimista y matemático inglés. Estableció las bases de la mecánica clásica mediante sus tres leyes relativas al movimiento (las tres leyes de la dinámica): -En la ausencia de fuerzas exteriores, todo cuerpo continúa en su estado de reposo o de movimiento rectilíneo uniforme a menos que actúe sobre él una fuerza que le obligue a cambiar dicho estado. -La variación de momento lineal de un cuerpo es proporcional a la resultante total de las fuerzas actuando sobre dicho cuerpo y se produce en la dirección en que actúan las fuerzas. -Por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza igual pero de sentido opuesto sobre el cuerpo que la produjo. Dicho de otra forma: Las fuerzas siempre se presentan en pares de igual magnitud, sentido opuesto y están situadas sobre la misma recta. Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Descubrió que el espectro de color que se observa cuando la luz blanca pasa por un prisma es inherente a esa luz, en lugar de provenir del prisma -Argumentó la posibilidad de que la luz estuviera compuesta por partículas y no por ondas. -Formuló una ley de conducción térmica, que describe la tasa de enfriamiento de los objetos expuestos al aire

13


3. Galileo Galilei (1564-1642) fue un astrónomo, filósofo, ingeniero, matemático y físico italiano que estuvo relacionado estrechamente con la revolución científica. a mejora del Telescopio. El recibió una noticia de la existencia de un "telescopio" que permitía ver objetos lejanos y con esa única información construyó el suyo haciéndole varias mejoras como: no deformar los objetos, duplicar el aumento del telescopio del cual escucho hablar y una muy importante, conseguir una imagen derecha del objetivo ya que empleo una lente divergente en el ocular. -El apoyo a la teoría Heliocéntrica de Copérnico. Mediante una de sus obras que publicó en 1632 referente a los dos modelos principales, Geocéntrico y Heliocéntrico, daba su respaldo total al modelo de Copérnico, o sea al modelo Heliocéntrico, desafiando con esto a la iglesia y a la filosofía aristotélica que dominaba en aquella época.

-Descubrió 4 satélites de Júpiter. Gracias a que cada vez conseguía más aumentos con su telescopio, debido a que lo mejoraba constantemente, descubrió 4 objetos que giraban alrededor de Júpiter a los que llamo "Astros Mediciens", ahora conocidos como Calixto, Europa, Io y Ganimedes. -Otros descubrimientos con la ayuda del telescopio. Determino la rotación del sol mediante la observación de las manchas solares, conto la estrellas de Orión, noto que "estrellas" visibles a simple vista en realidad eran cúmulos de ellas, también observó los anillos de Saturno.

14


4. Marie Curie (1867-1934) fue una física , matemática y química polaca, nacionalizada francesa. Pionera en el campo de la radiactividad, fue, entre otros méritos, la primera persona en recibir dos Premios Nobel en distintas especialidades, Física y Química, y la primera mujer en ser profesora en la Universidad de París.

La importancia de Marie Curie para la Ciencia está ligada a sus aportaciones al estudio de los fenómenos radiactivos (rayos X), un dominio de la física especialmente llamativo. Consiguió ampliar sustancialmente el significado y relevancia del hallazgo llevado a cabo por Henri Becquerel en 1986 (radiactividad), con el descubrimiento de la radiactividad del Torio (Th, número atómico90) y el descubrimiento caracterización de dos nuevos elementos químicos, el Polonio, en 1898, (Po, número atómico 84) y el Radio, en 1898, (Ra, número atómico 88). En 1898 al descubrir un nuevo elemento químico, no dudó en bautizarlo como Polonio.

15


5. Nikola Tesla (1856-1943) fue un inventor, ingeniero mecánico, ingeniero electricista y físico de origen serbio y el promotor más importante del nacimiento de la electricidad comercial. Se le conoce, sobre todo, por sus numerosas y revolucionarias invenciones en el campo del electromagnetismo, desarrolladas a finales del siglo XIX y principios del siglo XX. Las patentes de Tesla y su trabajo teórico formaron las bases de los sistemas modernos de potencia eléctrica por corriente alterna (CA), incluyendo el sistema polifásico de distribución eléctrica y el motor de corriente alterna, que tanto contribuyeron al nacimiento de la Segunda Revolución Industrial. Tesla tuvo muchos aportes: Campo magnético rotativo

Motor de corriente alterna

Transferencia de energía

Bombillas sin filamentos inalámbrica

Puertas lógicas.

Control remoto.

La radio

etc..

Teslascopio Corriente alterna

16


6. Stephen Hawking (1942-Actualidad) es un físico teórico, astrofisico, cosmólogo y divulgador científico británico. Sus trabajos más importantes hasta la fecha han consistido en aportar, junto con Roger Penrose, teoremas respecto a las singularidades espaciotemporales en el marco de la relatividad general, y la predicción teórica de que los agujeros negros emitirían radiación, lo que se conoce hoy en día como radiación de Hawking. Hawking ha trabajado en las leyes básicas que gobiernan el universo. Junto con Roger Penrose mostró que la Teoría General de la Relatividad de Einstein implica que el espacio y el tiempo han de tener un principio en el Big Bang y un final dentro de agujeros negros. Semejantes resultados señalan la necesidad de unificar la Relatividad General con la Teoría Cuántica, el otro gran desarrollo científico de la primera mitad del siglo XX. Una consecuencia de tal unificación que él descubrió era que los agujeros negros no eran totalmente negros, sino que podían emitir radiación y eventualmente evaporarse y desaparecer. Otra conjetura es que el universo no tiene bordes o límites en el tiempo imaginario. Esto implicaría que el modo en que el universo empezó queda completamente determinado por las leyes de la ciencia. Sus numerosas publicaciones incluyen La Estructura a Gran Escala del Espacio-tiempo con G. F. R. Ellis, Relatividad General: Revisión en el Centenario de Einstein con W. Israel, y 300 Años de Gravedad, con W. Israel. Stephen Hawking ha publicado tres libros de divulgación: su éxito de ventas Breve historia del tiempo, Agujeros negros y pequeños universos y otros ensayos y más recientemente en 2001, El universo en una cáscara de nuez, y en 2005, Brevísima historia del tiempo, una versión de su primer best-seller adaptada a un público sin unos conocimientos profundos sobre astrofísica y física teórica.

17


7.Johannes Kepler (1571-1630) figura clave en la revolución científica, astrónomo y matemático alemán; fundamentalmente conocido por sus leyes sobre el movimiento de los planetas en su órbita alrededor del Sol. Fue colaborador de Tycho Brahe, a quien sustituyó como matemático imperial de Rodolfo II. Kepler redujo descripciones geocéntricas al heliocentrismo así salieron las leyes de Kepler:

Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus órbitas alrededor del Sol. Aunque él no las enunció en el mismo orden, en la actualidad las leyes se numeran como sigue: Primera Ley (1609): Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos. Segunda Ley (1609): El radio vector que une un planeta y el Sol barre áreas iguales en tiempos iguales. ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio). En el afelio y en el perihelio, el momento angular L es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol. Tercera Ley (1618): Para cualquier planeta, el cuadrado de su período orbital es directamente proporcional al cubo de la longitud del semejante mayor c de su órbita elíptica. Donde, T es el periodo orbital (tiempo que tarda en dar una vuelta alrededor del Sol), (L) la distancia media del planeta con el Sol y K la constante de proporcionalidad.

18


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.