Recent technical advancements, economics and environmental impacts of floating photovoltaic

Page 1

Journal of Cleaner Production 278 (2021) 124285

Contents lists available at ScienceDirect

Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro

Review

Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems Shiva Gorjian a, *, H. Sharon b, Hossein Ebadi c, Karunesh Kant d, Fausto Bontempo Scavo e, Giuseppe Marco Tina e a

Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University (T.M.U), Tehran, Iran Adhoc Faculty, Department of Mechanical Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India Biosystems Engineering Department, Faculty of Agriculture, Shiraz University, Shiraz, Iran d Universit e Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, ClermonteFerrand, France e University of Catania, DIEEI: Department of Electric, Electronic and Computer Engineering, Catania, Italy b c

a r t i c l e i n f o

a b s t r a c t

Article history: Received 6 July 2020 Received in revised form 1 September 2020 Accepted 15 September 2020 Available online 24 September 2020

Floating Photovoltaic (FPV) is an emerging technology that has experienced significant growth in the renewable energy market since 2016. It is estimated that technical improvements along with governmental initiatives will promote the growth rate of this technology over 31% in 2024. This study comprehensively reviews the floating photovoltaic (FPV) solar energy conversion technology by deep investigating the technical advancements and presenting a deliberate discussion on the comparison between floating and ground-mounted photovoltaic (PV) systems. Also, the economics and environmental impacts of FPV plants are presented by introducing the main challenges and prospects. The FPV plants can be conventionally installed on water bodies/dam reservoirs or be implemented as multipurpose systems to produce simultaneous food and power. Installing FPV modules over water reservoirs can prevent evaporation but penetration of solar radiation still remains an issue that can be eliminated by employing bifacial PV modules. The salt deposition in off-shore plants and algae-bloom growth are other important issues that can degrade modules over time and adversely affect the aquatic ecosystem. The capital expenditure (CAPEX) for FPV systems is about 25% higher than ground-mounted plants, mainly due to the existence of floats, moorings, and anchors. It has been stated that the capacity increase of FPV plants (ranges from 52 kW to 2 MW) can intensely decrease the levelized cost of energy (LCOE) up to 85%. It is estimated that FPV technology can become more affordable in the future by further research, developments, and progress in both technology and materials. © 2020 Elsevier Ltd. All rights reserved.

Handling Editor: Prof. Jiri Jaromir Kleme s Keywords: Floating PV modules Water cooling Multipurpose generation Environmental impacts Energy cost

Contents 1. 2. 3.

4.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Concept of floating PV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 An overview of PV modules cooling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1. A. Efficiency drop due to thermal drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2. B. Efficiency enhancement methods for FPV modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Commercial designs of FPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1. A. Conventional FPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2. B. Hybrid floating solar-hydropower systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.3. C. Multipurpose FPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

* Corresponding author. E-mail addresses: Gorjian@modares.ac.ir (S. Gorjian), hsharon1987@gmail.com (H. Sharon), h.ebadi.shirazu@gmail.com (H. Ebadi), k1091kant@gmail.com (K. Kant), faustobontempo@hotmail.it (F.B. Scavo), giuseppe.tina@unict.it (G.M. Tina). https://doi.org/10.1016/j.jclepro.2020.124285 0959-6526/© 2020 Elsevier Ltd. All rights reserved.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Recent technical advancements, economics and environmental impacts of floating photovoltaic by Kanaga Gnana - Issuu