Universidad Fermín Toro Extensión Cabudare – Lara Ingeniería Eléctrica Volumen
CONTENIDO: - MOTORES
2
ELECTRICOS - PRINCIPIO DE FUNCIONAMIENTO - MOTORES DE
1, nº 1
07/08/2016
MOTORES ELECTRICOS
3
CORRIENTE CONTINUA
- MOTORES DE
4
CORRIENTE ALTERNA MANTENIMIENTO DE MOTORES
5
Estudiante: Kendrys Méndez C.I: 19.454.323
QUE SON MOTORES ELECTRICOS Es un dispositivo encargado de transforma la energía eléctrica en energía mecánica por medio de la acción de los campos magnéticos generados en sus bobinas. Son máquinas eléctricas rotatorias compuestas por un estator y un rotor. Son utilizados en infinidad de sectores tales como instalaciones industriales, comerciales y particulares. Su uso está gene-
ralizado en ventiladores, vibradores para teléfonos móviles, bombas, medios de transporte eléctrico, electrodomésticos,esmeriles angulares y otras herramientas eléctricas, unidades de disco, etc. Los motores eléctricos pueden ser impulsados por fuentes de corriente continua (CC), y por fuentes de corriente alterna (AC).
PUBLICIDAD: ServimotorC.A.com -Mtto. en motores eléctricos e instalaciones. Telf.: 0900-0707 INSTAGRAN: servimotor22
PRINCIPIO DE FUNCIONAMIENTO MOTOR ABB
Los motores eléctricos, en general, basan su funcionamiento en las fuerzas ejercidas por un campo electromagnético y creadas al hacer circular una corriente eléctrica a través de una o varias bobinas. Si dicha bobina, generalmente circular y denominada estator, se mantiene en una posición mecánica fija y en su interior, bajo la influencia del campo
electromagnético, se coloca otra bobina, llamada rotor, recorrida por una corriente y capaz de girar sobre su eje. Al excitar el estator, se crearan los polos N-S, provocando la variación del campo magnético formado. La respuesta del rotor será seguir el movimiento de dicho campo (tenderá a buscas la posición de equili-
giro del eje del motor, y a la vez la transformación de una energía eléctrica en otra mecánica en forma de movimiento circular.
brio magnético), es decir, orientará sus polos NORTE-SUR hacia los polos SUR-NORTE del estator, respectivamente. Cuando el rotor alcanza esta posición de equilibrio, el estator cambia la orientación de sus polos y se tratará de buscar la nueva posición de equilibrio. Manteniendo dicha situación de manera continuada, se conseguirá un movimiento giratorio y conti-
MOTORES DE CORRIENTE CONTINUA (C.C) El principio de funcionamiento de los motores eléctricos de corriente directa o continua se basa en la repulsión que ejercen los polos magnéticos de un imán permanente cuando, de acuerdo con la Ley de Lorentz, interactúan con los polos magnéticos de un electroimán que se encuentra montado en un eje. Este electroimán se denomina “rotor” y su eje le permite girar libremente entre los polos magnéticos norte y sur del imán permanente situado dentro de la carcasa o cuerpo del motor. Cuando la corriente eléctrica circula por la bobina de este electroimán giratorio, el campo electromagnético que se genera interactúa con el campo magnético del imán permanente. Si los polos del imán permanente y del electroimán giratorio coinciden, se produce un rechazo y un torque magnético o par de fuerza que provoca que el
rotor rompa la inercia y comience a girar sobre su eje en el mismo sentido de las manecillas del reloj en unos casos, en sentido contrario, de acuerdo con
ne de tres enrollados o bobinas que crean tres polos magnéticos. Colector-conmutador. Situado en uno de los extremos del eje del rotor, se compone de un
la forma que se encuentre conectada al circuito la pila o la batería.
anillo deslizante seccionado en dos o más segmentos. Generalmente el colector de los pequeños motores comunes de C.D. se divide en tres segmentos.
PARTES DE UN MOTOR C.C Carcasa metálica o cuerpo del motor. Aloja en su interior, de forma fija, dos imanes permanentes con forma de semicírculo, con sus correspondientes polos norte y sur. Rotor o parte giratoria del motor. Se compone de una estructura metálica formada por un conjunto de chapas o láminas de acero al silicio, troqueladas con forma circular y montadas en un mismo eje con sus correspondientes bobinas de alambre de cobre, que lo convierten en un electroimán giratorio. Por norma general el rotor de la mayoría de los pequeños motores de C.D. se compo-
• Escobillas. Representan dos contactos que pueden ser metálicos en unos casos, o compuesto por dos piezas de carbón en otros. Las escobillas constituyen contactos eléctricos que se deslizan por encima de los segmentos del colector mientras estos giran . Tapa de la carcasa (izquierda en la foto). Es la tapa que se emplea para cerrar uno de los extremos del cuerpo o carcasa del motor. En su cara interna se encuentran situadas las escobillas de forma fija. El motor de esta foto utiliza en función de escobillas dos flejes metálicos.
PÁGINA 3
PÁGINA
MOTORES DE CORRIENTE ALTERNA (C.A) Los Motores de Corriente Alterna [C.A.]: Son los tipos de motores más usados en la industria, ya que estos equipos se alimentan con los sistemas de distribución de energías "normales". En la actualidad, el motor de corriente alterna es el que más se utiliza para la mayor parte de las aplicaciones, debido fundamentalmente a que consiguen un buen rendimiento, bajo mantenimiento y sencillez, en su construcción, sobre todo en los motores asíncronos.
se desea una velocidad constante.
Clasificación de los motores de corriente alterna
Por el tipo de rotor
Por su velocidad de giro: 1. Asíncrono: Son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias. 2. Motores Síncronos: Son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias. Este motor tiene la característica de que su velocidad de giro es directamente proporcional a la frecuencia de la red de corriente alterna que lo alimenta. Es utilizado en aquellos casos en donde
Motores de rotor de polos lisos o polos no salientes: se utilizan en rotores de dos y cuatro polos. Estos tipos de rotores están construidos al mismo nivel de la superficie del rotor. Los motores de rotor liso trabajan a elevadas velocidades. Motores de polos salientes: Los motores de polos salientes trabajan a bajas velocidades. Un polo saliente es un polo magnético que se proyecta hacia fuera de la superficie del rotor.
1. Motores de anillos rasantes: Es similar al motor trifásico jaula de ardilla, su estator contiene los bobinados que generan el campo magnético giratorio. 2. Motores con colector: Los colectores también son llamados anillos rotatorios, son comúnmente hallados en máquinas eléctricas de corriente alterna como generadores, alternadores, turbinas de viento, en las cuales conecta las corriente de campo o excitación con el bobinado del rotor. 3. Motores de jaula de ardilla: un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras l o n g i t u d i n a l e s de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula.
4
MANTENIMIENTO A MOTORES ELECTRICOS El mantenimiento de los motores eléctricos constituye uno de los aspectos fundamentales para garantizar la óptima operatividad de los mismos, y por consiguiente, la confiabilidad del proceso productivo. Por tal motivo es muy importante que las actividades de mantenimiento preventivo, predictivo y correctivo sean realizadas por personal calificado y entrenado para tal fin. Los motores eléctricos por ser máquinas rotativas y generalmente de uso continuo, están propensos a sufrir desgastes en sus componentes mecánicos, especialmente en los rodamientos o cojinetes, los cuales merecen especial atención por parte del departamento de mantenimiento, y someterlos a un programa de mantenimiento rutinario. El material aislante es otro componente aún más importante, ya que si éste falla la máquina puede quedar inutilizada. Las fallas en el aislamiento de las máquinas eléctricas son producidas por degradación del material aislante debido a fatigas mecánicas y eléctri-
cas, contaminación, temperatura y humedad. Una falla del material aislante produce fallas incluso catastróficas en las máquinas eléctricas, por lo que es recomendable realizar el mantenimiento rutinario y preventivo en las mismas para minimizar las interrupciones no programadas de los procesos productivos. El objetivo del mantenimiento es lograr con el mínimo coste el mayor tiempo de servicio de las Instalaciones y Maquinaria productiva. El mantenimiento preventivo abarca todos los planes y acciones necesarias para determinar y corregir las condiciones de operación que puedan afectar a un sistema, maquinaria o equipo, antes de que lleguen al grado de mantenimiento correctivo, considerando la selección, la instalación y la misma operación. El mantenimiento preventivo bien aplicado disminuye los costos de producción, aumenta la productividad, así como la vida útil de la maquinaria y equipo, obteniendo como resultado la disminución de paro de máquinas. Las actividades principales del mantenimiento preventivo son: a) Inspección periódica con el fin de encontrar las causas que provocarían paros imprevistos. b) Conservar la planta, anulando y reparando aspectos dañinos cuando apenas comienzan.
PÁGINA
5