Cover
Story
Where in the World is the Process Yield Window? Conjoint DFM and APC Strategies for Reducing Hidden Systematic Errors at 65 nm and Below Kevin Monahan and Brian Trafas, KLA-Tencor Corporation
Immersion lithography at 193 nm has emerged as the leading contender for critical patterning through the 32 nm technology node. Super-high numerical aperture (NA), along with attendant polarization effects, will require re-optimization of virtually every resolution enhancement technology and the implementation of advanced process control (APC) at intra-wafer and intra-ďŹ eld levels. Furthermore, interactions of critical dimensions (CDs), proďŹ les, roughness, and overlay between layers will impact design margins and become severe yield limiters. In this work, we show how design margins are reduced as a result of hidden process error and how this error can be parsed into unobservable, unsampled, unmodeled, and uncorrectable components. We apply four new process control technologies that use spectroscopic ellipsometry, grating-based overlay metrology, e-beam array imaging, and simulation to reduce hidden systematic error. Feedback of super-accurate process metrics will be critical to the application of conjoint design for manufacturability (DFM) and APC strategies at the 65 nm node and beyond. Manufacturing economics will force a trade-off between measurement cost and yield loss that favors greater investment in process control. Addressing pattern limited yield
In this work, we assess the impact of hidden error on pattern limited yield and generate unique CD and overlay-limited yield models for the 65, 45, and 32 nm nodes. We expect 193 nm immersion lithography to remain the dominant patterning technology at the 32 nm node (Figure 1). Even at the 130 nm node, the interaction of more complex designs with shrinking process windows was already evident. In memory manufacturing, for example, ramp delays of several months were common, leading to revenue losses in the tens of millions of dollars per product and reduction of ROI for 300 mm factories. Ramp delays occur primarily for two reasons: lengthy process optimization for smaller yield windows and increased time allocated for more complex intra-ďŹ eld corrections (e.g., re-design and re-layout). We and the semiconductor industry are Fall 2005
Yield Management Solutions
15
C
O
V
E
R
S
T
attacking this problem using DFM and APC strategies. Although the exact definitions of DFM and APC vary significantly with manufacturing context, the goals are clear. The primary goal of DFM is to enlarge the process yield window, and the primary goal of APC is to keep the process in that yield window. A simplified scheme for conjoint DFM and APC strategies is shown in Figure 2. Implementing the DFM strategy requires feeding forward design intent, simulator output, layout clips, and design-rulecheck (DRC) hot spots. Current DRC and aerial image modeling at best focus and exposure conditions is increasingly unreliable. Process-window-aware approaches will require powerful full-chip simulators that can accurately predict and measure developed patterns in resist, along with a super-computing environment that can produce results in an acceptable timeframe. On the process control side, implementing an APC strategy requires feeding forward process context data and prior-step measurement data. In the future, both context and measurement data must increase. In particular, measurement sample plans will increase dramatically to support multi-variate control at the lot, wafer, field, die, and intra-die levels. Note that process metrology is at the center of a conjoint DFM and APC strategy. For example, yield window improvements depend on accurate feedback of CD and overlay variation to set design margins. Full-chip simulators require resist model calibration, and yield prediction depends on correlation with metrology, inspection, and electrical test data. Likewise, control improvements also depend on accurate feedback of measurement 16
Fall 2005
O
R
Y
data to update control models, to correctly analyze CD and overlay variation, to adjust process tool settings, and to establish correlations to device performance and yield with high levels of confidence.
Systematic design-to-process yield loss is mostly pattern limited and is a grand challenge for semiconductor manufacturing at the 65 nm node and beyond. The root-cause is the yield gap originating from
����������������������������� � ������ ��������������� � ���������������������������
���������������
�
���������������������������
�
��������� � ��������������� �����������������������������
� �������������������������� ������ ���������������
�� ��������������������������� � ��������������������������� �
��������������� � ����������������
�� ��������� �������������������� � ��������������� �� �������������������������� ������������������������
� �����������������������
� ����������������������������� ������������������
�� ������������������������ ���������������������������
� ����������������������� ���������������� ���������������������� � �����������������������
�� ���������������������������� �������� �������������������� �� �������������������� �������������������������� � ������������������������
� ���������������������������� � ������������������������
�
�����������������������
� ����������������������������� � ������� ��������������
���������������������������
� ����������������������������
�
� ����������������������� ������������������
���������������������� � �������������������� �����������������������
����������������������������
� ���������������������������
�
� �������������������� �����������������������
� ����������������������
�
����������������������
�
������������������������
� �����������������������
�� �������������������������� ���������������������� � ����������������������� ����������������������������
� �����������������������
� �������������� �������������������������� � ������� � ����������������������
� ���������������������������
���������������������� � ������������������������ Figure 1.� Lithography at the 32 nm node may be dominated by 193 nm, super-high NA immersion technology � ����������������������� � ��������������������������
using numerical apertures ranging from 1.3 to 1.5. A daunting array of CD, overlay, and systematic defect challenges will require conjoint DFM and APC strategies to enable yield.
����������� ���������������������������� ����������� � ������������������������ ���������������������������� � ������������������������� � ������������������������ � ����������������������� � ������������������������� � �����������������������
������ ������ ������
������
�������
������� ������� �������
� ���������������������� � ���������������������� �� �� �� ��
���������������������� ���������������������� ������������������������ ������������������������ ��������������������������� ��������������������������� ������������������������� �������������������������
����������� ������������������������������ ����������� � �������������������������
������������������������������ � ����������������������������� � ������������������������� � ��������������������������� � ����������������������������� � ���������������������������
�������
������� ����� �����
������� �������
������� �������
� ���������������������� � ���������������������� � � � �
� ������������������������� ������������������������� ���������������������������� � ���������������������������� ���������������������������� � ���������������������������� ������������������������������ � ������������������������������
Figure 2. Process metrology is at the center of a conjoint DFM and APC strategy. Both DFM and APC depend on feedback of accurate measurement data and on removing hidden process error.
Yield Management Solutions
C
���� ����
��� ���
��� ���
�� ��
��� ���
E
S
R
T
O
R
���������������������������
��� ���
���������������
��� ��� ��� ���
����������������������������
��� ��� �� ��
��
��
��
��
��
�� ��
�� ��
�� ��
�� ��
�� ��
����������������
�� ��
������������������� �������������������
���������� ����������� �����������
��� ���
�� ��
Defect Pattern
�� �� �� �� �� �� �� �� ��� ���
��� ��� ��� ��� ��� ��� ��� ��� �������������������� ��������������������
������������� �������������
��� ���
�� ��
�� ��
�� ��
�� ��
Figure 3. Rapidly shrinking process windows have created a pattern-limited yield
Figure 4. Going forward, systematic error will be the primary cause of yield
crisis in early production since the 130 nm technology node. Ramp delays can
loss in early production. Innovative conjoint DFM and APC strategies must be
last several months and cost tens of millions of dollars.
employed to close the design-to-process yield gap at 65 nm and beyond.
������������������
��� ���
��� ���
�� ��
�� ��
�� ��
�� ��
����� �����
�� ��
����� ����
�� ��
���� ����
�� �� �� �� �� �� �� �� �� �� ��� ���
��� ��� ��� �� ��� ��� ��� ����������������������� �����������������������
�� ��
�� ��
�� ��
�� ��
����� �����
�� ��
���� ����
�� ��
���������������������� ����������������������
�� ��
��������������������������� ���������������������������
Y
�� ��
��� ���
����� �����
V
�� ��
���������������������
��� ���
O
���� ����
�� �� �� �� �� ��
������������
�� �� ��� ��� ��� �� ��� ��� ��� ���������������������������������� ����������������������������������
������������ �� ��
�� ��
�� ��
Figure 5. Overlay limited yield is a key contributor to yield loss for memory in
Figure 6. CD limited yield is a key contributor to yield loss for logic in early
early production. Windows are shrinking and hidden, unobservable, unsampled,
production. Windows are shrinking and hidden, unobservable, unsampled,
and unmodeled process errors are limiting yield entitlement at “zero error”.
and unmodeled process errors are limiting yield entitlement at “zero error”.
the interaction of more complex designs with shrinking lithographic process windows1. Using past trends and pinning to recent yield data, we can generate models for pattern-limited yield2, as shown in Figures 1-6. Projections of pattern limited yield to the 32 nm technology node indicate a strong need for innovation to
improve yield in early production. The projections for mature defectlimited yield are still relatively high. An 85 percent yield entitlement for mature 140 nm DRAM production would lie directly on the curve, but the yield-dollar impact of a 3-6 month delay in early production can be tens of millions of dollars per product. Fall 2005
Memory speed deficits and timeto-market delays impact initial average selling price and die cost, drastically reducing ROI for 300 mm factories. Specific cost and performance issues can vary significantly by product type, as shown in Figures 5 and 6 for memory and logic, respectively.
www.kla-tencor.com/magazine
17
C
O
V
E
S
R
T
O
Accurate feedback for DFM and APC
R
Y
Four types of “hidden error” are expected to limit yield in the era of immersion lithography:
The prospect of massive systematic yield losses at the 65 nm node and beyond will drive conjoint DFM and APC strategies. The success of these strategies is critically dependent on feedback of accurate metrology data and on removing the types of hidden process errors shown in Figure 7. As super-high NA immersion lithography drives CDs smaller, process windows are expected to shrink commensurately. A necessary condition for smaller design rules is the control of edge placement error (EPE). In the factory, we measure EPE as two separate components: pattern placement error (PPE) and critical dimension error (CDE). Both are affected by hidden process errors, such as lithographic dose and defocus that may or may not be measured directly4. As demonstrated in Figure 7, CD and overlay ultimately share a common error budget and constrain the designer’s intent to shrink design rules, improve performance, or increase yield entitlements.
• Unobservable error. Some systematic variations are profile-related and may not be measurable with the current generation of metrology tools. For example, traditional top-down SEM and electrical CDs miss yield-relevant footing and notching at the bottom of gate structures; these excursions are measurable using spectroscopic ellipsometry-based CD systems (SCD). CD SEMs also suffer from poor material contrast on shallow trench isolation (STI) stacks where the critical silicon top CD is obscured by a nitride structure; again, these excursions are measurable using SCD. On the other hand, SCD measurements are limited to grating targets and can miss yield-relevant shape excursions inside the device (e.g., an SRAM cell). In the case of overlay, large box-in-box targets may be subject to processinduced distortion or, because of their size, may not be sensitive to coma-induced, design rule PPE across the lithographic field.
�������������
�
�
�������� ��
����� ��
�������� �������
����� �������
�������� ���������
���� ���������
Figure 7. In-chip 65 nm failure analysis showing gate-to-contact shorting. Deprocessing revealed a total of seven different error types contributing to yield loss, including overlay error interacting with CD dilation, profile excursion, and roughness error on the gate layer and CD dilation, profile excursion, and roughness error on the contact layer. Most types were classified as hidden error.
18
Fall 2005
Yield Management Solutions
• Unsampled error. Assuming the CDE is measurable, sparse sample plans may still fail to capture actual statistical distributions. If the mean of the sample distribution is shifted, aliased inputs will defeat APC systems and result in costly yield loss, leaving insufficient historical data for robust rootcause analysis. As an example, traditional atomic force microscopes (AFMs) often miss STI profile excursions because sample plans are throughput limited; this is typically not the case for SCD. Insufficient sampling increases alpha and beta risk during ADI and ACI dispositioning, resulting in unnecessary rework, scrap, or yield loss. In the case of overlay, die-level PPE sampling using small targets may be required to support higherorder intra-field models. For nascent super-high NA immersion technologies that use directional liquid injection, it may be appropriate to revisit boustrophedonic sampling plans that separate the effects of stage and scan direction. • Unmodeled error. Simple run-torun control models are no longer adequate for the 65 nm node and beyond. Model-based APC must take into account CD variation at the lot, wafer, field, and die levels. As much as 80 percent of measured CDE in lithography results from changes in effective focus or exposure, and most of this is now intra-wafer variation. Underlying root causes are a combination of reticle, lens, scan, stage, track, and etch variation. For immersion lithography, formerly small interaction effects will become more important. Focus and exposure, profile and overlay, wafer and field, and litho and etch interaction effects should be modeled simultaneously. For nascent super-high NA immersion tech-
C
nologies, control of edge-die focus and exposure may be critical, and models should anticipate and enable shot-level correction. • Uncorrectable error. Even if CDE is accurately modeled with low systematic residuals, it may not be correctable in the factory and must be treated as a DFM issue. For example, CDE on the reticle could require a new mask or costly redesign. In other cases, process adjustments that could compensate for CDE are simply not accessible. Most stepper suppliers allow shot-to-shot dose and focus correction across the wafer, but few support field-dependent pistonand-tilt corrections that could minimize total intra-wafer variation. In the case of overlay, higherorder scanner errors may be observed, sampled, and modeled; but, again, no means of correction may exist inside the factory. In such cases, the burden of correction shifts to DFM. In the following sections, we discuss four technologies that were created to minimize hidden systematic error and to provide more accurate and comprehensive feedback for conjoint DFM and APC strategies. Accurate grating-based overlay metrology
Accuracy of overlay measurement may be compromised by process-induced distortion of traditional box-in-box overlay targets. Errors fed back into APC systems drive incorrect scanner adjustments that can take a process out of its yield window. Likewise, erroneous data fed back into DFM strategies drives incorrect margin setting that can result in smaller yield windows. Replacing box-in-box targets with grating-based (AIM) targets greatly increases robustness to process variation5, as shown in Figure 8.
����������
O
V
E
�����������
R
S
T
�����������
R
Y
�����������
����������
�������������������
O
����������
�����������
������������
����������������
������������
������������
Figure 8. Overlay measurement accuracy may be compromised by process-induced distortion of traditional boxin-box overlay targets. Replacing box-in-box targets with grating-based (AIM) targets, shown above, can increase target robustness, APC performance, and device yield.
The most critical layer pairs are usually active-to-gate, gate-to-contact, and contact-to-metal. Active-to-gate misregistration, specifically with respect to the line-end, can result in gate leakage or reduced static noise margin. Gate-to-contact misregistration, particularly in conjunction with CD, profile, or roughness error, can result in shorts and functional failure. Contact-to-metal misregistration quite often results in resistive or open interconnects. As the number of metal layers increases, the probability of a metal-to-via overlay failure also increases, particularly for layers patterned with aggressive pitch. In addition to process-induced error such as that created by CMP or asymmetric metal deposition, there may be higher-order intra-field error from the reticle and scanner than can account for as much as 50 percent of the overlay model residuals. The effectiveness of APC is reduced in such cases, and DFM strategies must be used to increase the yield window. At least two strategies for target design Fall 2005
are being tested. First, with a small sacrifice in performance, Archer AIM targets may be shrunk to about 10 µm on a side to enable in-chip overlay metrology. Second, if lithographic lens aberrations such as coma are significant, design-rule structures may be incorporated in the bars of the grating target so that featuresize effects are faithfully replicated. Back-end designers should note that, to support conjoint APC and DFM strategies, these targets must be subject to the same resolution enhancement technique (RET) treatments used to enhance printability in the chip. The PROLITH™ simulator can be a useful tool in such applications. Accurate ellipsometrybased profile metrology
Pattern noise in CD-SEM measurements can compromise performance of front-end-of-line (FEOL) APC loops, resulting in lower yield and performance entitlements. Replacing SEMs with spectroscopic ellipsometry-based CD systems, as shown
www.kla-tencor.com/magazine
19
C
O
V
E
S
R
T
O
����������������������������� ����������������
R
Y
�� �������������������������
��������������
��������������
��������������
��������������
����������������
�������������
����������
�������������
����������
Accurate SEM-based roughness/array metrology
���� ��������
CD-SEMs can uniquely characterize and monitor line-width roughness (LWR) and line edge roughness (LER) for DFM applications that address the insertion of immersion lithography into volume production7. For immersion lithography, LWR varies significantly with resist and top coat characteristics. In fact, if current levels of LWR are not reduced, device yield will trend to zero at the 32 nm technology node. The use of top coats in immersion lithography adds another opportunity for systematic process error. In particular, we have found that LWR is a strong function of cross-wafer, top coat uniformity. The CD-SEM (eCD-1) used for the study is capable of generating online LWR analysis, as shown in Figure 10. A controlled overdose experiment revealed no significant change in the LWR measurement after 100 images had been acquired. The LER, however, was visibly reduced.
�����������
�������������
��� ��������
�
� ��������
� �������������
�
� �������� �����������
�������� ��������������������������������
Figure 9. Pattern noise in CD-SEM measurements can compromise performance of FEOL APC loops, resulting in lower yield and performance entitlements. Replacing SEMs with SCD systems provides more spatial averaging and more yield-relevant correction of gate CD and L-cap errors. �����������������������������������
�������������������������������� �
��� ������
��������
����������
in Figure 9, provides more�����spaFor DFM strategies, SCD 3D contact ����� � tial averaging and more ����� yieldmetrology is now especially important ����� relevant correction of gate CD and because small, sloped, or footed openL-cap errors6. Gate stack profile � ings are associated with excessive con� ��� ����� ��� ���� and ��� yield ��� metrology is� a �common application tact resistance loss. The low � � � � � � � ����������� ���������� of SCD because of the association static noise floor (~0.1 nm) of the SCD of footing and notching with yield system enables precise measurement ������������������� loss due to drive current deficienof faceting and footing in addition cies and gate leakage, respecto CD. In addition, yield-relevant tively. In the case of traditional������������������������ aspect-ratio���������������������� metrology becomes feastop-down SEM metrology, such yield-������������������ ible since we avoid the spatial, ������������������ ��������������������� ������ structure affecting fine is typically temporal, and technology de-cor����������������������������������������� unobservable, hidden systematic error.����������������������� relation often associated with comThese profile variations are also pound measurements using multiple known to affect subsequent sidewall tools. Furthermore, the low dynamic spacer and implant steps. Remarknoise floor (~0.2 nm) enables accurate ably, given the small size of the fine crossfield and cross-wafer comparison. structure and the lower information Both elliptical and rectangular content, static and dynamic precision contacts can be measured in any are still typically less than 0.4 nm orientation, and most contact attri3-sigma, providing the sensitivity to butes can be measured and used for detect and correct nanometer-scale process control. In addition, an ever etch offsets that can tie all the way expanding variety of rectangular, back to lithography. triangular, and paired layouts are supported to enable sophisticated
20
Fall 2005
Yield Management Solutions
DFM strategies. Because of its high precision and accuracy, SCD can also be used as a calibration tool for the PROLITH simulator.
Due to the challenges of creating robust SCD models for back-endof-line (BEOL) metrology, CDSEMs are likely to be the main APC enablers for some time. Two key problems compromising accurate and robust APC performance have been solved uniquely on eCD-2 Class SEMs. First, line/space identification error in older-generation CD-SEM measurements has been decreasing yield and increasing rework in the BEOL applications. Recently, we have verified that electrostatic beam tilt can provide robust identification8 in less than 900 ms without the hysteresis effects
� �������� ����
�����
� ��������
C O �����������
� �������������
V
E
R
S
T
O
R
Y
�������� ��������������������������������
�����������������������������������
�������������������������������� �
������ ����� ����� ����� �����
� ��������
����������
���
� �
�
�
� � � ����������
�
�
� ���
�
�����
���
����
���
���
�����������
�������������������
������������������������ ���������������������� ������������������ ������������������
������
���������������������
�����������������������������������������
�����������������������
Figure 10. CD-SEMs can characterize and monitor LWR and LER for DFM applications. Line-width roughness varies by resist type and top coat uniformity, but not by electron dose. If current levels of LWR are not reduced, device yield will trend to zero at the 32 nm technology node.
��� ���
�����������������������������������
��������������� ��������� ���� ����
��������������������
��� ��� ��� ���
�������
��� �� ��
� � �����������
��
��
��
���
���
���
���
���
��������������� ��� ���
������������������
��������� ���� ����
��� ��� ��� ��� �������
��� �� ��
� � �����������
��
��
��
���
���
���
and long delays associated with electromagnetic deflection (Figure 11). Second, the development of arraymode metrology for BEOL applications can greatly reduce the contribution of pattern noise to error in APC adjustments. The CD-SEM measures several lines within its image field and reports mean and standard deviation statistics. These same statistics are now a reliable means for setting design margins in DFM strategies. Combined with beam tilt, array-mode measurements can be virtually flier-free, even when the SEM image field is located deep inside an array of lines and spaces.
���
���
����������������������������������������
�����������������������������������
Figure 11. Incorrect line/space identification in CD-SEM measurements can affect APC performance, yield, and
Accurate simulation-based DFM optimization
Accurate printability simulation is essential for DFM. The PROLITH simulator can have up to a ten-fold accuracy advantage relative to other simulators and can be calibrated for DFM using either array-mode CD-SEM or SCD metrology. Two unbiased metrics for accuracy are the Kintner Image Intensity Test and the Steele Image Placement Test, some results of which are shown in Figure 12. High levels of accuracy are critical to the generation of multiple simulated measurements used to create overlapping focus-exposure windows. Such process windows enable backend designers to modify layouts for maximum process robustness, device performance, and functional yield. For DFM applications, the natural extension of this technology is the application of reticle and wafer simulation to the inspection of integrated circuit databases in a supercomputing environment9.
rework in the BEOL. Electrostatic beam tilt provides robust identification, enabling array metrology and the strong spatial averaging required for BEOL APC applications.
����������������������������� �
������� ������������������ ������������������ ������������������
����
��������������
�����������������
������������������������������ ���
���
Fall 2005
www.kla-tencor.com/magazine
21
� � �����������
��
��
��
���
���
���
���
���
C���������������������������������������� O V E R S T O
R
�����������������������������������
Y
����������������������������� �
������� ������������������ ������������������ ������������������
��������������������������
����������������������������
������������������������������ ���
����
�����
���
����
������� ������������������ ������������������
�����
�
��
���
���
���
���
����������������������������������
�
��
���
���
���
���
���������������������������������� ���� �� �� �� �� ��
�����
�� �� � � ����
�������������������������������
����
����
���
���
���
���
������������������������
Figure 12. Accurate printability simulation is essential for DFM. As shown above, the PROLITH simulator has up to a ten-fold accuracy advantage and can be calibrated using CD-SEM or SCD metrology. Multiple simulated measurements are used to create overlapping process windows that enable designers to modify layouts for maximum process robustness, device performance, and functional yield.
Conclusions and recommendations
In this work, we have shown how design margins and process control performance can be reduced as a result of hidden process error and how this error can be parsed into unobservable, unsampled, unmodeled, and uncorrectable components. We have applied four new process control technologies to reduce hidden systematic process error. These technologies can provide accurate feedback of process metrics to enable conjoint DFM and APC strategies at
22
Fall 2005
the 65 nm node and beyond. We contend that manufacturing economic considerations will force a trade-off between measurement cost and yield loss that favors greater expenditure on process control, particularly on those technologies that enable APC and DFM. In summary, we have introduced the following concepts: • A concept of 193 nm immersion lithography extending through the 32 nm technology node,
Yield Management Solutions
• A concept of conjoint DFM and APC strategies that would rely on accurate feedback of process metrics to enable larger process yield windows and better centering of the process within those yield windows, • A concept of predictive yield models for CD and overlay control that can be pinned to actual factory data and can include the yield limiting effects of hidden systematic error, • A concept for parsing hidden systematic error into unobservable,
C
unsampled, unmodeled, and uncorrectable components, • And, finally, a concept for development of technologies such as grating-based overlay, ellipsometry-based profile metrology, array-based CD SEM metrology, and calibrated simulators to provide accurate process metrics for 65 nm technology and beyond. Acknowledgements
The authors would like to thank Chris Mack, David Tien, Amir Azordegan, Chris Sallee, and Matt Hankinson, all of KLA-Tencor Corporation, for valuable discussion. References 1. K. Monahan, “Microeconomics of Process Control in Semiconductor Manufacturing”, Proc. of SPIE, Vol. 5043, pp. 57-71, February 2003.
O
V
2. K. Monahan, “Microeconomics of Yield Learning in Semiconductor Manufacturing”, Proc. of SPIE, Vol. 5043, pp. 41-56, February 2003. 3. K. Monahan, “Chairman’s Introduction to the ISSM 2003 Cost and Performance Workshop”, ISSM 2003, September 29, San Jose, California. 4. K. Monahan, “Microeconomics of Process Control in Semiconductor Manufacturing,” Proc. of SPIE, Vol. 5043, pp. 57-71, February 2003. 5. L. Lecarpentier, V. Vachellerie, A. Feneyrou, P. Thony, S. Guillot, E. Kassel, Y. Avrahamov, C. Huang, F. Felten, M. Polli, “Overlay Measurement Accuracy Verification using CDSEM and Application to the Quantification of WIS Cause by BARC”, Proc. of SPIE, Vol. 5257-172, March, 2005. 6. W. Lin, S. Liao, R. Tsai, M. Yeh, C. Hsieh, C. Yu, B. S. Lin, T. Dziura,
E
R
S
T
O
R
Y
“Feasibility of Improving CDSEMbased APC System for Exposure Tools by Spectroscopic Ellipsometry-based APC System”, Proc. of SPIE, Vol. 5755-17, March 2005. 7. P. Leunissen, G. Lorusso, T. Dibiase, “Full Spectral Analysis of Line-edge Roughness“, Proc. of SPIE, Vol. 575249, March, 2005. 8. E. Solecky, C. Chin, G. Qu, H. Yang, A. Azordegan, “Automated CD SEM Tilt: Ready for Prime Time, a Fast In-line Methodology for Differentiating Lines and Spaces Using Tilted Images for Process Control”, Proc. of SPIE, Vol. 5752-73, March, 2005. 9. J. Tirapu-Azpiroz, J. Culp, S. Mansfield, W. Howard, Y. Xiong, C. Mack, R. Shi, G. Verma, W. Volk, H. Lehon, Y. Deng, “Inspection of Integrated Circuit Databases through Reticle and Wafer Simulation: an Integrated Approach to Design for Manufacturability”, Proc. of SPIE, Vol. 5756-07, March, 2005.
This article is based on a paper that was previously published in the SPIE Proceedings 5756-7.
Fall 2005
www.kla-tencor.com/magazine
23