POMBA3

Page 1

Inventory $%&'()*+,)-,./012%)&3&4'5&* &67'*$895&5:$3 1;%)&*30&*3<='(59> >?'<)*1+@:.; 951/A:1-%)&.;

9/8/2008

Types of Inventory

Raw materials Purchased parts and supplies Labor In-process (partially completed) products Component parts Working capital Tools, machinery, and equipment Finished goods

chaiyot pom mba cmu 11

1


Inventory Costs

305+65

Carrying Cost $@:9B0>@:C95ภ:;1ภE4;<ภF: 1B@5 $@:Gภ=<* $@:=&ภ14,HC $@:7;?ภ<5I<C Ordering Cost $@:9B0>@:C95ภ:;'<)*K%H& 1B@5 $@:1=(5+:* $@:L5'@* $@:1&ภ':;'<)*K%H& Shortage Cost $@:1',CG&ภ:'+,).-@':-:;N3&4'5&* $/:-30&*ภ:;AOภ$0: AOภ$0:&:>.7K%H&>:ภ$O@PL@* 9/8/2008

chaiyot pom mba cmu 11

EOQ

7;(-:S

2


Inventory Control Systems

9B0ภ4< Independent Demand ABC Classification Model Basic Model : Economic Order Quantity (EOQ) Fixed-order-quantity system (Continuous) constant amount ordered when inventory declines to predetermined level Fixed-time-period system (Periodic) order placed for variable amount after fixed passage of time 9/8/2008

chaiyot pom mba cmu 11

3


ABC Classification System 9B0[A<ภภ:;4;([:;G=CL0&P3ภ3@:* (Management by Exception) 9B0.=0ภ/0:*L/:* ;/-N\* &67ภ;S81$;%)&*><ภ; L&*+,)-;, :$:P2*

Demand volume & value of items vary Classify inventory into 3 categories Class % of Units % of Dollars A 5 - 15 70 - 80 B 30 15 C 50 - 60 5 - 10 9/8/2008

chaiyot pom mba cmu 11

4


ABC Classification Example Cost 60 350 30 80 30 20 10 320 510 20

Usage 90 40 130 60 100 180 170 50 60 120

Part 9 8 2 1 4 3 6 5 10 7

Value 30,600 16,000 14,000 5,400 4,800 3,900 3,600 3,000 2,400 1,700 $ 85,400 Class A B C

9/8/2008

Value Quantity Cumulative 35.8 6.0 6.0 18.7 5.0 11.0 16.4 4.0 15.0 6.3 9.0 24.0 5.6 6.0 30.0 4.6 13.0 43.0 4.2 18.0 61.0 3.5 10.0 71.0 2.8 12.0 83.0 2.0 17.0 100.0

Items 9,8,2 1, 4, 3 6, 5, 10, 7

chaiyot pom mba cmu 11

% Value % Units 71 15 16.5 25 12.5 60

5


The Inventory Order Cycle Demand rate

Inventory Level

Order qty, Q

Reorder point, R 0

9/8/2008

Lead time Order Order Placed Received chaiyot pom mba cmu 11

Lead Time time Order Order Placed Received 6


EOQ Model Cost Curves Slope = 0 Annual cost ($)

Total Cost

Minimum total cost

Carrying Cost = CcQ/2 Ordering Cost = CoD/Q Optimal order Qopt

9/8/2008

chaiyot pom mba cmu 11

Order Quantity, Q 7


EOQ With Noninstantaneous Receipt 0123 EPQ (Economic Production Quantity Inventory level

Maximum inventory level

Q(1-d/p) Begin Order Q (1-d/p) 2

0 Order receipt period 9/8/2008

Average inventory level

receipt

End Order

Time

receipt chaiyot pom mba cmu 11

8


Inventory level

Reorder Point With A Safety Stock

Q

Reorder point, R

Safety stock

0 9/8/2008

LT

Time chaiyot pom mba cmu 11

LT 9


Objectives in Scheduling

Scheduling ภ:;4;([:;+;<2C:ภ;+,)-, &CO@&C@:*>g:ภ<= .=0Pภ@ $5 1$;%)&*><ภ; '()*&g:5/C $/:-'?=/ภ.795ภ:; hA(3'(5$0:/4;(ภ:; +g:&C@:*.;9[0305+653)g:'6= 1/A:'<H5+,)'6= 17j5;?C?'6=+0:Cภ:;L&* ภ:;/:*Ph5ภ@&5A*-%&hA(3 9/8/2008

Meet customer due dates Minimize job lateness Minimize response time Minimize completion time Minimize time in the system Minimize overtime Maximize machine or labor utilization Minimize idle time Minimize work-in-process inventory

chaiyot pom mba cmu 11

10


Scheduling Function By Process Type Process Industry linear programming EOQ with noninstantaneous replenishment Mass Production assembly line balancing Project project -scheduling techniques (PERT, CPM) 9/8/2008

chaiyot pom mba cmu 11

11


Scheduling Batch/Job Shop Operations Batch Production many planning steps aggregate planning master scheduling material requirements planning (MRP) capacity requirements planning (CRP) Scheduling determines machine/worker/job assignments resource/requirement matchings 9/8/2008

chaiyot pom mba cmu 11

12


Difficulties Of Job Shop Scheduling Variety of jobs (customers) processed Distinctive routing and processing requirements of each job/customer Number of different orders in the facility at any one time Competition for common resources 9/8/2008

chaiyot pom mba cmu 11

13


Responsibilities of Production Control Department 1. Loading - Check availability of material, machines & labor 2. Sequencing - Release work orders to shop & issue dispatch lists for individual machines 3. Monitoring - Maintain progress reports on each job until it is complete 9/8/2008

chaiyot pom mba cmu 11

14


EFGHIIJKLMNOMPกR1JSR Scheduling Assignment Method Job Sequencing 1 Machine Multiple Machine Gantt chart 9/8/2008

MNOTFUVRPWXORกFIJ1FYZRก1 [\GPM0]\ W^_P Job shop MNOTFUVRPWXORกFIJ1FYZRก1 `KTaU`a\V0`RZE\RVกFP MNOกbX3V Johnson MNOกSRกFIdGR`d2I0PORX3VVRP chaiyot pom mba cmu 11

15


9/8/2008

Wd12L3VTFภ1 A VRP A 11

B

C

14

6

B

8

10

11

C

9

12

7

chaiyot pom mba cmu 11

16


9/8/2008

Wd12L3VTFก1 A VRP ก 5

B

C

8

0

X

0

2

3

d

2

5

0

chaiyot pom mba cmu 11

17


9/8/2008

Wd12L3VTFก1 A VRP ก 5

B

C

6

0

X

0

0

3

d

2

3

0

chaiyot pom mba cmu 11

18


9/8/2008

Wd12L3VTFก1 A VRP ก 5

B

C

6

0

X

0

0

3

d

2

3

0

chaiyot pom mba cmu 11

19


9/8/2008

Wd12L3VTFก1 A VRP ก 3

B

C

4

0

X

0

0

5

d

0

1

0

chaiyot pom mba cmu 11

20


9/8/2008

Wd12L3VTFก1 A VRP ก 3

B

C

4

0

X

0

0

5

d

0

1

0

chaiyot pom mba cmu 11

21


9/8/2008

TFV0GFU fgOI1h0R1 [`NRZ

WNKZVM0`\

X3PH犧―P

[VXeR

800

1100

1200

`RPi

500

1600

1300

1a\VW123V

500

1000

2300

chaiyot pom mba cmu 11

22


TFV0GFU fgOI1h0R1 [`NRZ

WNKZVM0`\ X3PH犧―P [VXeR 800

1100

1200

1000

`RPi

500

1600

1300

800

1a\VW123V

500

1000

2300

1000

Eaj犧・R

0

9/8/2008

0 chaiyot pom mba cmu 11

0

1iZ3V

0 23


TFV0GFU fgOI1h0R1 [`NRZ

WNKZVM0`\ X3PH犧―P [VXeR

`RPi

0

1a\VW123V

0

Eaj犧・R

0

9/8/2008

0

300

1iZ3V

400

200

1100

800

300

500

1800

1000

0 chaiyot pom mba cmu 11

0

0 24


TFV0GFU fgOI1h0R1 [`NRZ

WNKZVM0`\ X3PH犧―P [VXeR

`RPi

0

1a\VW123V

0

Eaj犧・R

200

9/8/2008

0

100

1iZ3V

200

0

900

600

100

300

1600

800

0 chaiyot pom mba cmu 11

0

0 25


TFV0GFU fgOI1h0R1 [`NRZ

WNKZVM0`\ X3PH犧―P [VXeR 0

0

100

0

`RPi

0

800

500

100

1a\VW123V

0

200

1500

800

Eaj犧・R

300

9/8/2008

0 chaiyot pom mba cmu 11

0

1iZ3V

0 26


TFV0GFU fgOI1h0R1 [`NRZ

WNKZVM0`\ X3PH犧―P [VXeR

`RPi

0

100

0

0

700

400

100

1a\VW123V

0

100

1400

700

Eaj犧・R

0

9/8/2008

100

1iZ3V

0 chaiyot pom mba cmu 11

0

0 27


Sequencing Rules ( 1 Station)

FCFS - first-come, first-served LCFS - last come, first served SPT - shortest processing time DDATE - earliest due date SLACK - smallest slack (due date - todayms date) - (remaining processing time) RWK - remaining work on all operations 9/8/2008

chaiyot pom mba cmu 11

28


B(H5*:5

A B C D E

9/8/2008

1/A:+,)9B0

/<5$;4ภg:[5='@*

3 4 2 6 1

5 6 7 9 2

chaiyot pom mba cmu 11

29


First-Come First-Served B(H5*:5

A B C D E

1/A:+,)9B0

3 4 2 6 1

/<5$;4กg:[5='@*

1/A:ก;?P'ก:;.[A

5 6 7 9 2

WGeRก1iH[กR1p0eX3VVRP1G`=3+7+9+15+16 = 50 GFP d\RWqeKLZWGeRก1iH[กR1p0eX3VVRP = 50/5 = 10 GFP WqeK9/8/2008 LZHE\eiVRPe\RNOR (0+1+2+6+14)/5 chaiyot pom = mba4.6 cmu 11GFP

0+3=3 3+4=7 7+2=9 9+6=15 15+1=6

30


Shortest Operating Time B(H5*:5

E C A B D

1/A:+,)9B0

1 2 3 4 6

/<5$;4กg:[5='@*

2 7 5 6 9

1/A:ก;?P'ก:;.[A

WGeRก1iH[กR1p0eX3VVRP1G`=1+3+6+10+16 = 36 GFP d\RWqeKLZWGeRก1iH[กR1p0eX3VVRP = 36/5 = 7.2 GFP WqeK9/8/2008 LZHE\eiVRPe\RNOR (0+0+1+4+7)/5 = 2.4 GFP chaiyot pom mba cmu 11

0+1=1 1+2=3 3+3=6 6+4=10 10+6=16

31


Due Date B(H5*:5

E A B C D

1/A:+,)9B0

1 3 4 2 6

/<5$;4กg:[5='@*

2 5 6 7 9

1/A:ก;?P'ก:;.[A

WGeRก1iH[กR1p0eX3VVRP1G`=1+4+8+10+16 = 39 GFP d\RWqeKLZWGeRก1iH[กR1p0eX3VVRP = 39/5 = 7.8 GFP WqeK9/8/2008 LZHE\eiVRPe\RNOR (0+0+2+3+7)/5 = 2.4 GFP chaiyot pom mba cmu 11

0+1=1 1+3=4 4+4=8 8+2=10 10+6=16

32


Last come first served B(H5*:5

E D C B A

1/A:+,)9B0

1 6 2 4 3

/<5$;4กg:[5='@*

2 9 7 6 5

1/A:ก;?P'ก:;.[A

0+1=1 1+6=7 7+2=9 9+4=13 13+3=16

WGeRก1iH[กR1p0eX3VVRP1G`=1+7+9+13+16 = 46 GFP d\RWqeKLZWGeRก1iH[กR1p0eX3VVRP = 46/5 = 9.2 GFP WqeK9/8/2008 LZHE\eiVRPe\RNOR (0+0+2+7+11)/5 = 4 GFP chaiyot pom mba cmu 11

33


Summary กb FCFS SOT Due Date LCFS

WGeR1G`VRPW[1sT WGeRWqeKLZVRPW[1sT 50 36 * 39 46

10 7.2 7.8 9.2

*

d\RWqeKLZdGR`e\RNOR 4.6 2.4 * 2.4 * 4.0

* best values 9/8/2008

chaiyot pom mba cmu 11

34


Johnsonms Rule Example Machine Center 1 6 3 18 15 16 10

Job A B C D E F B 9/8/2008

A

F chaiyot pom mba cmu 11

Machine Center 2 12 7 9 14 8 15 D

C

E 35


[tRPKJKL 1 [tRPKJK 2

3 7 03

6 12 9

10 15

19 34

[tRPKJKL 1 B A F D [tRPKJK 2 B A 0 3

9/8/2008

10

15 14

22

chaiyot pom mba cmu 11

18 9 52

F 37

C D

16 8 68

76

E C

E

51 52 61 68

76

36


Gantt Chart Key: Completed Activity

Job 32B

3

Behind schedule

Planned Activity

Facility

Job 23C

2

Ahead of schedule Job 11C

Job 12A

1

On schedule

1

2

3

4

5

6

8

9

10 11 12

Days

Today’s Date 9/8/2008

chaiyot pom mba cmu 11

37


Gantt Chart Solution

9/8/2008

chaiyot pom mba cmu 11

38


Quality Control Approaches Statistical process control (SPC) Monitors production process to prevent poor quality input

Process

AS

Acceptance sampling (AS) Inspects random sample of product to determine if a lot is acceptable 9/8/2008

chaiyot pom mba cmu 11

SPC

AS output

39


Statistical Process Control

Take periodic samples from process Plot sample points on control chart Determine if process is within limits Prevent quality problems

9/8/2008

chaiyot pom mba cmu 11

40


Variation Common Causes Variation inherent in a process Can be eliminated only through improvements in the system Special Causes Variation due to identifiable factors Can be modified through operator or management action

9/8/2008

chaiyot pom mba cmu 11

41


Types Of Data Attribute data Product characteristic evaluated with a discrete choice Good/bad, yes/no Variable data Product characteristic that can be measured Length, size, weight, height, time, velocity 9/8/2008

chaiyot pom mba cmu 11

42


Variables MNO X-bar , R chart Attribute MNO p 犧:I c chart

Control chart

Process Control Chart Upper control limit

Process average

Lower control limit 1 9/8/2008

2

3

4

5

6

Sample number

chaiyot pom mba cmu 11

7

8

9

10 43


A Process Is In Control If No sample points outside limits Most points near process average About equal number of points above & below centerline Points appear randomly distributed 9/8/2008

chaiyot pom mba cmu 11

44


Development Of Control Chart Based on in-control data If non-random causes present discard data Correct control chart limits 9/8/2008

chaiyot pom mba cmu 11

45


Control Charts For Attributes p Charts Calculate percent defectives in sample c Charts Count number of defects in item 9/8/2008

chaiyot pom mba cmu 11

46


p-Chart UCL = p + zσp LCL = p − zσp p(1− p) σp = n p = average % defective in sample n = sample size 9/8/2008

chaiyot pom mba cmu 11

47


p-Chart Example 20 samples of 100 pairs of jeans Sample # # Defects Proportion Defective 1 6 .06 2 0 .00 3 4 .04 w w w 20 18 .18 200 9/8/2008

chaiyot pom mba cmu 11

48


p-Chart Calculations total defectives total sample observations 200 = 20(100) = 0.10

p=

p (1− p ) 0.10(1− 0.10) = 0.10 + 3 = 0.190 n 100 p (1− p ) 0.10(1− 0.10) LCL = p − z = 0.10 − 3 = 0.010 n 100

UCL = p + z

9/8/2008

chaiyot pom mba cmu 11

49


Example p-Chart 0.2

Proportion defective

0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04

20

18

16

14

12

..

10

8

6

4

2

0

0.02 0 Sample number

9/8/2008

chaiyot pom mba cmu 11

50


c-Chart Total # defects Process average = c = # samples Sample standard deviation = σ c = c UCL = c + z σc LCL = c - z σc

9/8/2008

chaiyot pom mba cmu 11

51


c-Chart Example Count # of defects in 15 rolls of denim fabric Sample # 1 2 3 w 15 9/8/2008

# Defects 12 8 16 w 15 190 chaiyot pom mba cmu 11

52


c-Chart Calculations 190 = 12.67 15 UCL = c + z σc = 12.67 + 3 12.67 = 23.35 c=

LCL = c - z σc = 12.67 − 3 12.67 = 1.99

9/8/2008

chaiyot pom mba cmu 11

53


Example c-Chart 24 21

15 12 9 6 3

14

12

10

8

6

4

2

0 0

.

Number of defects

18

Sample number 9/8/2008

chaiyot pom mba cmu 11

54


Control Charts For Variables Mean chart (X-Bar Chart) Uses average of a sample Range chart (R-Chart) Uses amount of dispersion in a sample 9/8/2008

chaiyot pom mba cmu 11

55


Range (R) Chart UCL = D4 R LCL = D3 R 竏然 R= k R = range of each sample k = number of samples 9/8/2008

chaiyot pom mba cmu 11

56


R-Chart Example Sample 1 2 3 w 10 9/8/2008

1 5.02 5.01 4.99 w 5.01

Slip-ring diameter (cm) 2 3 4 5.01 4.94 4.99 5.03 5.07 4.95 5.00 4.93 4.92 w w w 4.98 5.08 5.07 chaiyot pom mba cmu 11

5 4.96 4.96 4.99 w 4.99

x 4.98 5.00 4.97 w 5.03 50.09

R 0.08 0.12 0.08 w 0.10 1.1557


3Ďƒ Control Chart Factors Sample size n 2 3 4 5 6 7 8 9/8/2008

x-chart A2 1.88 1.02 0.73 0.58 0.48 0.42 0.37 chaiyot pom mba cmu 11

R-chart D3 0 0 0 0 0 0.08 0.14

D4 3.27 2.57 2.28 2.11 2.00 1.92 1.86

58


R-Chart Calculations ∑ R 1.15 R= = = 0.115 k 10 UCL = D4 R = 2.11(0.115) = 0.243 LCL = D3 R = 0(0.115) = 0

9/8/2008

chaiyot pom mba cmu 11

59


Example R-Chart 0.3 0.25 Range

0.2 0.15 0.1 0.05 0 1

2

3

4

5

6

7

8

9

10

Sample number

9/8/2008

chaiyot pom mba cmu 11

60 Ch 4 - 28


x Chart Calculations + x2 +L+ xn 50.09 x 1 x= = = 5.01 cm n

10

UCL = x + A2 R = 5.01+ ( 0.58) (.115) = 5.08 LCL = x − A2 R = 5.01− ( 0.58) (.115) = 4.94 x = average of sample means R = average range value 9/8/2008

chaiyot pom mba cmu 11

61


x-Chart Example ∑ x 50.09 x= = = 5.01cm n 10 UCL= x + A2 R = 5.01+ (0.58)(0.115) = 5.08 LCL= x − A2 R = 5.01− (0.58)(0.115) = 4.94 9/8/2008

chaiyot pom mba cmu 11

62


Sam ple average

Example x-Chart 5.10 5.08 5.06 5.04 5.02 5.00 4.98 4.96 4.94 4.92 1

3

5

7

9

Sample number

9/8/2008

chaiyot pom mba cmu 11

63


Control Chart Patterns UCL

UCL

LCL

LCL

Sample observations consistently below the center line

9/8/2008

Sample observations consistently above the center line

chaiyot pom mba cmu 11

64


Control Chart Patterns UCL

UCL

LCL

LCL

Sample observations consistently increasing 9/8/2008

chaiyot pom mba cmu 11

Sample observations consistently decreasing 65


Control Chart Patterns UCL

UCL

LCL

LCL

Sample observations consistently below the center line 9/8/2008

Sample observations consistently above the center line chaiyot pom mba cmu 11

66


Control Chart Patterns 1. 8 consecutive points on one side of the center line. 2. 8 consecutive points up or down across zones. 3. 14 points alternating up or down. 4. 2 out of 3 consecutive points in zone A but still inside the control limits. 5. 4 out of 5 consecutive points in zone A or B. 9/8/2008

chaiyot pom mba cmu 11

67


Results Of Pattern Test 2 of 3 consecutive points in zone A Samples 3 and 4 Process should be checked

9/8/2008

chaiyot pom mba cmu 11

68


Sample Size Determination Attribute control charts 50 to 100 parts in a sample Variable control charts 2 to 10 parts in a sample

9/8/2008

chaiyot pom mba cmu 11

69


Process Capability Range of natural variability in process Measured with control charts. Process cannot meet specifications if natural variability exceeds tolerances 3-sigma quality specifications equal the process control limits. 6-sigma quality specifications twice as large as control limits 9/8/2008

chaiyot pom mba cmu 11

70


Process can meet specifications

PROCESS

Process cannot meet specifications

9/8/2008

Natural control limits

Design specifications

Design specifications

Natural control limits

Design specifications

Natural control limits

PROCESS

PROCESS

Process Capability

chaiyot pom mba cmu 11

Process capability exceeds specifications

71


Acceptance Sampling Accept/reject entire lot based on sample results Not consistent with TQM of Zero Defects Measures quality in percent defective

9/8/2008

chaiyot pom mba cmu 11

72


Sampling Plan Guidelines for accepting lot Single sampling plan N = lot size n = sample size (random) c = acceptance number d = number of defective items in sample If d <= c, accept lot; else reject 9/8/2008

chaiyot pom mba cmu 11

73


Producerms & Consumerms Risk TYPE I ERROR = P(reject good lot) ι or producerms risk 5% is common TYPE II ERROR = P(accept bad lot) β or consumerms risk 10% is typical value 9/8/2008

chaiyot pom mba cmu 11

74


Quality Definitions Acceptance quality level (AQL) Acceptable fraction defective in a lot Lot tolerance percent defective (LTPD) Maximum fraction defective accepted in a lot 9/8/2008

chaiyot pom mba cmu 11

75


Operating Characteristic (OC) Curve Shows probability of lot acceptance Based on sampling plan quality level of lot Indicates discriminating power of plan 9/8/2008

chaiyot pom mba cmu 11

76


Operating Characteristic Curve 1.00

{

Probability of acceptance, Pa

Îą = 0.05

0.80

OC curve for n and c 0.60

0.40

0.20

β = 0.10

{ 0.02 0.04

9/8/2008

AQL

0.06

0.08

0.10

0.12

Proportion defective chaiyot pom mba cmu 11

0.14

0.16

LTPD

0.18

0.20 77


Double Sampling Plans Take small initial sample If # defective < lower limit, accept If # defective > upper limit, reject If # defective between limits, take second sample Accept or reject based on 2 samples Less costly than single-sampling plans 9/8/2008

chaiyot pom mba cmu 11

78


Multiple (Sequential) Sampling Plans Uses smaller sample sizes Take initial sample If # defective < lower limit, accept If # defective > upper limit, reject If # defective between limits, resample Continue sampling until accept or reject lot based on all sample data 9/8/2008

chaiyot pom mba cmu 11

79


Choosing A Sampling Method An economic decision Single sampling plans high sampling costs Double/Multiple sampling plans low sampling costs 9/8/2008

chaiyot pom mba cmu 11

80


กR1ISR1aV1Fก R (maintenance) *:5+,)30&*+g:12%)&;<กF:'I:21$;%)&*><ก; &67ก;S8 9[0.=0-:3;m:5PA?9[0ก:;hA(3;:4;%)5

GhGF PRกR1 BM -Breakdown Maintenance PM - Preventive Maintenance PM - Productive Maintenance CM - Corrective Maintenance MP - Maintenance Prevention TPM - Total Productive Maintenance TPM - Total Productive Manufacturing 9/8/2008

chaiyot pom mba cmu 11

81


P ZIRZกR1ISR1aV1Fก R \3`W`2L3W[KZ d\RMNOT\RZ ^ 3VกFPp`\M0OW[KZ W^eKLZPJUHJP p`\EO3VISR1aV1Fก R d\RMNOT\RZMPกR1ISR1aV1Fก R d\RMNOT\RZWNhV^ 3VกFP d\RMNOT\RZW`2L3NSR1aUW[KZ0RZ 9/8/2008

chaiyot pom mba cmu 11

^1h`R 82


GFEta^1i[Vd TPM WY2L3eUกR1[g]W[KZJKLZhLVM0]\ 6 ^1iกR1 Wd12L3VTFก1XFUXO3V ^1FIEF V^1FIHE\V Wd12L3VWUhPEFGW^e\R dGR`W1sGeUeV X3VW[KZMPก1iIGPกR1 fefehEPO3ZMPN\GVH1ก 9/8/2008

chaiyot pom mba cmu 11

83


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.