آينشتاين أبو الثقوب السوداء على مضض

Page 1

‫ﻫﺬﺍ ﺍﳌﻘﺎﻝ ﻣﺎﺧﻮﺫ ﻋﻦ ﳎﻠﺔ ﺍﻟﻌﻠﻮﻡ ﺍﻟﱵ ﺗﺼﺪﺭ ﻋﻦ ﻣﺆﺳﺴﺔ ﺍﻟﻜﻮﻳﺖ ﻟﻠﺘﻘﺪﻡ ﺍﻟﻌﻠﻤﻲ‬ ‫ﺍﻟﻌﺪﺩ‬ ‫ﺗﺮﲨﺔ‪ :‬ﺃﺑﻮ ﺑﻜﺮ ﺳﻌﺪﺍﷲ‬

‫‪1997‬‬

‫ﻳﻨﺎﻳﺮ‬

‫ﻣﺮﺍﺟﻌﺔ‪ :‬ﻋﺪﻧﺎﻥ ﺍﳊﻤﻮﻱ‬

‫ﺁﻴﻨﺸﺘﺎﻴﻥ‪ ،‬ﺃﺒﻭ ﺍﻟﺜﻘﻭﺏ ﺍﻟﺴﻭﺩﺍﺀ ﻋﻠﻰ ﻤﻀﺽ‬ ‫ﺗﻌﺘﱪ ﻣﻌﺎﺩﻻﺕ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ ﺃﺳﺎﺱ ﺍﻟﻨﻈﺮﻳﺔ ﺍﳊﺪﻳﺜﺔ ﻟﻠﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪،‬‬ ‫ﻭﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺫﻟﻚ ﻓﻘﺪ ﺃﺭﺍﺩ ﺃﻟﱪﺕ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﻩ ﺍﳌﻌﺎﺩﻻﺕ‬ ‫ﻟﻠﱪﻫﺎﻥ ﻋﻠﻰ ﻋﺪﻡ ﺇﻣﻜﺎﻧﻴﺔ ﻭﺟﻮﺩ ﺗﻠﻚ ﺍﻷﺟﺴﺎﻡ ﺍﻟﺴﻤﺎﻭﻳﺔ ﺍﻟﻐﺮﻳﺒﺔ‪.‬‬ ‫>‪.J‬ﺑﺮﻧﺸﺘَﲔ<‬

‫ﳛﺪﺙ ﺃﺣﻴﺎﻧﺎ ﺃﻥ ﺗﺘﺠﺎﻭﺯ ﻧﺘﺎﺋﺞ ﺍﻹﳒﺎﺯﺍﺕ ﺍﻟﻌﻠﻤﻴﺔ ﺍﻟﻌﻤﻼﻗﺔ ﻣﺎ ﻛﺎﻥ ﻳﺘﺨﻴّﻠﻪ ﻣﺒﺪﻋﻮﻫﺎ ﺑﻞ ﺗﺘﺠﺎﻭﺯ‬ ‫ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ ﺣﱴ ﻧﻮﺍﻳﺎﻫﻢ‪ .‬ﻭﻫﻜﺬﺍ ﺃﺳﻬﻤﺖ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ ﰲ ﺗﺄﺳﻴﺲ ﻣﻔﻬﻮﻡ ﺍﻟﺜﻘﺐ ﺍﻷﺳﻮﺩ‬ ‫ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃﻟﱪﺕ ﺁﻳﻨﺸﺘﺎﻳﻦ‪ .‬ﻟﻘﺪ ﻧﺸﺮ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻋﺎﻡ ‪ 1939‬ﻣﻘﺎﻻ ﳛﻤﻞ ﻋﻨﻮﺍﻧﺎ ﻏﲑ ﻣﺸﺠّﻊ‬ ‫ﻫﻮ »ﺣﻮﻝ ﻣﻨﻈﻮﻣﺔ ﻣﺴﺘﻘﺮﺓ ﺫﺍﺕ ﺗﻨﺎﻇﺮ ﻛﺮﻭﻱ ﻣﻜﻮﻧﺔ ﻣﻦ ﻋﺪﺓ ﻛﺘﻞ ﻳﺮﺑﻄﻬﺎ ﺍﻟﺘﺜﺎﻗﻞ‬

‫‪ «.gravitiation‬ﻛﺎﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﻌﺘﻘﺪ ﺃﻧﻪ ﺑﺮﻫﻦ ﻣﻦ ﺧﻼﻝ ﻫﺬﺍ ﺍﳌﻘﺎﻝ ﻋﻠﻰ ﻋﺪﻡ ﻭﺟﻮﺩ ﺛﻘﻮﺏ‬ ‫ﺳﻮﺩﺍﺀ‪ ،‬ﻭﻫﻲ ﺃﺟﺴﺎﻡ ﲰﺎﻭﻳﺔ ﺑﻠﻐﺖ ﻛﺜﺎﻓﺘﻬﺎ ﺩﺭﺟﺔ ﺟﻌﻠﺖ ﺛﻘﺎﻟﺘﻬﺎ ﲢﻮﻝ ﺩﻭﻥ ﺍﻧﺒﻌﺎﺙ ﺍﻟﻀﻮﺀ ﻣﻨﻬﺎ‪.‬‬ ‫ﻭﻗﺪ ﺍﺳﺘﺨﺪﻡ ﺁﻳﻨﺸﺘﺎﻳﻦ ﰲ ﻫﺬﺍ ﺍﻟﱪﻫﺎﻥ ﻧﻈﺮﻳﺔ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ‪ ،‬ﺍﻟﱵ ﻧﺸﺮﻫﺎ ﻋﺎﻡ ‪...1916‬‬ ‫ﻭﻫﻲ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﱵ ‪‬ﺗﺴ‪‬ﺘﺨﺪﻡ ﺍﻟﻴﻮﻡ ﻟﻠﱪﻫﺎﻥ ﻟﻴﺲ ﻋﻠﻰ ﺇﻣﻜﺎﻧﻴﺔ ﻭﺟﻮﺩ ﺛﻘﻮﺏ ﺳﻮﺩﺍﺀ ﻓﺤﺴﺐ ﺑﻞ ﻋﻠﻰ‬ ‫ﺃﻥ ﻫﺬﻩ ﺍﻟﺜﻘﻮﺏ ﲤﺜﻞ ﺍﳊﺎﻟﺔ ﺍﻟﻨﻬﺎﺋﻴﺔ ﺍﻟﱵ ﺳﺘﺆﻭﻝ ﺇﻟﻴﻬﺎ‪ ،‬ﻻ ﳏﺎﻟﺔ‪ ،‬ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻷﺟﺴﺎﻡ ﺍﻟﺴﻤﺎﻭﻳﺔ‪.‬‬

‫ﻭﺍﳌﻼﺣﻆ ﺃﻧﻪ ﱂ ﲤﺾ ﺑﻀﻌﺔ ﺷﻬﻮﺭ ﻋﻠﻰ ﻇﻬﻮﺭ ﻫﺬﻩ ﺍﶈﺎﻭﻟﺔ ﺍﻟﺪﺍﺣﻀﺔ ﺣﱴ ﻧﺸﺮ ﻛﻞ ﻣﻦ‬


‫>‪.R‬ﺃﻭﭘﻨﻬﺎﳝﺮ< ﻭ >‪.H‬ﺳﻨﺎﻳﺪﺭ< ﻣﻘﺎﻻ ﺑﻌﻨﻮﺍﻥ »ﺣﻮﻝ ﻣﻮﺍﺻﻠﺔ ﺍﻟﺘﻘﻠﺺ ﺍﻟﺘﺜﺎﻗﻠﻲ« ﺍﺳﺘﺨﺪﻣﺎ ﻓﻴﻪ‬ ‫ﻧﻈﺮﻳﺔ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ ﻟﺘﺒﻴﺎﻥ ﻛﻴﻔﻴﺔ ﺗﺸﻜﻞ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪.‬‬

‫ﰲ ﺳﻨﺔ ‪ ،1939‬ﻛﺎﻥ ﺃﻭﭘﻨﻬﺎﳝﺮ )ﰲ ﺍﻟﻴﻤﲔ( ﻳﺮﻯ ﺃﻥ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‬

‫ﳝﻜﻦ ﺃﻥ ﺗﺘﺸﻜﹼﻞ‪ ،‬ﻓﻴﻤﺎ ﻛﺎﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﳛﺎﻭﻝ ﺩﺣﺾ ﻭﺟﻮﺩﻫﺎ ‪.‬ﻭﻗﺪ‬

‫ﺳﻠﻚ ﻛﻞ ﻣﻨﻬﻤﺎ ﻃﺮﻳﻘﻪ‪ ،‬ﻟﻜﻨﻬﻤﺎ ﺍﻟﺘﻘﻴﺎ ﰲ ﻣﻌﻬﺪ ﭘﺮﻳﻨﺴﺘﻮﻥ ﻟﻠﺪﺭﺍﺳﺎﺕ‬ ‫ﺍﳌﺘﻘﺪﻣﺔ ﰲ ﺃﻭﺍﺧﺮ ﺍﻷﺭﺑﻌﻴﻨﺎﺕ ﺣﻴﺚ ﺍﻟﺘﻘﻄﺖ ﳍﻤﺎ ﻫﺬﻩ ﺍﻟﺼﻮﺭﺓ‪ .‬ﻭﳓﻦ ﻻ‬ ‫ﻧﻌﺮﻑ‪ ،‬ﺇﱃ ﺍﻟﻴﻮﻡ‪ ،‬ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺎ ﻗﺪ ﺗﻨﺎﻗﺸﺎ ﺫﺍﺕ ﻣﺮﺓ ﺣﻮﻝ ﺍﻟﺜﻘﻮﺏ‬

‫ﺍﻟﺴﻮﺩﺍﺀ‪.‬‬

‫ﻭﺍﻷﻛﺜﺮ ﻣﻦ ﺫﻟﻚ ﻛﻠﻪ ﻫﻮ ﺃﻥ ﺍﻟﺪﺭﺍﺳﺔ ﺍﳊﺪﻳﺜﺔ ﻟﻠﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪ ،‬ﻭﺑﺸﻜﻞ ﺃﻋﻢ ﻻﻬﻧﻴﺎﺭ ﺍﻟﻨﺠﻮﻡ‪،‬‬ ‫ﺗﻌﺘﻤﺪ ﻋﻠﻰ ﺟﺎﻧﺐ ﺁﺧﺮ ﻣﻦ ﺇﺭﺙ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻫﻮ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ‪ .‬ﻭﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻧﻪ ﻣﻦ ﺩﻭﻥ‬ ‫ﺍﻟﺘﺄﺛﲑﺍﺕ ﺍﻟﱵ ﺗﺼﻔﻬﺎ ﻫﺬﻩ ﺍﻟﻔﻴﺰﻳﺎﺀ ﻓﻜﻞ ﺍﻟﻜﻮﺍﻛﺐ ﺳﺘﺆﻭﻝ‪ ،‬ﰲ ﺁﺧﺮ ﺍﳌﻄﺎﻑ‪ ،‬ﺇﱃ ﺛﻘﻮﺏ ﺳﻮﺩﺍﺀ‪،‬‬ ‫ﻭﻫﻮ ﻣﺎ ﻳﺆﺩﻱ ﺇﱃ ﺗﻮﺍﺟﺪ ﻛﻮﻥ ﳜﺘﻠﻒ ﺍﺧﺘﻼﻓﺎ ﻛﺒﲑﺍ ﻋﻦ ﺍﻟﻜﻮﻥ ﺍﻟﺬﻱ ﻧﻌﻴﺶ ﻓﻴﻪ‪.‬‬

‫ﺒﻭﺯ ﻭﺁﻴﻨﺸﺘﺎﻴﻥ ﻭﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻹﺤﺼﺎﺌﻴﺔ‬ ‫ﻟﻘﺪ ﺍﺳﺘﻮﺣﻰ ﺃﻟﱪﺕ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻓﻜﺮﺓ ﺇﺩﺧﺎﻝ ﺍﳌﻴﻜﺎﻧﻴﻚ ﺍﻟﻜﻤﻮﻣﻲ ﰲ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ ﻣﻦ‬ ‫ﺭﺳﺎﻟﺔ ﻭﺻﻠﺘﻪ ﰲ ﺍﻟﺸﻬﺮ ‪ 1924/6‬ﺑﻌﺚ ﻬﺑﺎ ﺇﻟﻴﻪ ﻓﻴﺰﻳﺎﺋﻲ ﻫﻨﺪﻱ ﺷﺎﺏ ﻏﲑ ﻣﻌﺮﻭﻑ ﺁﻧﺬﺍﻙ‪ ،‬ﻭﻫﻮ‬

‫>‪.N .S‬ﺑﻮﺯ<‪ .‬ﻭﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻟﺮﺳﺎﻟﺔ ﻣﺮﻓﻘﺔ ﲟﺨﻄﻮﻃﺔ ﻣﻘﺎﻝ ﺭﻓﻀﺖ ﺇﺣﺪﻯ ﺍﺠﻤﻟﻼﺕ ﺍﻟﻌﻠﻤﻴﺔ‬ ‫ﺍﻟﱪﻳﻄﺎﻧﻴﺔ ﻧﺸﺮﻫﺎ‪ .‬ﻭﺑﻌﺪ ﺃﻥ ﺍﻃﻠﻊ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻋﻠﻰ ﺍﳌﺨﻄﻮﻃﺔ ﺗﺮﲨﻬﺎ ﺑﻨﻔﺴﻪ ﺇﱃ ﺍﻷﳌﺎﻧﻴﺔ ﻭﻗﺎﻡ ﺑﻨﺸﺮﻫﺎ‬ ‫ﰲ ﺍﺠﻤﻟﻠﺔ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﺍﳌﺮﻣﻮﻗﺔ »ﳎﻠﺔ ﺍﻟﻔﻴﺰﻳﺎﺀ ‪.«Physik für Zeitschrift‬‬


‫ﳌﺎﺫﺍ ﺍﻋﺘﻘﺪ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺃﻥ ﻫﺬﺍ ﺍﳌﻘﺎﻝ ﻣﻬﻢ؟ ﻟﻘﺪ ﺗﺴﺎﺀﻝ ﺧﻼﻝ ﻋﺸﺮﻳﻦ ﺳﻨﺔ ﺣﻮﻝ ﻃﺒﻴﻌﺔ‬

‫ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‪ ،‬ﻻ ﺳﻴﻤﺎ ﻋﻨﺪﻣﺎ ﺗ‪‬ﺤﺼﺮ ﺩﺍﺧﻞ ﺇﻧﺎﺀ ﺳﺎﺧﻦ ﻭﺗﻜﻮﻥ ﻣﺘﻮﺍﺯﻧﺔ‬ ‫ﺗﺮﻣﻮﺩﻳﻨﺎﻣﻴﻜﻴﺎ )ﺣﺮﺍﺭﻳﺎ( ﻣﻊ ﺟﺪﺭﺍﻥ ﺍﻹﻧﺎﺀ‪ ،‬ﻭﺫﻟﻚ ﻣﺎ ﻳﺴﻤﻰ ﺑﺎﳉﺴﻢ ﺍﻷﺳﻮﺩ‪ .‬ﻛﺎﻥ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ﺍﻷﳌﺎﱐ‬ ‫>‪.M‬ﭘﻼﻧﻚ< ﻗﺪ ﺍﻛﺘﺸﻒ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺮﻳﺎﺿﻴﺎﺗﻴﺔ ﺍﻟﱵ ﺗﺼﻒ ﺷﺪﺓ ﳐﺘﻠﻒ ﺇﺷﻌﺎﻋﺎﺕ ﻫﺬﺍ ﺍﳉﺴﻢ ﺑﺪﻻﻟﺔ‬ ‫ﺃﻃﻮﺍﻝ ﺃﻣﻮﺍﺟﻬﺎ )ﺃﻭ ﺍﻟﻠﻮﻥ(‪ .‬ﻭﻭﺟﺪ ﭘﻼﻧﻚ ﺃﻥ ﻃﻴﻒ ﺍﳉﺴﻢ ﺍﻷﺳﻮﺩ ﻻ ﻳﺘﻌﻠﻖ ﺑﺎﳌﺎﺩﺓ ﺍﻟﱵ ﺻﻨﻊ ﻣﻨﻬﺎ‬ ‫ﺟﺪﺍﺭ ﺍﻹﻧﺎﺀ ﺑﻞ ﻳﺘﻌﻠﻖ ﻓﻘﻂ ﺑﺪﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ‪ .‬ﻓﻌﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﻋﻨﺪﻣﺎ ﻧﻘﻮﻡ ﺑﺘﺴﺨﲔ ﻗﻄﻌﺔ ﺣﺪﻳﺪﻳﺔ‪،‬‬

‫ﻓﺈﻥ ﻟﻮﻬﻧﺎ ﻳﻨﺘﻘﻞ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ ﻣﻦ ﺍﻷﲪﺮ ﺇﱃ ﺍﻷﺑﻴﺾ ﰒ ﺇﱃ ﺍﻷﺯﺭﻕ ﺑﺘﺰﺍﻳﺪ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪ :‬ﺇﻥ ﻟﻮﻥ‬ ‫ﺍﳊﺪﻳﺪ‪ ،‬ﺃﻱ ﻃﻴﻒ ﺇﺻﺪﺍﺭﻩ‪ ،‬ﻻ ﻳﺘﻌﻠﻖ ﺇﻻ ﺑﺪﺭﺟﺔ ﺣﺮﺍﺭﺗﻪ‪.‬‬ ‫ﺍﺳﺘﻌﻤﻞ ﺑﻮﺯ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ ﻟﺪﺭﺍﺳﺔ ﺇﺷﻌﺎﻉ ﺍﳉﺴﻢ ﺍﻷﺳﻮﺩ‪ ،‬ﻭﺍﻛﺘﺸﻒ ﻗﺎﻧﻮﻥ ﭘﻼﻧﻚ‬ ‫ﺍﻧﻄﻼﻗﺎ ﻣﻦ ﻣﺒﺎﺩﺉ ﺍﳌﻴﻜﺎﻧﻴﻚ ﺍﻟﻜﻤﻮﻣﻲ‪ .‬ﻭﻗﺎﻡ ﺁﻳﻨﺸﺘﺎﻳﻦ ـ ﻛﻌﺎﺩﺗﻪ ـ ﺑﺘﻌﻤﻴﻢ ﻫﺬﻩ ﺍﻟﺴﲑﻭﺭﺓ‪:‬‬ ‫ﺍﺳﺘﺨﺪﻡ ﺍﻟﻄﺮﻳﻘﺔ ﻧﻔﺴﻬﺎ ﻟﺘﺤﺪﻳﺪ ﺳﻠﻮﻙ ﻏﺎﺯ ﻣﻦ ﺍﳉﺰﻳﺌﺎﺕ ﺍﻟﺜﻘﻴﻠﺔ ﺍﳋﺎﺿﻌﺔ ﻟﻘﺎﻧﻮﻥ ﺷﺒﻴﻪ ﺑﺬﻟﻚ ﺍﻟﺬﻱ‬

‫ﺍﺳﺘﺨﺪﻣﻪ ﺑﻮﺯ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻔﻮﺗﻮﻧﺎﺕ‪ .‬ﻭﺍﺳﺘﻨﺘﺞ ﻣﻨﻪ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻗﺎﻧﻮﻧﺎ ﳑﺎﺛﻼ ﻟﻘﺎﻧﻮﻥ ﭘﻼﻧﻚ ﺍﳋﺎﺹ ﻬﺑﺬﻩ‬

‫ﺍﳊﺎﻟﺔ‪ .‬ﰒ ﺗﻨﺒﺄ ﺑﻈﺎﻫﺮﺓ ﻣﻬﻤﺔ‪ :‬ﻋﻨﺪﻣﺎ ﻧﻘﻮﻡ ـ ﰲ ﺩﺭﺟﺔ ﺣﺮﺍﺭﺓ ﺣﺮﺟﺔ ـ ﺑﺘﱪﻳﺪ ﻏﺎﺯ ﺍﳉﺴﻴﻤﺎﺕ‬ ‫ﺍﳋﺎﺿﻌﺔ ﻟﻺﺣﺼﺎﺋﻴﺔ ﺍﳌﺴﻤﺎﺓ ﺑﺈﺣﺼﺎﺋﻴﺔ ﺑﻮﺯ ـ ﺁﻳﻨﺸﺘﺎﻳﻦ )ﺍﻟﺒﻮﺯﻭﻧﺎﺕ ‪ ،(bosons‬ﻓﺈﻥ ﻛﻞ‬ ‫ﺍﳉﺴﻴﻤﺎﺕ ﺗﺼﺒﺢ ﻓﺠﺄﺓ ﰲ ﺣﺎﻟﺔ ﻛﻤﻮﻣﻴﺔ »ﻣﻨﺤﻠﱠﺔ« ‪ .degenerated‬ﺗﺴﻤﻰ ﺍﻟﻴﻮﻡ ﺣﺎﻟﺔ ﺍﳌﺎﺩﺓ ﻫﺬﻩ‬

‫ﻛﺜﺎﻓﺔ ‪ condensat‬ﺑﻮﺯ ـ ﺁﻳﻨﺸﺘﺎﻳﻦ )ﻣﻊ ﺃﻧﻪ ﻟﻴﺲ ﻟﺒﻮﺯ ﻋﻼﻗﺔ ﻣﺒﺎﺷﺮﺓ ﻬﺑﺬﻩ ﺍﳌﺎﺩﺓ(‪.‬‬

‫ﳜﻀﻊ ﺍﳍﻴﻠﻴﻮﻡ ‪ 4‬ﳍﺬﺍ ﺍﻟﺘﻜﺜﻴﻒ‪ .‬ﻭﺗﺘﻜﻮﻥ ﻧﻮﺍﺓ ﻫﺬﺍ ﺍﻟﻨﻈﲑ ‪ isotope‬ﻟﻠﻬﻴﻠﻴﻮﻡ ﻣﻦ ﺑﺮﻭﺗﻮﻧﻴ‪‬ﻦ‬

‫ﻭﻧﻴﻮﺗﺮﻭﻧﻴ‪‬ﻦ‪ .‬ﻭﻋﻨﺪﻣﺎ ﺗﺒﻠﻎ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ‪ 2.18‬ﻛﻠﭭﻦ )‪ (C°272-C‬ﻳﺼﺒﺢ ﻫﺬﺍ ﺍﻟﻐﺎﺯ ﺳﺎﺋﻼ‬ ‫ﻳﺘﻤﺘّﻊ ﲞﻮﺍﺹ ﻣﺪﻫﺸﺔ‪ ،‬ﻣﻨﻬﺎ ﺳﻴﻼﻧﻪ ﺑﺪﻭﻥ ﺍﺣﺘﻜﺎﻙ ﺍﳌﻴﻮﻋﺔ ﺍﻟﻔﺎﺋﻘﺔ ‪.superfluidity‬‬

‫ﺘﺎﺭﻴﺦ ﺍﻟﺜﻘﻭﺏ ﺍﻟﺴﻭﺩﺍﺀ‬


‫‪1916‬‬ ‫‪1915‬‬ ‫‪1905‬‬ ‫‪1900‬‬ ‫‪<M.‬ﭘﻼﻧﻚ >ﻳﻜﺘﺸﻒ ﺃﻟﱪﺕ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﺒﻴّﻦ ﰲ ﻣﻘﺎﻝ ﺣﻮﻝ ‪<W.‬ﺃﺩﺍﻣﺲ >ﻳﺮﺍﻗﺐ ﺍﻟﻨﺠﻢ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﻨﺸﺮ ﻧﻈﺮﻳﺘﻪ‬ ‫ﺇﺷﻌﺎﻉ ﺟﺴﻢ ﺃﺳﻮﺩ‪.‬‬

‫ﺇﺷﻌﺎﻉ ﺟﺴﻢ ﺃﺳﻮﺩ ﺃﻥ ﻫﺬﺍ ﺍﻹﺷﻌﺎﻉ ﺍﺠﻤﻟﺎﻭﺭ ﻟﻨﺠﻢ ﺍﻟﺸﻌﺮﻯ ﺍﻟﻴﻤﺎﻧﻴﺔ ﺍﻟﺬﻱ ﺣﻮﻝ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ‬ ‫ﳝﻜﻦ‬

‫ﺍﻋﺘﺒﺎﺭﻩ‬

‫)ﻓﻮﺗﻮﻧﺎﺕ‪).‬‬

‫ﺗﺪﻓﻖ‬

‫ﺟﺴﻴﻤﺎﺕ ﳚﻌﻞ ﻣﺴﺎﺭ ﺍﻷﺧﲑ ﻣﻀﻄﺮﺑﺎ‪ .‬ﺇﻧﻪ ﺍﻟﱵ ﺗﺼﻒ ﻣﻌﺎﺩﻻﻬﺗﺎ‬ ‫ﳒﻢ ﺻﻐﲑ ﻭﺳﺎﺧﻦ ﻭﻛﺜﻴﻒ )ﻗﺰﻡ ﺍﻟﺘﺜﺎﻗﻞ‪.‬‬ ‫ﺃﺑﻴﺾ‪).‬‬

‫ﻟﻜﻦ ﻫﻨﺎﻙ ﺟﺴﻴﻤﺎﺕ ﻻ ﺗﺘﻜﺎﺛﻒ ﻬﺑﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ‪ .‬ﻭﺍﳉﺪﻳﺮ ﺑﺎﻟﺬﻛﺮ ﺃﻧﻪ ﻋﻠﻰ ﺇﺛﺮ ﺻﺪﻭﺭ ﺃﲝﺎﺙ‬ ‫ﺁﻳﻨﺸﺘﺎﻳﻦ ﺍﳌﺘﻌﻠﻘﺔ ﲟﻮﺿﻮﻉ ﺍﻟﺘﻜﺎﺛﻒ )ﺍﻟﺘﻜﺜﻴﻒ( ‪ condensation‬ﺳﻨﺔ ‪ ،1925‬ﺗﻌﺮّﻑ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ‬ ‫ﺍﻟﻨﻤﺴﺎﻭﻱ >‪.W‬ﭘﺎﻭﱄ< ﻓﺌ ﹰﺔ ﺛﺎﻧﻴ ﹰﺔ ﻣﻦ ﺍﳉﺴﻴﻤﺎﺕ ﺗﺘﻤﻴّﺰ ﺑﺴﻠﻮﻙ ﺁﺧﺮ‪ .‬ﻳﻌﺘﱪ ﺍﻹﻟﻜﺘﺮﻭﻥ ﻭﻛﺬﺍ‬

‫ﺍﻟﱪﻭﺗﻮﻥ ﻭﺍﻟﻨﻴﻮﺗﺮﻭﻥ ﺃﻣﺜﻠﺔ ﳍﺬﻩ ﺍﻟﻔﺌﺔ ﻣﻦ ﺍﳉﺴﻴﻤﺎﺕ ﺍﻟﱵ ﺗﺴﻤﻰ ﻓﺮﻣﻴﻮﻧﺎﺕ ‪ .fermions‬ﻟﻘﺪ‬ ‫ﺍﻛﺘﺸﻒ ﭘﺎﻭﱄ ﺃﻧﻪ ﻻ ﳝﻜﻦ ﺃﺑﺪﺍ ﻟﻔﺮﻣﻴﻮﻧﲔ ﺍﺛﻨﲔ ﻣﺘﻄﺎﺑﻘﲔ ـ ﻹﻟﻜﺘﺮﻭﻧﲔ ﻣﺜﻼ ـ ﺃﻥ ﻳﻜﻮﻧﺎ ﰲ ﺍﳊﺎﻟﺔ‬ ‫ﻧﻔﺴﻬﺎ‪ .‬ﻭﻫﺬﻩ ﺍﳋﺎﺻﻴﺔ ‪‬ﺗﻌ‪‬ﺮﻑ ﺣﺎﻟﻴﺎ ﲟﺒﺪﺃ ﺍﺳﺘﺒﻌﺎﺩ ‪ exclusion‬ﭘﺎﻭﱄ‪ .‬ﰒ ﺟﺎﺀ >‪.E‬ﻓ‪‬ﺮﻣﻲ<‬ ‫ﻭ>‪.P‬ﺩﻳﺮﺍﻙ< ﻋﺎﻡ ‪ 1926‬ﻟﻴﻀﻌﺎ ﺍﻟﻘﻮﺍﻧﲔ ﺍﻹﺣﺼﺎﺋﻴﺔ ﻟﺴﻠﻮﻙ ﻫﺬﻩ ﺍﳉﺴﻴﻤﺎﺕ‪ ،‬ﻭﺫﻟﻚ ﺑﺎﳌﻮﺍﺯﺍﺓ‬

‫ﻣﻊ ﺇﺣﺼﺎﺋﻴﺔ ﺑﻮﺯ ـ ﺁﻳﻨﺸﺘﺎﻳﻦ‪.‬‬

‫ﻭﺑﻨﺎﺀ ﻋﻠﻰ ﻣﺒﺪﺃ ﺍﺳﺘﺒﻌﺎﺩ ﭘﺎﻭﱄ ﻓﺈﻥ ﺍﻟﻔﺮﻣﻴﻮﻧﺎﺕ ﻻ ﺗﺘﻜﺜﹼﻒ ﰲ ﺣﺎﻟﺔ ﺍﳔﻔﺎﺽ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ‪.‬‬

‫ﻓﻌﻨﺪﻣﺎ ﻧﱪّﺩ ﻏﺎﺯ ﺇﻟﻜﺘﺮﻭﻧﺎﺕ ﻭﻧﻘﻮﻡ ﺑﻀﻐﻄﻪ‪ ،‬ﻓﺈﻥ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺗﻘﺘﺮﺏ ﺑﻌﻀﻬﺎ ﻣﻦ ﺑﻌﺾ ﺣﱴ ﺗﻀﻄﺮ‬

‫ﺇﱃ ﺍﺧﺘﺮﺍﻕ ﺍﻟﻔﻀﺎﺀ ﺍﳌﺨﺼّﺺ ﻟﻜﻞ ﻣﻨﻬﺎ‪ .‬ﻭﲟﺎ ﺃﻥ ﻫﺬﻩ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﻟﻴﺴﺖ ﰲ ﺍﳊﺎﻟﺔ ﺍﻟﻜﻤﻮﻣﻴﺔ‬ ‫ﺴﺮَﻉ ﻗﺮﻳﺒﺔ ﻣﻦ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ‪ .‬ﻭﻓﻴﻤﺎ ﳜﺺ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ‬ ‫ﻧﻔﺴﻬﺎ ﻓﺈﻬﻧﺎ ﺗﺘﺠﻨﺐ ﺑﻌﻀﻬﺎ ﺑﻌﻀﺎ ﺑﺎﳍﺮﺏ ﺑ ‪‬‬


‫ﻭﺍﻟﻔﺮﻣﻴﻮﻧﺎﺕ ﺍﻷﺧﺮﻯ ﻓﺈﻥ ﺍﻟﻀﻐﻂ ﺍﻟﺬﻱ ﻳﻮﻟﺪﻩ ﺍﻧﺘﺸﺎﺭ ﻫﺬﻩ ﺍﳉﺴﻴﻤﺎﺕ ﺍﻟﺴﺮﻳﻌﺔ ـ ﻭﻫﻮ ﺿﻐﻂ ﻏﺎﺯ‬ ‫ﻣﻨﺤﻞ ـ ﻳﻈﻞ ﺳﺎﺭﻱ ﺍﳌﻔﻌﻮﻝ ﺣﱴ ﻭﺇﻥ ﻗﻤﻨﺎ ﺑﺘﱪﻳﺪ ﺍﻟﻐﺎﺯ ﺇﱃ ﺩﺭﺟﺔ ﺍﻟﺼﻔﺮ ﺍﳌﻄﻠﻖ‪ .‬ﻭﻻ ‪‬ﻳ َﺮ ﱡﺩ ﺫﻟﻚ‬

‫ﺃﺑﺪﺍ ﺇﱃ ﺍﻟﺘﻨﺎﻓﺮ ﺍﳌﺘﺒﺎﺩﻝ ﺑﲔ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺍﻟﻨﺎﺗﺞ ﻣﻦ ﺷﺤﻨﺎﻬﺗﺎ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳌﺘﻄﺎﺑﻘﺔ‪ ،‬ﺇﺫ ﻧﻼﺣﻆ‬ ‫ﺍﻟﺴﻠﻮﻙ ﻧﻔﺴﻪ ﰲ ﺍﻟﻨﻴﻮﺗﺮﻭﻧﺎﺕ ﺍﳋﺎﻟﻴﺔ ﻣﻦ ﺍﻟﺸﺤﻨﺎﺕ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ‪ :‬ﺇﻥ ﻣﺼﺪﺭ ﺿﻐﻂ ﺃﻱ ﻏﺎﺯ ﻣﻨﺤﻞ‬ ‫ﻣﺼﺪﺭ ﻛﻤﻮﻣﻲ ﲝﺖ‪.‬‬

‫ﺍﻹﺤﺼﺎﺀ ﺍﻟﻜﻤﻭﻤﻲ ﻭﺍﻷﻗﺯﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‬ ‫ﻣﺎ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ ﻭﺍﻟﻨﺠﻮﻡ؟ ﻛﺎﻥ ﺍﻟﻔﻠﻜﻴﻮﻥ ﻗﺪ ﺍﻛﺘﺸﻔﻮﺍ ﰲ ﺍﻟﻘﺮﻥ ﺍﻟﺘﺎﺳﻊ ﻋﺸﺮ‬ ‫ﻓﺌﺔ ﻣﻦ ﺍﻟﻨﺠﻮﻡ ﺍﳌﺘﻤﻴﺰﺓ ﺑﺼﻐﺮ ﺣﺠﻤﻬﺎ ﻭﻗﻠﺔ ﺿﻮﺋﻬﺎ‪ :‬ﺇﻬﻧﺎ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ‪ .dwarf white‬ﻭﻫﻜﺬﺍ‬ ‫ﻓﺈﻥ ﳒﻢ ﺍﻟﺸﻌﺮﻯ ﺍﻟﻴﻤﺎﻧﻴﺔ ‪ Sirius‬ﺍﻷﻛﺜﺮ ﳌﻌﺎﻧﺎ ﰲ ﺍﻟﺴﻤﺎﺀ ﳚﺎﻭﺭ ﳒﻤﺎ ﻛﺘﻠﺘﻪ ﺗﻘﺎﺭﺏ ﻛﺘﻠﺔ ﺍﻟﺸﻤﺲ‪،‬‬

‫ﻟﻜﻦ ﺇﺷﻌﺎﻋﻪ ﻳﻘﻞ ﺑﹺـ ‪ 350‬ﻣﺮﺓ ﻋﻦ ﺇﺷﻌﺎﻉ ﺍﻟﺸﻤﺲ‪ .‬ﻭﻋﻨﺪﻣﺎ ﻧﻘﺴّﻢ ﻛﺘﻠﺔ ﻗﺰﻡ ﺃﺑﻴﺾ ﻋﻠﻰ‬

‫ﺣﺠﻤﻪ‪ ،‬ﻓﺈﻧﻨﺎ ﳓﺼﻞ ﻋﻠﻰ ﻛﺜﺎﻓﺔ ﻣﻌﺘﱪﺓ‪ :‬ﺇﻥ ﺳﻨﺘﻴﻤﺘﺮﺍ ﻣﻜﻌﺒﺎ ﻭﺍﺣﺪﺍ ﻣﻦ ﻣﺮﻛﺰ ﺍﻟﻨﺠﻢ ﺍﺠﻤﻟﺎﻭﺭ ﻟﻠﺸﻌﺮﻯ‬ ‫ﺍﻟﻴﻤﺎﻧﻴﺔ ﻳﺰﻥ ‪ 61‬ﻃﻨﺎ‪ .‬ﻓﻤﺎ ﻫﻲ‪ ،‬ﻳﺎ ﺗﺮﻯ‪ ،‬ﻫﺬﻩ ﺍﻷﺟﺴﺎﻡ ﺍﻟﻌﺠﻴﺒﺔ؟ ﺳﻴﺠﻴﺒﻨﺎ ﻋﻦ ﻫﺬﺍ ﺍﻟﺴﺆﺍﻝ‬ ‫>‪.A‬ﺇﻳﺪﻧﮕﺘﻮﻥ<‪.‬‬ ‫ﺕ ﺩﺭﺍﺳﺔ ﺍﻟﻔﻴﺰﻳﺎﺀ ﰲ ﺃﻭﺍﺧﺮ ﺍﻷﺭﺑﻌﻴﻨﺎﺕ ﻛﺎﻥ ﺇﻳﺪﻧﮕﺘﻮﻥ ﺃﺣﺪ ﺃﺑﻄﺎﱄ‪ .‬ﻟﻜﻦ ﺃﺳﺒﺎﺏ‬ ‫ﻋﻨﺪﻣﺎ ﺑﺪﺃ ‪‬‬ ‫ﻫﺬﺍ ﺍﻹﻋﺠﺎﺏ ﺑﻪ ﻛﺎﻧﺖ ﺧﺎﻃﺌﺔ‪ .‬ﱂ ﺃﻛﻦ ﺃﻋﺮﻑ ﺷﻴﺌﺎ ﻋﻦ ﺃﻋﻤﺎﻟﻪ ﺍﻟﻔﻠﻜﻴﺔ ﻏﲑ ﺃﱐ ﻛﻨﺖ ﻣﻌﺠﺒﺎ ﺑﻜﺘﺒﻪ‬ ‫ﺍﻟﻌﻠﻤﻴﺔ ﺍﻟﺘﻌﻤﻴﻤﻴﺔ‪ .‬ﻭﻛﺎﻥ ﺇﻳﺪﻧﮕﺘﻮﻥ ـ ﺍﳌﺘﻮﰱ ﻋﺎﻡ ‪ 1944‬ـ ﻳﻌﺘﻘﺪ ﺃﻧﻪ ﲟﻘﺪﻭﺭﻧﺎ ﺩﺭﺍﺳﺔ ﻛﻞ‬

‫ﺍﻷﻣﻮﺭ ﺍﳌﻬﻤﺔ ﰲ ﺍﻟﻜﻮﻥ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺇﻣﻜﺎﻧﺎﺗﻨﺎ ﺍﻟﻔﻜﺮﻳﺔ ﻻ ﻏﲑ‪ .‬ﻟﻘﺪ ﻛﺎﻥ ﺇﻳﺪﻧﮕﺘﻮﻥ ﻣﻨﺬ ﺃﻭﺍﺧﺮ‬

‫‪ 1910‬ـ ﻋﻨﺪﻣﺎ ﻛﺎﻥ ﻳﺸﺮﻑ ﻋﻠﻰ ﺇﺣﺪﻯ ﺍﻟﺒﻌﺜﺘﲔ ﺍﻟﻠﺘﲔ ﺃﻛﺪﺗﺎ ﺃﻥ ﺍﻟﺸﻤﺲ ﺗﺆﺛﺮ ﰲ ﺍﳓﻨﺎﺀ ﻣﺴﺎﺭ‬ ‫ﺍﻷﺷﻌﺔ ﺍﻟﻀﻮﺋﻴﺔ‪ ،‬ﻭﻫﻲ ﻇﺎﻫﺮﺓ ﺗﻨﺒﺄ ﻬﺑﺎ ﺁﻳﻨﺸﺘﺎﻳﻦ ـ ﺇﱃ ﻬﻧﺎﻳﺔ ﺍﻟﺜﻼﺛﻴﻨﺎﺕ ﻭﺍﺣﺪﺍ ﻣﻦ ﻋﻤﺎﻟﻘﺔ ﺍﻟﻌﻠﻢ ﰲ‬

‫ﺍﻟﻘﺮﻥ ﺍﻟﻌﺸﺮﻳﻦ‪ .‬ﻓﻘﺪ ﻛﺎﻥ ﺃﺣﺪ ﻣﺒﺘﻜﺮﻱ ﺍﻻﺧﺘﺼﺎﺹ ﺍﻟﻌﻠﻤﻲ ﺍﻟﺬﻱ ﺃﺩﻯ ﺇﱃ ﻓﻬﻢ »ﻛﻴﻔﻴﺔ ﺍﻟﺘﺸﻜﻴﻞ‬ ‫ﺍﻟﺪﺍﺧﻠﻲ ﻟﻠﻨﺠﻮﻡ«‪ ،‬ﻭﻫﻮ ﻋﻨﻮﺍﻥ ﻛﺘﺎﺑﻪ ﺍﻟﺬﻱ ﺻﺪﺭ ﻋﺎﻡ ‪ 1926‬ﻭﺍﻟﺬﻱ ﺃﺻﺒﺢ ﺍﻵﻥ ﻣﻦ ﺍﻟﻜﺘﺐ‬ ‫ﺍﻟﺘﻘﻠﻴﺪﻳﺔ‪ .‬ﻭﺗﻌﺘﱪ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ﺑﺎﻟﻨﺴﺒﺔ ﻹﻳﺪﻧﮕﺘﻮﻥ ﲟﺜﺎﺑﺔ ﺍﺳﺘﻔﺰﺍﺯ ﻫﺒﻂ ﻋﻠﻴﻪ ﻣﻦ ﺍﻟﺴﻤﺎﺀ‪ ،‬ﻭﺫﻟﻚ‬ ‫ﻣﻦ ﺍﻟﻨﺎﺣﻴﺔ ﺍﳉﻤﺎﻟﻴﺔ ﻋﻠﻰ ﺍﻷﻗﻞ‪ .‬ﻟﻜﻦ ﻫﺬﺍ ﱂ ﳝﻨﻌﻪ ﻣﻦ ﺩﺭﺍﺳﺘﻬﺎ ﻭﺍﻟﺘﻮﺻﻞ ﺇﱃ ﺍﻟﻔﻜﺮﺓ ﺍﻟﺴﻠﻴﻤﺔ‬

‫ﺣﻮﳍﺎ‪.‬‬


‫‪1925‬‬ ‫‪1924‬‬ ‫‪1924‬‬ ‫‪1916‬‬ ‫ﺑﻴّﻦ ﻛﺎﺭﻝ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺃﻧﻪ ﻳﻮﺟﺪ‪ ،‬ﰲ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﻨﺸﺮ ﻋﻤﻞ ﺳﺎﺗﻴﻨﺪﺭﺍ ﺑﻮﺯ ﺁﺭﺛﺮ ﺇﻳﺪﻧﮕﺘﻮﻥ ﻳﺮﻯ ﺃﻥ ﻭﻟﻔﮕﺎﻧﮓ ﭘﺎﻭﱄ ﻳﺼﻴﻎ‬ ‫ﺍﳌﻌﺎﺩﻻﺕ ﺍﻟﱵ ﺗﺼﻒ ﺗﺜﺎﻗﻞ ﻛﻤﻴﺔ ﻣﻦ ﺣﻮﻝ ﺇﺷﻌﺎﻉ ﺟﺴﻢ ﺃﺳﻮﺩ ﻭﻳﺼﻒ ﺍﻟﺘﺜﺎﻗﻞ ﰲ ﻗﺰﻡ ﺃﺑﻴﺾ ﻳﻔﻜﹼﻚ ﻗﺎﻧﻮﻥ ﺍﻻﺳﺘﺒﻌﺎﺩ ﺍﻟﺬﻱ‬

‫ﻣﺎﺩﺓ ﻣﺘﻤﺮﻛﺰﺓ ﰲ ﻧﻘﻄﺔ‪ ،‬ﻧﺼﻒ ﻗﻄﺮ ﺍﻟﺴﻠﻮﻙ ﺍﻹﺣﺼﺎﺋﻲ ﳉﺴﻴﻤﺎﺕ ﺍﻟﻨﻮﻯ‬ ‫ﺗﻈﻬﺮ ﻋﻨﺪﻩ ﺍﻧﻔﺮﺍﺩﻳﺔ )ﺷﺬﻭﺫ‪).‬‬

‫ﺗﺴﻤﻰ ﺑﻮﺯﻭﻧﺎﺕ ﻛﺎﻟﻔﻮﺗﻮﻧﺎﺕ‪.‬‬

‫ﺍﻟﺬﺭﻳﺔ‬

‫ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ‬

‫ﺍﻟﱪﻭﺗﻮﻧﺎﺕ‪.‬‬

‫ﺑﻔﺼﻞ ﻳﻨﺺ ﻋﻠﻰ ﺃﻥ ﺑﻌﺾ‬ ‫ﻋﻦ ﺍﳉﺴﻴﻤﺎﺕ ﻻ ﳝﻜﻦ ﺃﻥ‬ ‫ﺗﻮﺟﺪ‬

‫ﰲ‬

‫ﺍﳊﺎﻟﺔ‬

‫ﺍﻟﻜﻤﻮﻣﻴﺔ ﻧﻔﺴﻬﺎ‪.‬‬

‫ﻟﻘﺪ ﺗﺼﻮﺭ ﺇﻳﺪﻧﮕﺘﻮﻥ ﻋﺎﻡ ‪ 1924‬ﺃﻧﻪ ﲟﻘﺪﻭﺭ ﺍﻟﻘﻮﺓ ﺍﻟﺘﺜﺎﻗﻠﻴﺔ ﺍﻟﻀﺎﻏﻄﺔ ﻋﻠﻰ ﻗﺰﻡ ﺃﺑﻴﺾ ﺃﻥ‬

‫ﲣﻠﻊ ﺑﻌﺾ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﻣﻦ ﺍﻟﺬﺭﺍﺕ‪ .‬ﻭﺑﺬﻟﻚ ﺗﻔﻘﺪ ﺗﻠﻚ ﺍﻟﺬﺭﺍﺕ ﺣﺪﻭﺩﻫﺎ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﻓﻴﻨﺘﺞ ﻣﻦ‬

‫ﺿﻐﻂ ﻏﺎﺯ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺍﳌﻨﺤﻞ ﲡﻤﻴﻊ ﻟﻠﻨﻮﻯ ﰲ ﺣﺸﺪ ‪ cluster‬ﺻﻐﲑ ﻭﻛﺜﻴﻒ‪ .‬ﻭﺗﺘﻮﻗﻒ ﻋﻤﻠﻴﺔ‬ ‫ﺍﻬﻧﻴﺎﺭ ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ ﻋﻨﺪﻣﺎ ﳛﺪﺙ ﺗﻮﺍﺯﻥ ﺑﲔ ﺍﻟﻘﻮﺓ ﺍﻟﱵ ﳝﺎﺭﺳﻬﺎ ﺿﻐﻂ ﻏﺎﺯ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺍﳌﻨﺤﻞ‬ ‫)ﻋﻨﺪﻣﺎ ﻳﺮﻏﻢ ﻣﺒﺪﺃ ﺍﺳﺘﺒﻌﺎﺩ ﭘﺎﻭﱄ ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﻋﻠﻰ ﺍﻻﺑﺘﻌﺎﺩ ﺑﻌﻀﻬﺎ ﻋﻦ ﺑﻌﺾ( ﻣﻊ ﻗﻮﺓ ﺍﻟﺘﺜﺎﻗﻞ‪.‬‬

‫ﺍﻟﻜﺘﻠﺔ ﺍﻟﻘﺼﻭﻯ‬ ‫ﻟﻘﺪ ﺷﻬﺪﺕ ﺩﺭﺍﺳﺔ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ﺗﻘﺪﻣﺎ ﺟﺪﻳﺪﺍ ﰲ ﺍﻟﺸﻬﺮ ‪ 1930/7‬ﺑﻔﻀﻞ‬ ‫>‪.S‬ﺷﻨﺪﺭﺍﺳﺨﺎﺭ<‪ ،‬ﺍﻟﺬﻱ ﱂ ﻳﺘﺠﺎﻭﺯ ﻋﻤﺮﻩ ﺣﻴﻨﺬﺍﻙ ‪ 19‬ﺳﻨﺔ‪ .‬ﻛﺎﻥ ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﻗﺪ ﺍﻃﻠﻊ ﻋﻠﻰ‬

‫ﻛﺘﺎﺏ ﺇﻳﺪﻧﮕﺘﻮﻥ ﺣﻮﻝ ﺍﻟﻨﺠﻮﻡ ﻭﻛﺘﺎﺏ >‪ .R‬ﹶﻓﻮ‪‬ﻟﺮ< ﺣﻮﻝ ﺍﳌﻴﻜﺎﻧﻴﻚ ﺍﻟﻜﻤﻮﻣﻲ‪ .‬ﻭﻣﻦ ﰒ ﺃﻋﺠﺐ‬ ‫ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﺑﺎﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‪ .‬ﻭﻋﻨﺪﻣﺎ ﺍﺳﺘﻀﺎﻓﺘﻪ ﺟﺎﻣﻌﺔ ﻛﻤﱪﺩﺝ )ﺣﻴﺚ ﻳﻮﺟﺪ ﺇﻳﺪﻧﮕﺘﻮﻥ( ﺑﺪﻋﻮﺓ‬


‫ﻣﻦ ‪‬ﻗَﺒ ﹾﻞ ﹶﻓﻮ‪‬ﻟﺮ ﺭﻛﺐ ﺳﻔﻴﻨﺔ ﺗﺼﻞ ﻣﺪﻳﻨﺔ َﻣﺪ‪‬ﺭﺍﺱ )ﺍﳍﻨﺪﻳﺔ( ﲟﺪﻳﻨﺔ ﺳﺎﻭﺛﻬﻤﺘ‪‬ﻦ‪ .‬ﻭﻟﻜﻲ ﳝﻸ ﻭﻗﺖ ﻓﺮﺍﻏﻪ‬ ‫ﺧﻼﻝ ﺭﺣﻠﺘﻪ‪ ،‬ﺗﺴﺎﺀﻝ ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﻋﻦ ﻭﺟﻮﺩ ﺣﺪ ﺃﻗﺼﻰ ﻟﻜﺘﻠﺔ ﻗﺰﻡ ﺃﺑﻴﺾ ﻗﺒﻞ ﺍﻬﻧﻴﺎﺭﻩ ﲢﺖ ﺗﺄﺛﲑ‬

‫ﺛﻘﺎﻟﺘﻪ ﺍﻟﺬﺍﺗﻴﺔ‪ .‬ﻟﻘﺪ ﺃﺣﺪﺛﺖ ﺇﺟﺎﺑﺘﻪ ﻋﻦ ﻫﺬﺍ ﺍﻟﺴﺆﺍﻝ ﺛﻮﺭﺓ‪.‬‬

‫ﳌﺎ ﻛﺎﻥ ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ ـ ﰲ ﳎﻤﻠﻪ ـ ﳏﺎﻳﺪﺍ ﻛﻬﺮﺑﺎﺋﻴﺎ‪ ،‬ﻓﺈﻥ ﻛﻞ ﺇﻟﻜﺘﺮﻭﻥ ﻳﺮﺍﻓﻘﻪ ﺑﺮﻭﺗﻮﻥ‪ .‬ﻟﻜﻦ‬ ‫ﺏ ‪ 2000‬ﻣﺮﺓ‪ ،‬ﻟﺬﺍ ﻓﺈﻥ ﺑﺮﻭﺗﻮﻧﺎﺕ ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ ﻫﻲ ﺍﻟﱵ ﺗﻮﻟﹼﺪ‬ ‫ﺍﻟﱪﻭﺗﻮﻥ ﺃﺛﻘﻞ ﻣﻦ ﺍﻹﻟﻜﺘﺮﻭﻥ ﹺ‬

‫ﺃﻫﻢ ﺿﻐﻂ ﺗﺜﺎﻗﻠﻲ‪ .‬ﻭﺇﺫﺍ ﱂ ﻳﺘﻌﺮﺽ ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ ﻟﻼﻬﻧﻴﺎﺭ ﻓﻬﺬﺍ ﻳﻌﲏ ﺃﻥ ﻫﻨﺎﻙ ﺗﻮﺍﺯﻧﺎ ﺑﲔ ﺿﻐﻂ ﻏﺎﺯ‬ ‫ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺍﳌﻨﺤﻞ ﻭﺍﻟﻘﻮﺓ ﺍﻟﺘﺜﺎﻗﻠﻴﺔ ﻟﻠﱪﻭﺗﻮﻧﺎﺕ‪ .‬ﺇﻥ ﻫﺬﺍ ﺍﻟﺘﻮﺍﺯﻥ ﳛ ّﺪ ﻣﻦ ﻋﺪﺩ ﺍﻟﱪﻭﺗﻮﻧﺎﺕ‪،‬‬ ‫ﻭﺑﺎﻟﺘﺎﱄ ﳛﺪ ﻣﻦ ﻛﺘﻠﺔ ﺍﻟﻘﺰﻡ ﺍﻷﺑﻴﺾ‪ .‬ﻭﺣﺎﻟﻴﺎ‪ ،‬ﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻘﺼﻮﻯ ﺣﺪ ﺷﻨﺪﺭﺍﺳﺨﺎﺭ‪ ،‬ﻭﻫﻲ‬ ‫ﺗﺴﺎﻭﻱ ‪ 1.4‬ﻣﺮﺓ ﻛﺘﻠﺔ ﺍﻟﺸﻤﺲ‪ .‬ﻭﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻥ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ﺍﻟﱵ ﺗﺰﻳﺪ ﻛﺘﻠﺘﻬﺎ ﻋﻠﻰ ﻫﺬﺍ ﺍﳊﺪ‬ ‫ﺃﻗﺰﺍﻡ ﻏﲑ ﻣﺴﺘﻘﺮﺓ‪.‬‬

‫ﻛﺎﻧﺖ ﻧﺘﻴﺠﺔ ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﻗﺪ ﺣﻴّﺮﺕ ﺇﻳﺪﻧﮕﺘﻮﻥ‪ .‬ﻓﻤﺎﺫﺍ ﳛﺪﺙ ﻟﻮ ﺯﺍﺩﺕ ﺍﻟﻜﺘﻠﺔ ﻋﻠﻰ ﻛﺘﻠﺔ‬

‫ﺍﻟﺸﻤﺲ ﲟﻘﺪﺍﺭ ‪ 1.4‬ﻣﺮﺓ؟ ﺇﺫﺍ ﱂ ﻳﻜﻦ ﻫﻨﺎﻙ ﺳﺒﻴﻞ ﳛﺪ ﻣﻦ ﻛﺘﻠﺔ ﺍﻟﻨﺠﻮﻡ ﻭﻛﺎﻧﺖ ﻧﺘﻴﺠﺔ‬ ‫ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﺻﺤﻴﺤﺔ‪ ،‬ﻓﻼ ﺑﺪ ﺃﻥ ﺗﺰﻭﻝ ـ ﰲ ﺁﺧﺮ ﺍﳌﻄﺎﻑ ـ ﲨﻴﻊ ﺍﻟﻨﺠﻮﻡ ﺍﻟﺜﻘﻴﻠﺔ ﺿﻤﻦ ﺍﻬﻧﻴﺎﺭ‬ ‫ﺗﺜﺎﻗﻠﻲ‪ .‬ﻭﻗﺪ ﻭﺟﺪ ﺇﻳﺪﻧﮕﺘﻮﻥ ﻫﺬﺍ ﺍﻟﻮﺿﻊ ﻏﲑ ﻣﻘﺒﻮﻝ ﻭﱂ ﻳﺮﺽ ﻋﻦ ﻃﺮﻳﻘﺔ ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﰲ ﺍﺳﺘﺨﺪﺍﻡ‬ ‫ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ‪ ،‬ﺣﻴﺚ ﺍﻧﺘﻘﺪﻩ ﰲ ﳎﺎﻟﺴﻪ ﺍﻟﻌﺎﻣﺔ ﻭﺍﳋﺎﺻﺔ‪ .‬ﻭﻗﺪ ﺃﺛﻘﻠﺖ ﻫﺬﻩ ﺍﻻﻧﺘﻘﺎﺩﺍﺕ ﻛﺎﻫﻞ‬ ‫ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﻟﻜﻨﻪ ﱂ ﻳﺴﺘﺴﻠﻢ ﺣﻴﺚ ﻛﺎﻥ ﻳﺪﻋﻤﻪ ﻓﻴﺰﻳﺎﺋﻴﻮﻥ ﺁﺧﺮﻭﻥ ﻣﺜﻞ >‪.N‬ﺑﻮﺭ< ﺍﻟﺬﻱ ﺃﻛﺪ ﻟﻪ‬

‫ﺃﻥ ﺇﻳﺪﻧﮕﺘﻮﻥ ﳐﻄﺊ ﻭﻟﺬﺍ ﻳﻨﺒﻐﻲ ﺃﻻ ﻳﺆﺧﺬ ﺑﺮﺃﻳﻪ‪.‬‬

‫ﺇﺤﺴﺎﺱ ﻤﻥ ﻨﻭﻉ ﺨﺎﺹ‬ ‫ﻭﺑﻴﻨﻤﺎ ﻛﺎﻥ ﺍﻟﺒﻌﺾ ﻣﻨﻬﻤﻜﺎ ﰲ ﺍﺳﺘﻜﺸﺎﻑ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ ﻭﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‪ ،‬ﻛﺎﻥ ﺍﻟﺒﻌﺾ‬ ‫ﺍﻵﺧﺮ ﻳﺘﺪﺍﺭﺱ ﻋﻤﻞ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺣﻮﻝ ﺍﻟﺘﺜﺎﻗﻞ‪ :‬ﺃﻱ ﻧﻈﺮﻳﺔ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ‪ .‬ﻭﺣﺴﺐ ﻋﻠﻤﻲ ﻓﺈﻥ‬ ‫ﺁﻳﻨﺸﺘﺎﻳﻦ ﺃﻣﻀﻰ ﺑﻌﺾ ﺍﻟﻮﻗﺖ ﰲ ﺍﻟﺒﺤﺚ ﻋﻦ ﺣﻠﻮﻝ ﻣﻀﺒﻮﻃﺔ )ﻟﻴﺴﺖ ﺗﻘﺮﻳﺒﻴﺔ( ﳌﻌﺎﺩﻻﺗﻪ ﺍﳌﺘﻌﻠﻘﺔ‬ ‫ﺑﺎﻟﺘﺜﺎﻗﻞ‪ .‬ﻭﻣﻊ ﺫﻟﻚ‪ ،‬ﻫﻨﺎﻙ ﺣﻠﻮﻝ ﺗﻘﺮﻳﺒﻴﺔ ﺗﺼﻒ ﺑﺪﻗﺔ ﻛﺎﻓﻴﺔ ﻇﻮﺍﻫﺮ ﳐﺘﻠﻔﺔ ﻛﺎﳓﻨﺎﺀ ﻣﺴﺎﺭ ﺍﻟﻀﻮﺀ‬

‫ﺑﺴﺒﺐ ﺍﻟﻨﺠﻮﻡ‪ .‬ﻟﺬﺍ ﺍﻧﺒﻬﺮ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻋﻨﺪﻣﺎ ﻋﺜﺮ ﺍﻟﻔﻠﻜﻲ ﺍﻷﳌﺎﱐ >‪ .K‬ﺷﻮﺍﺭﺗﺸﻴﻠﺪ< ﻋﺎﻡ ‪،1916‬‬ ‫ﻋﻠﻰ ﺍﳊﻞ ﺍﳌﻀﺒﻮﻁ ﺍﻟﺬﻱ ﻳﺼﻒ ﺍﳊﻘﻞ ﺍﻟﺘﺜﺎﻗﻠﻲ ﺍﻟﻨﺎﺗﺞ ﻣﻦ ﺟﺴﻢ ﺫﻱ ﺗﻨﺎﻇﺮ ﻛﺮﻭﻱ ﰲ ﺍﳋﻼﺀ‪.‬‬


‫‪1926‬‬ ‫ﺇﻧﺮﻳﻜﻮ ﻓﺮﻣﻲ ﻭﺑﻮﻝ ﺩﻳﺮﺍﻙ ﻳ‪‬ﻤﻠﻴﺎﻥ ﺍﻟﻘﻮﺍﻧﲔ ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﻟﱵ‬

‫ﺗﺼﻒ ﺍﳉﺴﻴﻤﺎﺕ ﺍﳋﺎﺿﻌﺔ ﳌﺒﺪﺃ ﺍﺳﺘﺒﻌﺎﺩ ﭘﺎﻭﱄ‪ ،‬ﻫﺬﻩ‬

‫ﺍﳉﺴﻴﻤﺎﺕ ﻫﻲ ﺍﻟﻔﺮﻣﻴﻮﻧﺎﺕ )ﻛﺎﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﻭﺍﻟﱪﻭﺗﻮﻧﺎﺕ(‪.‬‬

‫ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﺍﻟﻔﺮﻣﻴﻮﻧﺎﺕ ﻣﻀﻐﻮﻃﺔ ﺑﺪﺭﺟﺔ ﻛﺒﲑﺓ ﻓﺈﻬﻧﺎ ﺗﺒﺘﻌﺪ‬ ‫ﺑﻌﻀﻬﺎ ﻋﻦ ﺑﻌﺾ‪ ،‬ﻭﻳﻨﺸﺄ ﺍﻟﻀﻐﻂ ﻋﻦ ﻫﺬﻩ ﺍﳊﺮﻛﺔ‪.‬‬

‫‪1930‬‬ ‫ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻹﺣﺼﺎﺋﻴﺔ ﻭﻣﺎ‬ ‫ﺗﻮﺻﻞ ﺇﻟﻴﻪ ﺇﻳﺪﻧﮕﺘﻮﻥ ﺣﻮﻝ‬ ‫ﺍﻟﻨﺠﻮﻡ‪،‬‬

‫ﺍﺳﺘﻨﺘﺞ ﺳﻮﺑﺮﳘﺎﻧﻴﺎﻥ‬

‫ﺷﻨﺪﺭﺍﺳﺨﺎﺭ ﺃﻥ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ﻻ‬

‫ﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﳍﺎ ﻛﺘﻠﺔ ﺗﺘﺠﺎﻭﺯ‬ ‫‪ 1.4‬ﻣﺮﺓ ﻛﺘﻠﺔ ﺍﻟﺸﻤﺲ‪ .‬ﻟﺬﺍ ﻻ‬ ‫ﺑﺪ ﺃﻥ ﺗﻨﻬﺎﺭ ﺍﻟﻨﺠﻮﻡ ﺍﻟﱵ ﳍﺎ ﻛﺘﻞ‬ ‫ﺃﻛﱪ‪ ،‬ﺑﺸﻜﻞ ﻏﲑ ﻣﺘﻨﺎﻩ‪.‬‬

‫ﻭﻗﺪ ﻻﺣﻆ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺧﻼﻝ ﻗﻴﺎﻣﻪ ﺑﺎﳊﺴﺎﺑﺎﺕ ﺃﻥ ﺍﳊﻘﻞ ﺍﻟﺘﺜﺎﻗﻠﻲ ﻳﺼﺒﺢ ﻻﻣﺘﻨﺎﻫﻴﺎ ﻋﻠﻰ ﻣﺴﺎﻓﺔ‬

‫ﻣﻌﻴﻨﺔ ﻋﻦ ﻣﺮﻛﺰ ﺍﻟﻨﺠﻢ‪ .‬ﻭﻋﻨﺪ ﺑﻠﻮﻍ ﺗﻠﻚ ﺍﳌﺴﺎﻓﺔ ﺍﻟﱵ ﺗﺴﻤﻰ ﺣﺎﻟﻴﺎ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ)‪،(1‬‬ ‫ﻳﺰﻭﻝ ﻣﺘﻐﲑ ﺍﻟﺰﻣﻦ ﻣﻦ ﺍﳌﻌﺎﺩﻻﺕ ﻭﻳﺼﲑ ﺍﻟﻔﻀﺎﺀ ﻻﻣﺘﻨﺎﻫﻴﺎ‪ .‬ﲤﺘﻠﻚ ﻫﺬﻩ ﺍﳌﻌﺎﺩﻻﺕ ﻣﺎ ﻳﺴﻤﻴﻪ‬ ‫ﺍﻟﺮﻳﺎﺿﻴﺎﺗﻴﻮﻥ ﺍﻧﻔﺮﺍﺩﺍ )ﺷﺬﻭﺫﺍ( ‪ .singularity‬ﻭﰲ ﺃﻏﻠﺐ ﺍﻷﺣﻴﺎﻥ ﻳﻜﻮﻥ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‬

‫ﺃﺻﻐﺮ ﺑﻜﺜﲑ ﻣﻦ ﻧﺼﻒ ﻗﻄﺮ ﺍﻟﻨﺠﻢ ﺍﻟﻜﺮﻭﻱ ﻗﻴﺪ ﺍﻟﺪﺭﺍﺳﺔ‪ .‬ﻭﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ ﻓﺈﻥ ﻧﺼﻒ ﻗﻄﺮ‬ ‫ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﻳﺴﺎﻭﻱ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺸﻤﺲ ﺛﻼﺛﺔ ﻛﻴﻠﻮﻣﺘﺮﺍﺕ‪ ،‬ﻭﻳﺴﺎﻭﻱ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻜﺮﺓ ﻓﻮﻻﺫﻳﺔ ﺗﺰﻥ ﻃﻨﺎ‬ ‫ﻭﺍﺣﺪﺍ )ﻗﻄﺮﻫﺎ ‪ 60‬ﺳﻨﺘﻴﻤﺘﺮﺍ(‪10-24‬ﻣﺘﺮ )ﺃﻱ ﻣﻠﹼﻲ ﺟﺰﺀ ﻣﻦ ﺑﻠﻴﻮﻥ ﺟﺰﺀ ﻣﻦ ﺑﻠﻴﻮﻥ ﺟﺰﺀ ﻣﻦ‬

‫ﺍﳌﻠﻴﻤﺘﺮ(‪.‬‬ ‫ﻛﺎﻥ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﻳﻌﻠﻢ ﺃﻥ ﺻﻴﻐﺘﻪ ﻻ ﺗﺼﻠﺢ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺗﻘﺪﺭ ﺑﻨﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ ،‬ﻟﻜﻨﻪ‬ ‫ﻗﺮﺭ ﺃﻥ ﺫﻟﻚ ﻟﻴﺲ ﺫﺍ ﺷﺄﻥ‪ .‬ﻭﺃﻧﺸﺄ ﳕﻮﺫﺟﺎ ﻣﺒﺴﻄﺎ ﻟﻨﺠﻢ ﻭﺃﺛﺒﺖ ﺃﻥ ﻫﺬﺍ ﺍﻟﻨﻤﻮﺫﺝ ﻳﺘﻄﻠﺐ ﺗﺪﺭﺝ‬ ‫ﺿﻐﻂ ‪ gradient pressure‬ﻻﻣﺘﻨﺎﻫﻴﺎ ﻟﻠﺘﻤﻜﻦ ﻣﻦ ﺿﻐﻂ ﻫﺬﺍ ﺍﻟﻨﺠﻢ ﺇﱃ ﺣﺪ ﻳﻮﺻﻞ ﻧﺼﻒ ﻗﻄﺮﻩ‬


‫ﺇﱃ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ .‬ﻭﺍﻋﺘﻘﺪ ﺃﻥ ﻫﺬﻩ ﺍﻻﻧﻔﺮﺍﺩﻳﺔ ﻟﻴﺲ ﳍﺎ ﻓﺎﺋﺪﺓ ﻋﻤﻠﻴﺔ‪.‬‬ ‫ﺇﻻ ﺃﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻇﻞ ﻗﻠﻘﺎ ﻷﻥ ﳕﻮﺫﺝ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺍﻟﻨﺠﻤﻲ ﻻ ﺗﺘﻮﺍﻓﺮ ﻓﻴﻪ ﺑﻌﺾ ﺷﺮﻭﻁ ﻧﻈﺮﻳﺔ‬ ‫ﺍﻟﻨﺴﺒﻴﺔ‪ .‬ﻭﻗﺪ ﺑﻴّﻦ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﲔ ﺃﻧﻪ ﺑﺎﻹﻣﻜﺎﻥ ﺇﻋﺎﺩﺓ ﻛﺘﺎﺑﺔ ﺣﻠﻮﻝ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺑﺸﻜﻞ ﻳﺴﻤﺢ‬ ‫ﺑﺘﻔﺎﺩﻱ ﺗﻠﻚ ﺍﻻﻧﻔﺮﺍﺩﻳﺔ‪ .‬ﻟﻜﻦ‪ ،‬ﻫﻞ ﺳﺘﺨﺘﻔﻲ ﻫﺬﻩ ﺍﻻﻧﻔﺮﺍﺩﻳﺔ ﻓﻌﻼ؟ ﻭﺍﺳﺘﻤﺮ ﺍﻟﻨﻘﺎﺵ ﺣﻮﻝ ﻫﺬﺍ ﺍﻷﻣﺮ‬ ‫ﺣﱴ ﻋﺎﻡ ‪ 1939‬ﺑﲔ ﳎﻤﻮﻋﺔ ﺻﻐﲑﺓ ﻣﻦ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﲔ ﺍﳌﻬﺘﻤﲔ ﻬﺑﺬﺍ ﺍﳌﻮﺿﻮﻉ‪.‬‬ ‫ﻭﰲ ﻣﻘﺎﻝ ﺻﺪﺭ ﻋﺎﻡ ‪ 1939‬ﺫﻛﺮ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺃﻥ ﻋﻮﺩﺗﻪ ﺇﱃ ﺍﻻﻫﺘﻤﺎﻡ ﺑﻨﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‬ ‫ﻧﺎﲨﺔ ﻋﻦ ﻣﻨﺎﻗﺸﺎﺕ ﺩﺍﺭﺕ ﺑﻴﻨﻪ ﻭﺑﲔ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ﺍﻟﻔﻠﻜﻲ >‪.H‬ﺭﻭﺑﺮﺗﺴﻮﻥ< ﻣﻦ ﺟﺎﻣﻌﺔ ﭘﺮﻳﻨﺴﺘﻮﻥ‪.‬‬ ‫ﻭﻛﺎﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﺮﻏﺐ‪ ،‬ﻣﻦ ﺧﻼﻝ ﻫﺬﺍ ﺍﳌﻘﺎﻝ‪ ،‬ﰲ ﺇﻏﻼﻕ ﻣﻠﻒ ﺍﻧﻔﺮﺍﺩﻳﺔ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ .‬ﻭﻗﺪ ﻛﺘﺐ ﰲ‬

‫ﺁﺧﺮ ﻓﻘﺮﺍﺕ ﺍﳌﻘﺎﻝ‪» :‬ﺇﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ ﳍﺬﺍ ﺍﻟﺒﺤﺚ ﻫﻲ ﺍﻟﺘﻮﺻﻞ ﺇﱃ ﻓﻬﻢ ﻭﺍﺿﺢ ﻟﻸﺳﺒﺎﺏ ﺍﻟﱵ‬ ‫ﲡﻌﻞ ﺍﻧﻔﺮﺍﺩﻳﺔ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﻏﲑ ﻣﻮﺟﻮﺩﺓ ﰲ ﺍﻟﻮﺍﻗﻊ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ‪ «.‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺑﻠﻐﺔ ﺣﺪﻳﺜﺔ‪ ،‬ﺃﻥ ﺍﻟﺜﻘﻮﺏ‬ ‫ﺍﻟﺴﻮﺩﺍﺀ ﻏﲑ ﻣﻮﺟﻮﺩﺓ‪.‬‬

‫‪1939‬‬ ‫‪1939‬‬ ‫‪1932‬‬ ‫ﺟﻴﻤﺲ ﺷ‪‬ﺪﻭﻳﻚ ﻳﻜﺘﺸﻒ ﺍﻟﻨﻴﻮﺗﺮﻭﻥ‪ .‬ﻭﻗﺪ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﻨﺸﺮ‪ ،‬ﺇﺛﺮ ﺍﳌﻨﺎﻗﺸﺎﺕ ﺍﻟﱵ ﺃﺟﺮﺍﻫﺎ ﻣﻊ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﻓﻜﺎﺭ ﺣﻮﻝ ﺍﻻﻬﻧﻴﺎﺭ‬ ‫ﺃﺩﻯ ﻫﺬﺍ ﺍﻻﻛﺘﺸﺎﻑ ﺇﱃ ﻃﺮﺡ ﺍﻟﺘﺴﺎﺅﻝ ﻋﻤﺎ ﺯﻣﻼﺋﻪ‪ ،‬ﻣﻘﺎﻻ ﰲ ﳎﻠﺔ ‪Annals of‬‬

‫ﺍﻟﺘﺜﺎﻗﻠﻲ ﻟﻸﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ﻭﳒﻮﻡ‬

‫ﺇﺫﺍ ﻛﺎﻧﺖ »ﳒﻮﻡ ﺍﻟﻨﻴﻮﺗﺮﻭﻧﺎﺕ« ﻻ ﲤﺜﻞ ﺣﻼ ‪Mathematics‬ﻟﻴﱪﻫﻦ‪ ،‬ﺑﺼﻔﺔ ﻬﻧﺎﺋﻴﺔ‪ ،‬ﻋﻠﻰ ﺍﻟﻨﻴﻮﺗﺮﻭﻧﺎﺕ‪ ،‬ﺑﻴّﻦ ﺭﻭﺑﺮﺕ‬ ‫ﳌﺴﺄﻟﺔ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‪.‬‬

‫ﺃﻥ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﻻ ﳝﻜﻦ ﺑﻠﻮﻏﻪ‪.‬‬

‫ﺃﻭﭘﻨﻬﺎﳝﺮ ﻭﻫﺎﺭﺗﻠﻨﺪ ﺳﻨﺎﻳﺪﺭ‬


‫ﻛﻴﻒ ﳝﻜﻦ ﺃﻥ ﻳﺘﺸﻜﹼﻞ ﺛﻘﺐ‬ ‫ﺃﺳﻮﺩ‪.‬‬

‫ﻭﺃﺧﺬ ﺁﻳﻨﺸﺘﺎﻳﻦ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺿﻤﻦ ﺑﺮﻫﺎﻧﻪ‪ ،‬ﳎﻤﻮﻋﺔ ﻣﻦ ﺍﳉﺴﻴﻤﺎﺕ ﺍﻟﺼﻐﲑﺓ ﺍﻟﱵ ﺗﻨﺘﻘﻞ ﻋﻠﻰ‬

‫ﻣﺪﺍﺭﺍﺕ ﺩﺍﺋﺮﻳﺔ ﲢﺖ ﺗﺄﺛﲑ ﻗﻮﺍﻫﺎ ﺍﻟﺘﺜﺎﻗﻠﻴﺔ ﺍﳌﺘﺒﺎﺩﻟﺔ‪ ،‬ﺣﺎﳍﺎ ﺇﱃ ﺣﺪ ﻣﺎ ﻛﺤﺎﻝ ﺣﺸﺪ ﻛﺮﻭﻱ ﻣﻦ‬ ‫ﺍﻟﻨﺠﻮﻡ‪ .‬ﰒ ﺗﺴﺎﺀﻝ ﻋﻦ ﺇﻣﻜﺎﻧﻴﺔ ﺍﻬﻧﻴﺎﺭ ﻣﺜﻞ ﻫﺬﺍ ﺍﻟﺸﻜﻞ ﺍﻟﻨﻤﻮﺫﺟﻲ‪ ،‬ﲢﺖ ﺗﺄﺛﲑ ﺛﻘﺎﻟﺘﻪ ﺍﻟﺬﺍﺗﻴﺔ‪ ،‬ﻟﻴﺼﺒﺢ‬ ‫ﳒﻤﺎ ﻣﺴﺘﻘﺮﺍ ﻧﺼﻒ ﻗﻄﺮﻩ ﻳﺴﺎﻭﻱ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺍﳋﺎﺹ ﺑﻪ‪ .‬ﻭﳚﻴﺐ ﻋﻦ ﻫﺬﺍ ﺍﻟﺴﺆﺍﻝ‬ ‫ﺑﺎﻟﻨﻔﻲ ﻷﻧﻪ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﻧﺼﻒ ﺍﻟﻘﻄﺮ ﺃﻛﱪ ﻣﻦ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ ،‬ﻳﻨﺒﻐﻲ ﻋﻠﻰ ﳒﻮﻡ ﺍﳊﺸﺪ ﺃﻥ‬

‫ﺗﻨﺘﻘﻞ ﺑﺴﺮﻋﺔ ﺗﻔﻮﻕ ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ ﻛﻲ ﲢﺎﻓﻆ ﻋﻠﻰ ﺷﻜﻞ ﺧﺎﺭﺟﻲ ﻣﺴﺘﻘﺮ‪ .‬ﻭﻣﻊ ﺃﻥ ﻣﻨﺎﻗﺸﺔ ﺁﻳﻨﺸﺘﺎﻳﻦ‬

‫ﺳﻠﻴﻤﺔ‪ ،‬ﻓﺈﻥ ﺍﺳﺘﻨﺘﺎﺟﻪ ﻏﲑ ﺻﺤﻴﺢ‪ :‬ﺇﺫ ﻻ ﻳﻬﻢ ﻛﺜﲑﺍ ﺃﻥ ﻳﺼﺒﺢ ﳒﻢٌ ﻣﺎ ﻣﺴﺘﻘﺮﺍ ﻋﻨﺪﻣﺎ ﻳﺘﻘﻠﺺ ﺇﱃ ﺣﺪ‬ ‫ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ ،‬ﻷﻥ ﺍﻬﻧﻴﺎﺭ ﺍﻟﻨﺠﻢ ﺳﻴﺴﺘﻤﺮ ﺑﻌﺪ ﺑﻠﻮﻍ ﻧﺼﻒ ﺍﻟﻘﻄﺮ ﻫﺬﺍ‪.‬‬

‫ﻨﻴﻭﺘﺭﻭﻨﺎﺕ ﺫﺍﺕ ﺜﻘﻭﺏ ﺴﻭﺩﺍﺀ‬ ‫ﻭﺑﻴﻨﻤﺎ ﻛﺎﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﻮﺍﺻﻞ ﺃﲝﺎﺛﻪ‪ ،‬ﻛﺎﻥ ﺃﻭﭘﻨﻬﺎﳝﺮ ﻭﻃﻠﺒﺘﻪ ﻳﺸﻜﻠﻮﻥ ﺍﻟﻨﻈﺮﻳﺔ ﺍﳊﺪﻳﺜﺔ ﻟﻠﺜﻘﻮﺏ‬ ‫ﺍﻟﺴﻮﺩﺍﺀ ]ﺍﻧﻈﺮ‪» :‬ﺭﻭﺑﺮﺕ ﺃﻭﭘﻨﻬﺎﳝﺮ‪ :‬ﻗﺒﻞ ﺍﳊﺮﺏ ﺍﻟﻌﺎﳌﻴﺔ ﺍﻟﺜﺎﻧﻴﺔ«‪،‬ﳎﻠﺔ ﺍﻟﻌﻠﻮﻡ‪ ،‬ﺍﻟﻌﺪﺩﺍﻥ‪11‬ﻭ‬ ‫‪ ،(1996)12‬ﺹ ‪ [80‬ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﻗﺼﺔ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﻏﺮﻳﺒﺔ‪ ،‬ﻓﺈﻥ ﻣﺼﺪﺭﻫﺎ ﻻ ﻳﻘﻞ ﻏﺮﺍﺑﺔ‬

‫ﻋﻨﻬﺎ‪ :‬ﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻟﻨﻈﺮﻳﺔ ﻣﺴﺘﻮﺣﺎﺓ ﻣﻦ ﻓﻜﺮﺓ ﺗﺒﻴﱠﻦ ﻓﻴﻤﺎ ﺑﻌﺪ ﺃﻬﻧﺎ ﺧﺎﻃﺌﺔ ﲤﺎﻣﺎ‪ .‬ﻟﻘﺪ ﺍﻛﺘﺸﻒ‬ ‫ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ﺍﻟﱪﻳﻄﺎﱐ >‪.J‬ﺷﺎﺩﻭﻳﻚ< ﺍﻟﻨﻴﻮﺗﺮﻭﻥ‪ ،‬ﺍﳌﺮﻛﺐ ﺍﶈﺎﻳﺪ ﰲ ﺍﻟﻨﻮﺍﺓ ﺍﻟﺬﺭﻳﺔ؛ ﻭﺑﻌﺪ ﺫﻟﻚ ﺑﻘﻠﻴﻞ‬ ‫ﲣﻴّﻞ >‪.F‬ﺯﻭﻳﻜﻲ< ﻣﻦ ﻣﻌﻬﺪ ﻛﺎﻟﻴﻔﻮﺭﻧﻴﺎ ﻟﻠﺘﻘﺎﻧﺔ ﻭ>‪.L‬ﻻﻧﺪﺍﻭ< )ﰲ ﻣﻮﺳﻜﻮ( ﺃﻥ ﻭﺟﻮﺩ‬ ‫ﻧﻴﻮﺗﺮﻭﻧﺎﺕ ﰲ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ ﳛﻮ‪‬ﻝ ﻃﺎﻗﺘﻬﺎ ﺇﱃ ﺗﻠﻚ ﺍﻷﻗﺰﺍﻡ‪ ،‬ﻭﻫﻲ ﻓﻜﺮﺓ ﻏﲑ ﺻﺤﻴﺤﺔ‪.‬‬

‫ﻭﻳﺮﻯ ﻫﺬﺍﻥ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺎﻥ ﺃﻧﻪ ﻋﻨﺪﻣﺎ ﺗﺸﺘ ّﺪ ﺍﻟﻘﻮﺓ ﺍﻟﺘﺜﺎﻗﻠﻴﺔ ﺑﺸﻜﻞ ﻛﺎﻑ ﺩﺍﺧﻞ ﺍﻟﻨﺠﻢ‪ ،‬ﺗﺴﺘﻄﻴﻊ‬ ‫ﺍﻹﻟﻜﺘﺮﻭﻧﺎﺕ ﺍﻟﺘﻔﺎﻋﻞ ﻣﻊ ﺍﻟﱪﻭﺗﻮﻧﺎﺕ ﻭﺗﺘﺸﻜﻞ ﻣﻦ ﺟﺮﺍﺀ ﺫﻟﻚ ﺍﻟﻨﻴﻮﺗﺮﻭﻧﺎﺕ‪ .‬ﻭﻋﻨﺪﺋﺬ ﻳﻜﻮﻥ ﺍﻟﻨﺠﻢ‬

‫ﺑﺄﻛﻤﻠﻪ ﻣﺸﻜﱠﻼ ﻣﻦ ﺍﻟﻨﻴﻮﺗﺮﻭﻧﺎﺕ‪ .‬ﻭﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻧﻪ ﰲ ﺍﻟﻮﻗﺖ ﺍﻟﺬﻱ ﻛﺎﻧﺖ ‪‬ﺗﺠ‪‬ﺮﻯ ﻓﻴﻪ ﻫﺬﻩ ﺍﻷﲝﺎﺙ‪،‬‬ ‫ﱂ ﺗﻜﻦ ﺍﻟﻜﻴﻔﻴﺔ ﺍﻟﱵ ﺗﻨﺘﺞ ﺍﻟﻄﺎﻗﺔ ﺩﺍﺧﻞ ﺍﻟﻨﺠﻮﻡ ﺍﻟﻌﺎﺩﻳﺔ ﻣﻌﺮﻭﻓﺔ‪ ،‬ﺑﻞ ﻛﺎﻥ ﺍﻟﺒﻌﺾ ﻳﺘﻮﻗﻊ ﻭﺟﻮﺩ ﳒﻢ‬ ‫ﻣﻜﻮﻥ ﻣﻦ ﻧﻴﻮﺗﺮﻭﻧﺎﺕ ﺩﺍﺧﻞ ﻛﻞ ﳒﻢ ﻋﺎﺩﻱ‪ ،‬ﲤﺎﻣﺎ ﻛﻤﺎ ﻟﻮ ﺍﻓﺘﺮﺿﻨﺎ ﺍﻟﻴﻮﻡ ﺃﻥ ﺛﻘﻮﺑﺎ ﺳﻮﺩﺍﺀ ﻫﻲ‬

‫ﻣﺼﺪﺭ ﻃﺎﻗﺔ ﺍﻟﻜﻮﻳﺰﺭﺍﺕ)‪.quasars (2‬‬


‫ﺃﺨﻁﺎﺀ ﺁﻴﻨﺸﺘﺎﻴﻥ‬ ‫ﻗﺒﻞ ﺍﻟﺴﺘﻴﻨﺎﺕ‪ ،‬ﻛﺎﻥ ﻣﻌﻈﻢ ﺍﻻﺧﺘﺼﺎﺻﻴﲔ ﰲ ﺍﻟﻨﺴﺒﻴﺔ‬ ‫ﺍﻟﻌﺎﻣﺔ ﻳﻌﺘﻘﺪﻭﻥ ﺃﻥ ﺍﳊﻘﻞ ﺍﻟﺘﺜﺎﻗﻠﻲ ﺧﺎﺭﺝ ﺗﺮﻛﻴﺰ ﻛﺮﻭﻱ‬ ‫ﻟﻠﻤﺎﺩﺓ )ﳒﻢ ﺃﻭ ﺫﺭﺓ( ﻗﺮﻳﺐ ﻣﻦ ﺫﻟﻚ ﺍﻟﺬﻱ ﺗﺘﻮﻗﻌﻪ ﻧﻈﺮﻳﺔ‬

‫ﻧﻴﻮﺗﻦ‪ .‬ﻭﺍﻷﻛﺜﺮ ﻣﻦ ﺫﻟﻚ ﺃﻥ ﻫﺬﺍ ﺍﳊﻘﻞ ﻛﺎﻥ ﻗﺮﻳﺒﺎ ﳑﺎ‬

‫ﺗﻨﺒﺄﺕ ﺑﻪ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﻨﻴﻮﺗﻮﻧﻴﺔ ﺇﱃ ﺣﺪ ﺟﻌﻞ ﻣﻦ ﺍﻟﺼﻌﺐ‬ ‫ﺇﳚﺎﺩ ﺍﺧﺘﺒﺎﺭﺍﺕ ﺗﺴﻤﺢ ﲟﻌﺮﻓﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺜﺎﻗﻞ ﻳﺘﻔﻖ‬ ‫ﺃﻛﺜﺮ ﻣﻊ ﻧﻈﺮﻳﺔ ﻧﻴﻮﺗﻦ ﺃﻡ ﻣﻊ ﻧﻈﺮﻳﺔ ﺁﻳﻨﺸﺘﺎﻳﻦ‪.‬‬ ‫ﻭﻋﻠﻰ ﺃﻳﺔ ﺣﺎﻝ ﳝﻜﻨﻨﺎ ﻃﺮﺡ ﺍﻟﺴﺆﺍﻝ ﺍﻟﺘﺎﱄ‪ :‬ﻛﻢ ﻳﺒﻠﻎ‬

‫ﺍﳊﻘﻞ ﺍﻟﺘﺜﺎﻗﻠﻲ ﻟﻜﺮﺓ ﺿﺨﻤﺔ ﺗﺘﻤﺮﻛﺰ ﻣﺎﺩﻬﺗﺎ ﰲ ﻧﻘﻄﺔ‪ ،‬ﻛﻲ‬

‫ﻧﺘﻤﻜﻦ ﻣﻦ ﺩﺭﺍﺳﺔ ﺣﻘﻠﻬﺎ ﺍﻟﺘﺜﺎﻗﻠﻲ ﺩﺭﺍﺳﺔ ﺟﻴﺪﺓ؟ ﻋﻠﻰ‬ ‫ﻣﺴﺎﻓﺔ ﻗﺮﻳﺒﺔ ﺟﺪﺍ ﻣﻦ ﺍﳌﺮﻛﺰ‪ ،‬ﺗﻈﻬﺮ ﻗﻴﻤﺔ ﺣﺪﻳﺔ ﻏﺮﻳﺒﺔ‪ :‬ﺇﻬﻧﺎ‬

‫ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ )ﺍﳌﺴﺎﻭﻱ ﻟـ ‪= 2‬‬

‫‪r‬‬

‫‪ ،GM/c2‬ﺣﻴﺚ ‪ G‬ﺛﺎﺑﺖ ﺍﻟﺘﺜﺎﻗﻞ ﻭ ‪ M‬ﻛﺘﻠﺔ ﺍﻟﻜﺮﺓ ﻭ‬ ‫‪c‬ﺳﺮﻋﺔ ﺍﻟﻀﻮﺀ(‪ .‬ﻭﻗﺪ ﺃﺟﺮﻱ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻟﺒﺤﻮﺙ‬ ‫ﻟﺪﺭﺍﺳﺔ ﺧﻮﺍﺹ ﻫﺬﻩ ﺍﻟﻜﺮﺓ‪ .‬ﻭﻛﺎﻥ ﺍﻟﺮﺃﻱ ﺍﻟﺴﺎﺋﺪ ـ ﺑﲔ‬

‫‪ 1915‬ﻭﺳﻨﻮﺍﺕ ﺍﻟﺴﺘﻴﻨﺎﺕ ـ ﺃﻥ ﻫﻨﺎﻙ ﻓﻌﻼ ﺍﻧﻔﺮﺍﺩﻳﺔ‬

‫‪singularity‬ﻻ ﳝﻜﻦ ـ ﰲ ﺍﻟﻈﺎﻫﺮ ـ ﺍﺧﺘﺮﺍﻗﻬﺎ‪» ،‬ﻛﺮﺓ‬ ‫ﺳﺤﺮﻳﺔ« ﻋﻠﻰ ﺣﺪ ﻗﻮﻝ ﺇﻳﺪﻧﮕﺘﻮﻥ‪.‬‬ ‫ﺇﻥ ﻣﺜﻞ ﻫﺬﺍ ﺍﻟﻜﺎﺋﻦ ﺍﻟﺴﻤﺎﻭﻱ ﻻ ﳝﻜﻦ ﺃﻥ ﻳﺘﺸﻜﻞ ﻷﻧﻪ ﻻ‬ ‫ﺗﻮﺟﺪ ﻣﺎﺩﺓ ﻛﺜﻴﻔﺔ ﺑﺸﻜﻞ ﻛﺎﻑ ﺗﻔﻲ ﻬﺑﺬﺍ ﺍﻟﻐﺮﺽ‪ ،‬ﰒ ﺇﻥ‬

‫ﻧﺼﻒ ﺍﻟﻘﻄﺮ ﺍﳊﺪﻱ ﻟﺸﻮﺍﺭﺗﺸﻴﻠﺪ ﻻ ﳝﻜﻦ ﺍﺧﺘﺮﺍﻗﻪ‪.‬‬ ‫ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﺍﻧﻔﺮﺍﺩﻳﺔ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﻻ ﳝﻜﻦ ﺃﻥ ﺗﻮﺟﺪ ﰲ‬ ‫ﺍﻟﻮﺍﻗﻊ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ ﻭﻇﻞ ﺍﻟﺴﺆﺍﻝ ﺳﺆﺍﻻ ﺃﻛﺎﺩﳝﻴﺎ‪ .‬ﻭﺑﺎﻟﺘﺎﱄ‬

‫ﻛﺎﻥ ﺍﻟﻌﻠﻤﺎﺀ ﻣﺮﺗﺎﺣﻲ ﺍﻟﺒﺎﻝ ﰲ ﻫﺬﺍ ﺍﻟﺸﺄﻥ‪ .‬ﻭﺍﺭﺗﻴﺎﺡ ﺍﻟﺒﺎﻝ‬


‫ﻫﺬﺍ‪ ،‬ﺍﻟﺬﻱ ﻛﺎﻥ ﻳﺪﺍﻓﻊ ﻋﻨﻪ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺑﻌﻨﺎﺩ‪ ،‬ﻛﺎﻥ ﻣﻬﺪﺩﺍ‬ ‫ﻣﻦ ﻗﺒﻞ ﺃﻋﻤﺎﻝ ﺃﻭﭘﻨﻬﺎﳝﺮ ﻭﺗﻼﻣﺬﺗﻪ‪.‬‬ ‫ﻭﻫﻜﺬﺍ ﻓﺈﻥ ﺍﻟﺴﺆﺍﻝ ﻧﻔﺴﻪ ﺍﻟﺬﻱ ﻃﺮﺣﻪ ﺃﻭﭘﻨﻬﺎﳝﺮ ﻭﺳﻨﺎﻳﺪﺭ‬ ‫ﻭﻛﺬﻟﻚ ﺁﻳﻨﺸﺘﺎﻳﻦ‪ ،‬ﻛﺎﻥ ﻟﻪ ـ ﻛﻤﺎ ﻳﺆﻛﺪ ﻛﺎﺗﺐ ﺍﳌﻘﺎﻝ‬ ‫ـ ﺟﻮﺍﺑﺎﻥ ﻣﺘﻌﺎﺭﺿﺎﻥ‪ .‬ﺇﻥ ﻣﺼﺪﺭ ﻫﺬﺍ ﺍﻻﺧﺘﻼﻑ ﻳﻘﻊ ـ‬

‫ﻣﻦ ﺩﻭﻥ ﺷﻚ ـ ﰲ ﻭﺟﻬﺔ ﻧﻈﺮ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺍﻟﺬﻱ ﺍﻋﺘﻘﺪ ـ‬ ‫ﻭﺭﻏﺐ ـ ﰲ ﻋﺪﻡ ﺇﻣﻜﺎﻧﻴﺔ ﺍﺧﺘﺮﺍﻕ ﻧﺼﻒ ﻗﻄﺮ‬ ‫ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ .‬ﻭﻗﺪ ﺗ‪‬ﺮﺟﻢ ﻫﺬﺍ ﺍﻻﻋﺘﻘﺎﺩ ﺇﱃ ﺍﺧﺘﻴﺎﺭ ﳕﻮﺫﺝ‬ ‫ﺧﺎﺹ ﻟﺪﺭﺍﺳﺔ ﺇﻣﻜﺎﻧﻴﺔ ﺍﻬﻧﻴﺎﺭ ﳒﻢ‪ :‬ﻓﺒﻴﻨﻤﺎ ﺍﺧﺘﺎﺭ ﺃﻭﭘﻨﻬﺎﳝﺮ‬ ‫ﻭﺳﻨﺎﻳﺪﺭ ﺗﻨﺎﻇﺮﺍ ﻧﺼﻒ ﻗﻄﺮﻱ )ﻳ‪‬ﻤﻜﹼﻦ ﻣﻦ ﺍﻟﺴﻘﻮﻁ!( ﺭﺍﺡ‬

‫ﺨﻀ‪‬ﻊ ﺍﳉﺴﻴﻤﺎﺕ ﺍﻟﱵ ﺗﺸﻜﻞ ﳕﻮﺫﺟﻪ ﺇﱃ ﺍﺗﺒﺎﻉ‬ ‫ﺁﻳﻨﺸﺘﺎﻳﻦ ‪‬ﻳ ‪‬‬ ‫ﺩﻭﺍﺋﺮ )ﻳ‪‬ﺒﻌﺪﻫﺎ ﻋﻦ ﺍﻟﺴﻘﻮﻁ!(‪ ...‬ﻭﻳﺸﺒﻪ ﺫﻟﻚ ﳏﺎﻭﻟﺔ‬ ‫ﺍﻟﻀﻐﻂ ﻋﻠﻰ ﻧﺎﺑﺾ ﻟﻴﺲ ﺑﺎﻟﺸﻜﻞ ﺍﻟﻌﺎﺩﻱ ﺑﻞ ﺑﺎﻟﻀﻐﻂ‬

‫ﻋﻠﻰ ﻣﺴﺎﺣﺘﻪ ﺍﳉﺎﻧﺒﻴﺔ ﺭﻏﺒﺔ ﰲ ﺗﻘﻠﻴﺺ ﻗﻄﺮﻩ‪ .‬ﻭﺑﺎﺧﺘﺼﺎﺭ‪،‬‬

‫ﻓﻘﺪ ﺃﺩﺧﻞ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻗﻴﺪﺍ ﰲ ﳕﻮﺫﺟﻪ ﻳﺆﺩﻱ ﺑﻪ ﻻ ﳏﺎﻟﺔ‪،‬‬ ‫ﺇﱃ ﻧﺘﻴﺠﺘﻪ‪.‬‬ ‫ﻭﺍﻟﻮﺍﻗﻊ ﺃﻥ ﻫﻨﺎﻙ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻷﻋﻤﺎﻝ‪ ،‬ﺍﻟﱵ ﳛﺘﻤﻞ ﺃﻻ‬

‫ﻳﻜﻮﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻗﺪ ﺍﻃﻠﻊ ﻋﻠﻴﻬﺎ ﻭﺍﻟﱵ ﺃﹸﳒﺰﺕ ﺧﻼﻝ‬

‫ﺍﻟﺜﻼﺛﻴﻨﺎﺕ‪ ،‬ﻭﻫﻲ ﺗﺒﲔ ﺃﻥ ﺣﺪ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﻟﻴﺲ ﺍﻧﻔﺮﺍﺩﻳﺔ‬ ‫)ﺷﺬﻭﺫﺍ(؛ ﻻ ﺳﻴﻤﺎ ﺃﻋﻤﺎﻝ ﺭﻭﺑﺮﺗﺴﻮﻥ ﺍﻟﺬﻱ ﺃﺛﲎ ﻋﻠﻴﻪ‬ ‫ﺁﻳﻨﺸﺘﺎﻳﻦ ﰲ ﻣﻘﺎﻟﻪ‪ .‬ﻟﻜﻦ »ﺃﺳﻮﺃ ﺍﻟﺼﻢ ﻫﻮ ﺫﻟﻚ ﺍﻟﺬﻱ‬ ‫ﻳﺮﻓﺾ ﺍﻻﺳﺘﻤﺎﻉ« ]ﻣﺜﻞ ﻓﺮﻧﺴﻲ‪]...‬‬ ‫ﺇﻥ ﺍﻷﻣﺮ ﻳﺘﻌﻠﻖ ﲟﺴﺄﻟﺔ ﺃﺳﺎﺳﻴﺔ ﺗﺮﺗﺒﻂ ﺑﺎﻧﺴﺠﺎﻡ ﺍﻟﻨﻈﺮﻳﺔ‪.‬‬ ‫ﻟﻘﺪ ﻛﺎﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﻌﺎﺭﺽ ﺩﻭﻣﺎ ﻓﻜﺮﺓ ﻇﻬﻮﺭ ﺍﻧﻔﺮﺍﺩﻳﺔ ﰲ‬ ‫ﺣﻞ ﻓﻴﺰﻳﺎﺋﻲ‪ ،‬ﻷﻧﻪ ﻳﺮﻯ ـ ﻛﻤﺎ ﺟﺎﺀ ﰲ ﺇﺣﺪﻯ ﻣﻘﺎﻻﺗﻪ‬ ‫ﺍﳌﺨﺼﺼﺔ ﳍﺬﻩ ﺍﳌﺴﺄﻟﺔ ـ ﺃﻥ« ﺍﻻﻧﻔﺮﺍﺩﻳﺔ ﺗﺄﰐ ﺑﻘﺪﺭ ﻛﺒﲑ‬


‫ﻣﻦ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺩﺍﺧﻞ ﺍﻟﻨﻈﺮﻳﺔ ﳑﺎ ﳚﻌﻞ ﺑﻌﺾ ﻗﻮﺍﻧﻴﻨﻬﺎ ﻏﲑ‬ ‫ﺻﺤﻴﺤﺔ‪ «.‬ﻓﺈﺫﺍ ﻭﺟﺪﺕ ﺍﻧﻔﺮﺍﺩﻳﺔ ﰲ ﻧﻘﻄﺔ ﻣﺎ‪ ،‬ﻓﺈﻥ‬

‫ﺍﻟﻔﻴﺰﻳﺎﺀ ﰲ ﻫﺬﻩ ﺍﻟﻨﻘﻄﺔ ﻣﻦ ﺍﻟﺰﻣﻜﺎﻥ‬

‫‪space-time‬‬

‫ﺗﺼﺒﺢ ﻏﲑ ﳏﺪﺩﺓ؛ ﻟﻜﻦ‪ ،‬ﻣﺎﺩﺍﻣﺖ ﻓﻴﺰﻳﺎﺀ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ‬

‫ﺗ‪‬ﻨﻤﺬ‪‬ﺝ ﺍﻟﺰﻣﻜﺎﻥ ﺫﺍﺗﻪ‪ ،‬ﻓﺈﻥ ﺍﻻﻧﻔﺮﺍﺩﻳﺔ ﲤﺜﻞ ﺍﻧﻘﻄﺎﻋﺎ ﰲ‬ ‫ﺍﻟﻔﻀﺎﺀ‪.‬‬

‫ﻭﺑﺈﻣﻜﺎﻧﻨﺎ ﺃﻥ ﻧﻠ ّﻢ ﺟﻴﺪﺍ ﺑﺎﻟﺼﻌﻮﺑﺎﺕ ﺍﻟﱵ ﻭﺍﺟﻬﺖ‬ ‫ﺁﻳﻨﺸﺘﺎﻳﻦ ﺇﺫﺍ ﻣﺎ ﺃﺩﺭﻛﻨﺎ ﺃﻥ ﺍﳌﺴﺄﻟﺔ ﺍﻟﻮﺍﺳﻌﺔ ﺍﳌﺘﻌﻠﻘﺔ‬ ‫ﺑﺎﻻﻧﻔﺮﺍﺩﻳﺎﺕ ﰲ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻌﺎﻣﺔ ﱂ ﺗ‪‬ﺤ ﹼﻞ ﺑﻌﺪ‪ ،‬ﺣﱴ ﻭﺇﻥ‬

‫ﹸﻗﺪ‪‬ﻣﺖ ﺍﻹﺟﺎﺑﺔ‪ ،‬ﺧﻼﻝ ﺍﻟﺴﺘﻴﻨﺎﺕ‪ ،‬ﻋﻦ ﺍﻟﺴﺆﺍﻝ ﺍﻟﺪﻗﻴﻖ‬ ‫ﺍﻟﺬﻱ ﺃﺧﻔﻖ ﻓﻴﻪ ﺁﻳﻨﺸﺘﺎﻳﻦ‪.‬‬ ‫ﺇﻻ ﺃﻥ ﺍﻟﺴﺆﺍﻝ ﺣﻮﻝ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﱂ ﻳﻜﻦ ﻣﻄﺮﻭﺣﺎ‬ ‫ﻋﺎﻡ ‪ 1939‬ﻻ ﻣﻦ ﻗﺒﻞ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻭﻻ ﻣﻦ ﻗﺒﻞ ﻏﲑﻩ‪.‬‬ ‫ﻓﻸﺳﺒﺎﺏ ﺗﺘﻌﻠﻖ ﺑﺎﳌﻔﺎﻫﻴﻢ ﺍﻟﺴﺎﺋﺪﺓ ﺣﻴﻨﺬﺍﻙ ﰲ ﳎﺎﻝ ﺍﻟﻨﺴﺒﻴﺔ‬

‫ﺍﻟﻌﺎﻣﺔ ﱂ ﻳﺴﺘﻄﻊ ﺍﻟﻌﻠﻤﺎﺀ ﲣﻴﻞ ﻫﺬﻩ ﺍﻟﻜﺎﺋﻨﺎﺕ ﺍﻟﻐﺮﻳﺒﺔ ﻗﺒﻞ‬

‫ﺍﻟﺴﺘﻴﻨﺎﺕ؛ ﻭﱂ ﲢﻆ ﺑﺎﻟﻘﺒﻮﻝ ﺇﻻ ﺑﻌﺪ ﺫﻟﻚ ﺑﻔﺘﺮﺓ‪ ،‬ﻭﺣﱴ‬ ‫ﺍﻵﻥ ﻣﺎﺯﺍﻝ ﻭﺟﻮﺩﻫﺎ( ﺍﻟﻔﻠﻜﻲ ـ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ( ﻏﲑ ﻭﺍﺿﺢ‬ ‫ﺍﳌﻌﺎﱂ‪ .‬ﻭﺍﻟﻐﺮﻳﺐ ﺃﻥ »ﺍﻷﺟﺴﺎﻡ ﺍﳌﻈﻠﻤﺔ« ـ ﻭﻫﻲ ﻛﺎﺋﻨﺎﺕ‬

‫ﺗﺸﺒﻪ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ ﰲ ﻋﺪﺓ ﺟﻮﺍﻧﺐ ـ ﰎ ﲣﻴﻠﻬﺎ‬ ‫ﺑﺴﻬﻮﻟﺔ ﻣﻨﺬ ﺍﻟﻘﺮﻥ ‪ 18‬ﰲ ﺇﻃﺎﺭ ﻧﻈﺮﻳﺔ ﺍﻟﺘﺜﺎﻗﻞ ﺍﻟﻨﻴﻮﺗﻮﻧﻴﺔ‪.‬‬ ‫<ﺟﺎﻥ ﺁﻳﺰﻧﺸﺘﻴﺪ>‪،‬‬

‫ﳐﺘﱪ ﺍﻟﺘﺜﺎﻗﻞ ﻭﺍﻟﻜﺴﻤﻮﻟﻮﺟﻴﺎ ﺍﻟﻨﺴﺒﻴﲔ‪ ،‬ﺑﺎﺭﻳﺲ‬ ‫‪et cosmologie‬‬ ‫‪relativistes, Paris‬‬

‫‪grvitation‬‬

‫‪Laboratoire‬‬


‫ﻣﺎ ﺍﻟﺬﻱ ﻛﺎﻥ ﻳﻌﺎﺩﻝ ﻛﺘﻠﺔ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻫﺬﻩ ﺍﻟﻨﺠﻮﻡ؟ ﻛﺎﻥ ﻫﺬﺍ ﺍﻟﺴﺆﺍﻝ ﺃﺻﻌﺐ ﻣﻦ‬ ‫ﺍﻟﺴﺆﺍﻝ ﺍﳌﻤﺎﺛﻞ ﺍﳌﺘﻌﻠﻖ ﺑﺎﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ؛ ﻷﻥ ﺍﻟﻨﻴﻮﺗﺮﻭﻧﺎﺕ ﺗﺘﻔﺎﻋﻞ ﻋﻨﺪﻣﺎ ﺗﺸﺘ ّﺪ ﺍﻟﻘﻮﺓ ﺍﻟﱵ ﻻ ﻧﺪﺭﻙ‬

‫ﺇﱃ ﺍﻟﻴﻮﻡ ﻛﻞ ﺧﻮﺍﺻﻬﺎ‪ .‬ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻨﺠﻢ ﺛﻘﻴﻼ ﺑﺸﻜﻞ ﻛﺎﻑ ﻓﺈﻥ ﺍﻟﺘﺜﺎﻗﻞ ﻳﺘﻐﻠﺐ ﰲ ﺁﺧﺮ ﺍﳌﻄﺎﻑ ﻋﻠﻰ‬ ‫ﻫﺬﻩ ﺍﻟﻘﻮﺓ‪ ،‬ﻟﻜﻦ ﺗﻌﻴﲔ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻘﺼﻮﻯ ﺗﻌﻴﻴﻨﺎ ﺩﻗﻴﻘﺎ ﻳﺘﻌﻠﻖ‪ ،‬ﺑﻄﺒﻴﻌﺔ ﺍﳊﺎﻝ‪ ،‬ﺑﺎﻟﻘﻮﺓ ﺍﻟﺸﺪﻳﺪﺓ‪ .‬ﻛﺎﻥ‬ ‫ﺃﻭﭘﻨﻬﺎﳝﺮ ﻭﺗﻠﻤﻴﺬﺍﻩ >‪.R‬ﺳﺮﺑﺮ< ﻭ>‪ .G‬ﭬﻮﻟﻜﻮﻑ< ﻗﺪ ﻧﺸﺮﻭﺍ ﰲ ﻋﺎﻣﻲ ‪ 1938‬ﻭ ‪1939‬‬ ‫ﻣﻘﺎﻟﲔ ﺍﺳﺘﺨﻠﺼﻮﺍ ﻓﻴﻬﻤﺎ ﺃﻥ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻘﺼﻮﻯ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﲤﺎﺛﻞ ﻛﺘﻠﺔ ﺷﺎﻧﺪﺭﺍﺳﺨﺎﺭ ﺍﳌﺘﻌﻠﻘﺔ ﺑﺎﻷﻗﺰﺍﻡ‬

‫ﺍﻟﺒﻴﻀﺎﺀ‪.‬‬

‫ﻭﻋﻨﺪﺋﺬ ﻃﺮﺡ ﺃﻭﭘﻨﻬﺎﳝﺮ ﺍﻟﻘﻀﻴﺔ ﻧﻔﺴﻬﺎ ﺍﻟﱵ ﻃﺮﺣﻬﺎ ﺇﻳﺪﻧﮕﺘﻮﻥ ﲞﺼﻮﺹ ﺍﻷﻗﺰﺍﻡ ﺍﻟﺒﻴﻀﺎﺀ‪ :‬ﻣﺎ‬ ‫ﺍﻟﺬﻱ ﳛﺪﺙ ﻟﻮ ﺍﻬﻧﺎﺭ ﳒﻢ ﻛﺘﻠﺘﻪ ﺗﻔﻮﻕ ﺇﺣﺪﻯ ﻫﺎﺗﲔ ﺍﻟﻜﺘﻠﺘﲔ ﺍﻟﻘﺼﻮﻳﲔ؟ ﻣﻦ ﺍﶈﺘﻤﻞ ﺃﻥ ﻳﻜﻮﻥ‬

‫ﺃﻭﭘﻨﻬﺎﳝﺮ ﻋﻠﻰ ﺩﺭﺍﻳﺔ ﺑﻌﻤﻞ ﺁﻳﻨﺸﺘﺎﻳﻦ؛ ﺇﺫ ﺇﻥ ﺍﳌﺴﺎﻓﺔ ﺍﻟﱵ ﻛﺎﻧﺖ ﺗﻔﺼﻠﻬﻤﺎ ﺗﻘﺎﺭﺏ ‪5000‬‬ ‫ﻛﻴﻠﻮﻣﺘﺮ‪ .‬ﺇﻻ ﺃﻥ ﻫﺬﺍ ﺍﻟﻌﻤﻞ ﻻ ﳚﻴﺐ ﻋﻦ ﺳﺆﺍﻝ ﺃﻭﭘﻨﻬﺎﳝﺮ ﺍﻟﺬﻱ ﱂ ﻳﻜﻦ ﻳﺮﻏﺐ ﰲ ﺇﻧﺸﺎﺀ ﳒﻢ ﻣﺴﺘﻘﺮ‬ ‫ﻧﺼﻒ ﻗﻄﺮﻩ ﻳﺴﺎﻭﻱ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ ،‬ﺑﻞ ﻛﺎﻥ ﻳﺮﻳﺪ ﻣﺸﺎﻫﺪﺓ ﻣﺎ ﺳﻴﺤﺪﺙ ﻟﻮ ﺗﺮﻙ ﺍﻟﻨﺠﻢ‬

‫ﻳﻨﻬﺎﺭ ﺑﻌﺪ ﲡﺎﻭﺯﻩ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ ،‬ﻓﺎﻗﺘﺮﺡ ﻋﻠﻰ ﺳﻨﺎﻳﺪﺭ ﺩﺭﺍﺳﺔ ﻫﺬﻩ ﺍﳌﺴﺄﻟﺔ‪.‬‬

‫ﻭﻗﺪ ﺃﻭﺻﻰ ﺃﻭﭘﻨﻬﺎﳝﺮ ﺑﺒﻌﺾ ﺍﻟﻔﺮﺿﻴﺎﺕ ﺍﻟﱵ ﻣﻦ ﺷﺄﻬﻧﺎ ﺗﺒﺴﻴﻂ ﺍﻟﺪﺭﺍﺳﺔ‪ :‬ﻓﻘﺪ ﺍﻗﺘﺮﺡ ﺇﳘﺎﻝ ﺿﻐﻂ‬ ‫ﺍﻟﻐﺎﺯ ﺍﳌﻨﺤﻞ ﺃﻭ ﺍﻟﺪﻭﺭﺍﻥ ﺍﶈﺘﻤﻞ ﻟﻠﻨﺠﻢ‪ .‬ﻭﻛﺎﻥ ﺣﺪﺳﻪ ﻳﻮﺣﻲ ﻟﻪ ﺑﺄﻥ ﻫﺬﻩ ﺍﻟﻔﺮﺿﻴﺎﺕ ﻻ ﺗﻐﻴّﺮ ﺍﻟﻨﺘﻴﺠﺔ‬

‫ﺗﻐﻴﲑﺍ ﺃﺳﺎﺳﻴﺎ‪ :‬ﻭﺑﻌﺪ ﺳﻨﻮﺍﺕ ﻋﺪﻳﺪﺓ ﻗﺎﻡ ﻓﻴﺰﻳﺎﺋﻴﻮﻥ ﻣﻦ ﺟﻴﻞ ﺁﺧﺮ ـ ﺟﻴﻞ ﺍﳊﻮﺍﺳﻴﺐ ﺍﻟﺴﺮﻳﻌﺔ ـ‬ ‫ﺑﺈﺛﺒﺎﺕ ﺃﻥ ﺃﻭﭘﻨﻬﺎﳝﺮ ﻛﺎﻥ ﻣﺼﻴﺒﺎ‪ .‬ﻭﺍﻛﺘﺸﻒ ﺳﻨﺎﻳﺪﺭ ﺃﻥ ﻣﺸﺎﻫﺪﺓ ﳒﻢ ﺧﻼﻝ ﺍﻬﻧﻴﺎﺭﻩ ﺗﺮﺗﺒﻂ ﲟﻮﻗﻊ‬ ‫ﺍﳌﺸﺎﻫﺪ ﺍﺭﺗﺒﺎﻃﺎ ﻣﺪﻫﺸﺎ‪.‬‬

‫ﻭﺠﻬﺘﺎ ﻨﻅﺭ‬ ‫ﻟﻨﺒﺪﺃ ﲝﺎﻟﺔ ﻣﺸﺎﻫ ٍﺪ ﻏﲑ ﻣﺘﺤﺮﻙ ﻳﺒﻌﺪ ﻣﺴﺎﻓﺔ ﻣﻌﻘﻮﻟﺔ ﻋﻦ ﺍﻟﻨﺠﻢ‪ .‬ﻭﻟﻨﻔﺘﺮﺽ ﺃﻳﻀﺎ ﺃﻥ ﻣﺸﺎﻫﺪﺍ‬ ‫ﺁﺧﺮ ﻣﻮﺟﻮﺩ ﻋﻠﻰ ﺳﻄﺢ ﺍﻟﻨﺠﻢ ﳌﺮﺍﻓﻘﺔ ﺍﻬﻧﻴﺎﺭ ﻫﺬﺍ ﺍﻟﻨﺠﻢ ﻭﺇﺭﺳﺎﻝ ﺇﺷﺎﺭﺍﺕ ﺿﻮﺋﻴﺔ ﺇﱃ ﺯﻣﻴﻠﻪ ﺍﻟﺜﺎﺑﺖ‪.‬‬ ‫ﺖ ﺇﺷﺎﺭﺍﺕ ﺯﻣﻴﻠﻪ ﺍﳌﺘﺤﺮﻙ ﺗﻨﺴﺤﺐ ﺗﺪﺭﳚﻴﺎ ﳓﻮ‬ ‫ﻓﺒﻘﺪﺭ ﺍﺯﺩﻳﺎﺩ ﺗﻘﻠﺺ ﺍﻟﻨﺠﻢ ﻳﻼ ‪‬ﺣﻆﹸ ﺍﻟﺮﺍﺻﺪ ﺍﻟﺜﺎﺑ ‪‬‬

‫ﺍﻟﻄﺮﻑ ﺍﻷﲪﺮ ﻟﻠﻄﻴﻒ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﲟﻔﻌﻮﻝ دوﭘﻠﺮ‪) Doppler‬ﺍﻟﺬﻱ ﻳﻌﻤﻞ ﻋﻠﻰ ﺯﻳﺎﺩﺓ ﺣﺪﺓ‬ ‫ﺻﻔﺎﺭﺓ ﺳﻴﺎﺭﺓ ﺍﻹﺳﻌﺎﻑ ﻋﻨﺪﻣﺎ ﺗﻘﺘﺮﺏ ﺍﻟﺴﻴﺎﺭﺓ ﻣﻘﺎﺭﻧﺔ ﲝﺪﻬﺗﺎ ﻋﻨﺪ ﺍﺑﺘﻌﺎﺩﻫﺎ‪ (.‬ﻭﳌﺎ ﻛﺎﻥ ﺗﺮﺩﺩ )ﺗﻮﺍﺗﺮ(‬


‫‪ frequency‬ﺇﺷﺎﺭﺓ ﻳﺸﺒﻪ ﻭﺗﲑﺓ ﺩﻗﺎﺕ ﺍﻟﺴﺎﻋﺔ‪ ،‬ﻓﺈﻥ ﺍﳌﺸﺎﻫﺪ ﺍﻟﺜﺎﺑﺖ ﺳﲑﻯ ﺳﺎﻋﺔ ﺍﳌﺸﺎﻫﺪ ﺍﳌﺘﺤﺮﻙ‬ ‫ﺗﺘﺒﺎﻃﺄ ﺗﺪﺭﳚﻴﺎ‪.‬‬ ‫ﻭﻋﻨﺪﻣﺎ ﻳﺒﻠﻎ ﻧﺼﻒ ﻗﻄﺮ ﺍﻟﻨﺠﻢ ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ ﺍﳋﺎﺹ ﺑﻪ‪ ،‬ﺗﻈﻬﺮ ﺍﻟﺴﺎﻋﺔ ﻭﻛﺄﻬﻧﺎ‬ ‫ﺗﻮﻗﻔﺖ ﻬﻧﺎﺋﻴﺎ‪ .‬ﻭﻋﻨﺪﺋﺬ ﺳﻴﺆﻛﺪ ﺍﳌﺸﺎﻫﺪ ﺍﻟﺜﺎﺑﺖ ﺃﻥ ﺍﻟﻨﺠﻢ ﺃﻣﻀﻰ ﻭﻗﺘﺎ ﻻﻣﺘﻨﺎﻫﻴﺎ ﰲ ﺍﻟﺘﻘﻠﺺ ﺣﱴ ﺑﻠﻎ‬ ‫ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ .‬ﻭﻣﻦ ﰒ ﻻ ﻳﺴﺘﻄﻴﻊ ﻣﻌﺮﻓﺔ ﻣﺎ ﺳﻴﺤﺪﺙ ﺑﻌﺪﺋﺬ ﻷﻧﻪ ﻟﻦ ﻳﻜﻮﻥ ﲦﺔ ﻭﺟﻮﺩ‬

‫ﺑﻌﺪﺋﺬ‪ .‬ﻭﻣﻦ ﻭﺟﻬﺔ ﻧﻈﺮ ﻫﺬﺍ ﺍﳌﺸﺎﻫﺪ‪ ،‬ﻓﺈﻥ ﺍﻻﻬﻧﻴﺎﺭ ﻳﺘﻮﻗﻒ ﻋﻨﺪﻣﺎ ﻳﺘﺴﺎﻭﻯ ﻧﺼﻒ ﻗﻄﺮ ﺍﻟﻨﺠﻢ ﻣﻊ‬ ‫ﻧﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ :‬ﻳﻈﻞ ﺍﻟﻨﺠﻢ »ﳎﻤﺪﺍ« ﰲ ﺣﺎﻟﺔ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪.‬‬ ‫ﻭﻣﻦ ﺍﳌﻌﻠﻮﻡ ﺃﻧﻪ ﻗﺒﻞ ﺃﻥ ﻳﺒﺘﺪﻉ ﺍﻟﻔﻴﺰﻳﺎﺋﻲ >‪.J‬ﻭﻳﻠﺮ< ﺍﺳﻢ »ﺛﻘﺐ ﺃﺳﻮﺩ« ﺃﺛﻨﺎﺀ ﳏﺎﺿﺮﺓ ﺃﻟﻘﺎﻫﺎ‬

‫ﰲ ﺍﻟﺸﻬﺮ ‪ 1967/12‬ﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻟﻜﺎﺋﻨﺎﺕ ﺗﺪﻋﻰ »ﳒﻮﻣﺎ ﳎﻤﺪﺓ«‪ .‬ﻭﻛﻤﺎ ﻻﺣﻆ ﺃﻭﭘﻨﻬﺎﳝﺮ‬ ‫ﻭﺳﻨﺎﻳﺪﺭ ﰲ ﻣﻘﺎﳍﻤﺎ‪ ،‬ﻓﺈﻥ ﺍﻟﻨﺠﻢ ﺍﻟﺬﻱ ﻳﻨﻬﺎﺭ »ﳝﻴﻞ ﺇﱃ ﺍﻟﺘﻮﻗﻒ ﻋﻦ ﺃﻱ ﺍﺗﺼﺎﻝ ﻣﻊ ﻣﺸﺎﻫﺪ ﺑﻌﻴﺪ ﻋﻨﻪ؛‬ ‫ﻭﻻ ﻳﺒﻘﻰ ﺳﻮﻯ ﺣﻘﻠﻪ ﺍﻟﺘﺜﻘﻠﻲ«‪ .‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ﺛﻘﺒﺎ ﺃﺳﻮﺩ ﻗﺪ ﺗﻜﻮّﻥ‪.‬‬ ‫ﻭﻣﻦ ﺟﺎﻧﺐ ﺁﺧﺮ‪ ،‬ﻣﺎﺫﺍ ﺳﲑﻯ ﺍﳌﺸﺎﻫﺪ ﺍﳌﺘﺤﺮﻙ ﻋﻠﻰ ﺳﻄﺢ ﺍﻟﻨﺠﻢ ﺧﻼﻝ ﻋﻤﻠﻴﺔ ﺍﻟﺘﻘﻠﺺ؟ ﺇﻧﻪ ﻻ‬ ‫ﻳﺪﺭﻙ ﻣﻐﺰﻯ ﺧﺎﺻﺎ ﻟﻨﺼﻒ ﻗﻄﺮ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‪ ،‬ﺇﺫ ﺇﻧﻪ ﳜﺘﺮﻗﻪ ﰒ ﻳﺒﻠﻎ ﺍﳌﺮﻛﺰ‪ ،‬ﰲ ﻇﺮﻑ ﻋﺪﺓ ﺳﺎﻋﺎﺕ‬ ‫ﺑﺘﻮﻗﻴﺖ ﺳﺎﻋﺘﻪ ﺍﳋﺎﺻﺔ‪ .‬ﺇﻻ ﺃﻧﻪ ﺳﻴﺨﻀﻊ‪ ،‬ﺑﻌﺪ ﻣﺪﺓ ﻣﻦ ﺯﻣﻦ ﺍﻻﺧﺘﺮﺍﻕ‪ ،‬ﺇﱃ ﻗﻮﻯ ﻣﺪ ﻣ‪‬ﻌﺘﱪَﺓ ﲤﺰﻗﻪ‬ ‫ﺇﺭﺑﺎ ﺇﺭﺑﺎ‪.‬‬

‫ﻛﺎﻥ ﺍﻟﻌﺎﻟﹶﻢ ﺳﻨﺔ ‪ ،1939‬ﻋﻠﻰ ﻭﺷﻚ ﺍﳋﻀﻮﻉ‪ ،‬ﻫﻮ ﺍﻵﺧﺮ‪ ،‬ﺇﱃ ﻋﻤﻠﻴﺔ ﲤﺰﻗﻪ ﺇﺭﺑﺎ ﺇﺭﺑﺎ‪ .‬ﻭﻛﺎﻥ‬

‫ﺃﻭﭘﻨﻬﺎﳝﺮ ﻗﺪ ﺫﻫﺐ ﻟﻴﺼﻨﻊ ﺍﻟﺴﻼﺡ ﺍﻷﻛﺜﺮ ﺩﻣﺎﺭﺍ ﻭﺍﻟﺬﻱ ﱂ ﻳﺴﺒﻖ ﻟﻺﻧﺴﺎﻥ ﺃﻥ ﺻﻤﻢ ﻣﺜﻴﻠﻪ؛ ﻭﱂ ﻳﻌﺪ‬

‫ﻗﻂ ﻟﻠﻌﻤﻞ ﰲ ﳎﺎﻝ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪ .‬ﻭﺣﺴﺐ ﻋﻠﻤﻲ ﻓﺈﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﺍﺗّﺒﻊ ﺍﻟﻄﺮﻳﻖ ﻧﻔﺴﻪ‪ .‬ﻭﺑﻌﺪ‬ ‫ﺣﻠﻮﻝ ﺍﻟﺴﻼﻡ‪ ،‬ﺃﺻﺒﺢ ﺃﻭﭘﻨﻬﺎﳝﺮ ﻋﺎﻡ ‪ 1947‬ﻣﺪﻳﺮﺍ ﳌﻌﻬﺪ ﭘﺮﻳﻨﺴﺘﻮﻥ ﻟﻠﺪﺭﺍﺳﺎﺕ ﺍﳌﺘﻘﺪﻣﺔ ﺣﻴﺚ‬ ‫ﻛﺎﻥ ﺁﻳﻨﺸﺘﺎﻳﻦ ﻳﺸﻐﻞ ﻫﻨﺎﻙ ﻣﻨﺼﺐ ﺃﺳﺘﺎﺫ‪ .‬ﻭﻛﺎﻥ ﺍﻟﺮﺟﻼﻥ ﻳﺘﻨﺎﻗﺸﺎﻥ ﻣﻦ ﺣﲔ ﻵﺧﺮ‪ ،‬ﻟﻜﻦ ﻻ ﺷﻲﺀ‬

‫ﻳﻨﺒﺌﻨﺎ ﺑﺄﻬﻧﻤﺎ ﲢﺪﺛﺎ ﻋﻦ ﺍﻟﺜﻘﻮﺏ ﺍﻟﺴﻮﺩﺍﺀ‪ .‬ﻭﱂ ﻳﻨﻄﻠﻖ ﺍﻟﺘﻘﺪﻡ ﰲ ﻫﺬﺍ ﺍﺠﻤﻟﺎﻝ ﳎﺪﺩﺍ ﺇﻻ ﺧﻼﻝ ﺍﻟﺴﺘﻴﻨﺎﺕ‬ ‫ﺣﲔ ﺃﺣﻴﺎ ﺍﻛﺘﺸﺎﻑ ﺍﻟﻜﻮﻳﺰﺭﺍﺕ ﻭﺍﻟَﺒﻠﹾﺴﺮﺍﺕ‬

‫) ‪(3‬‬

‫)ﺍﻟﻨﺠﻮﻡ ﺍﻟﻨﺒﺎﺿﺔ( ‪ pulsars‬ﻭﺍﳌﺼﺎﺩﺭ ﺍﳌﺘﺮﺍﺻﺔ‬

‫ﻟﻸﺷﻌﺔ ﺍﻟﺴﻴﻨﻴﺔ‪ ،‬ﺍﻟﺘﻔﻜﲑ ﰲ ﺍﳌﺼﲑ ﺍﻟﻐﺎﻣﺾ ﻟﻠﻨﺠﻮﻡ‪.‬‬


‫ﺍﳌﺆﻟﻒ‬ Jeremy Bernstein ‫ ﻭﻛﺎﻥ ﻣﻦ‬.‫ ﻭﺃﺳﺘﺎﺫ ﻣﻨﺘﺪﺏ ﰲ ﺟﺎﻣﻌﺔ ﺭﻭﻛﻔﻠﺮ ﻭﻧﺎﺋﺐ ﺭﺋﻴﺲ ﳎﻠﺲ ﺃﻣﻨﺎﺀ ﺃﺳﭙﻦ ﺳﻨﺘﺮ ﻟﻠﻔﻴﺰﻳﺎﺀ‬،‫ﺃﺳﺘﺎﺫ ﻣﺘﻔﺮﻍ ﰲ ﻣﻌﻬﺪ ﺳﺘﻴﻔﱰ ﺍﻟﺘﻘﺎﱐ‬ :‫ ﻭﻫﺬﺍ ﺍﳌﻘﺎﻝ ﺍﻗﺘﺒﺎﺱ ﳏﻮّﺭ ﻣﻦ ﳎﻤﻮﻋﺔ ﻣﻘﺎﻻﺕ‬.‫ﻣﻨﹺﺢ ﻋﺪﺓ ﺟﻮﺍﺋﺰ ﻟﻜﺘﺎﺑﺎﺗﻪ ﺍﻟﻌﻠﻤﻴﺔ‬ ‫ ﻭﻗﺪ‬،«‫ﺍﻟﻜﺘﺎﺏ ﺍﳌﻮﻇﻔﲔ ﻟﺪﻯ ﺍﺠﻤﻟﻠﺔ »ﻧﻴﻮﻳﻮﺭﻛﺮ‬

‫ ﻣﻦ ﻗﺒﻞ ﻛﻮﭘﺮﻧﻴﻜﻮﺱ )ﺳﱪﻧﮕﺮ‬1996 ‫ ﺍﻟﱵ ﺻﺪﺭﺕ ﻋﺎﻡ‬Theory for Everything A ‫ﻧﻈﺮﻳﺔ ﻟﻜﻞ ﺷﻲﺀ‬ ‫ ﺻﻔﺤﺔ‬، (1996) 1 ‫ ﺍﻟﻌﺪﺩ‬،«‫ »ﻣﺎﺫﺍ ﻗﺎﻝ ﻫﻴﺰﻧﱪﮒ ﻟﺒﻮﺭ ﻋﻦ ﺍﻟﻘﻨﺒﻠﺔ؟‬:‫ ﻭﻗﺪ ﻧﺸﺮ ﻟﻪ ﰲ »ﳎﻠﺔ ﺍﻟﻌﻠﻮﻡ« ﻣﻘﺎﻝ ﺑﻌﻨﻮﺍﻥ‬.(‫ﭬﲑﻻﮒ‬

.22

‫ﻣﺮاﺟﻊ ﻟﻼﺳﺘﺰادة‬ SUBTLE IS THE LORD: THE SCIENCE AND THE LIFE OF ALBERT EINSTEIN. Abraham Pais. Oxford University Press, 1982. DARK STARS: THE EVOLUTION OF AN IDEA. Werner Israel in 300 Years of Gravitation. Edited by S. W. Hawking and W. Israel. Cambridge University Press, 1987. CHANDRA: A BIOGRAPHY OF S. CHANDRASEKHAR. Kameshwar C. Wali. University of Chicago Press, 1991. BLACK HOLES. J.-P. Luminet et al. Cambridge University Press, 1992. BLACK HOLES AND TIME WARPS. Kip Thorne. W. W. Norton, 1994. A. PAIS, Albert Einetein: la vie et l'oevure, InterEditions. 1993. K. WALI, Chandra: A Biography of S. Chandrasekhar, University of Chicago Press, 1991. J.-P. LUMINET, Les trous noirs, Seuil, 1992. J. EISENSTAEDT, Trajectoires et impasses de la solution de Schwarzschild, in Archive for History of Exact Sciences, vol. 37, p. 275; 1987. J. EISENSTAEDT, La prehistoire des trous noirs, Pour la Science, fevrier 1990. K. SUGIMOTO, Albert Einstein, biographie illustree, Belin, 1990. J. SCHWINGER, L'heritage d'Einstein, Belin, 1988. Scientific American, June 1996

Schwarzschild ‫ ﻭﻳﻄﻠﻖ ﻋﻠﻴﻬﺎ ﺃﻳﻀﺎ ﺍﺳﻢ ﺃﻓﻖ ﺷﻮﺍﺭﺗﺸﻴﻠﺪ‬،radius Schwarzschild (1) (‫ )ﺍﻟﺘﺤﺮﻳﺮ‬.horizon ،stellar radiosource quasi ‫ ﻣﻦ ﺣﺮﻭﻑ ﺍﻟﻌﺒﺎﺭﺓ‬1963 ‫ ﻋﺎﻡ‬quasar ‫( ﲤﺖ ﺻﻴﺎﻏﺔ ﺍﳌﺼﻄﻠﺢ ﻛﻮﻳَﺰﺭ‬2) ‫ ﻭﻗﺪ ﺍﻛﺘﺸﻒ ﺍﻟﻔﻠﻜﻴﻮﻥ ﺍﻟﻴﻮﻡ ﺃﻛﺜﺮ ﻣﻦ ﺃﻟﻒ ﻣﻦ‬.‫ﻭﺍﻟﻜﻮﻳﺰﺭﺍﺕ ﳎﺮﺍﺕ ﻣﺸﻌﺔ ﺑﻌﻴﺪﺓ ﺟﺪﺍ ﺗﻈﻬﺮ ﻋﱪ ﺍﳌﻘﺮﺍﺏ ﺍﻟﺒﺼﺮﻱ ﰲ ﺷﻜﻞ ﻧﻘﺎﻁ‬

(‫ )ﺍﻟﺘﺤﺮﻳﺮ‬.‫ﻫﺬﻩ ﺍﺠﻤﻟﺮﺍﺕ‬

‫ ﻭﺍﻟﻨﻘﺎﻁ ﺍﻟﺴﺎﺧﻨﺔ ﺍﳌﻮﺟﻮﺩﺓ ﰲ ﺍﻟﺒَﻠﺴﺎﺭ ﺗﺸﻊ ﺑﺄﻣﻮﺍﺝ ﻧﻠﺘﻘﻄﻬﺎ ﻋﻠﻰ‬.‫ ﻫﻮ ﳒﻢ ﻣﻦ ﻧﻴﻮﺗﺮﻭﻧﺎﺕ ﰲ ﺣﺎﻟﺔ ﺩﻭﺭﺍﻥ‬pulsar ‫( ﺍﻟﺒﻠﹾﺴﺎﺭ‬3)

(‫ )ﺍﻟﺘﺤﺮﻳﺮ‬.‫ ﻭﻣﻨﻬﺎ ﺟﺎﺀﺕ ﺍﻟﺘﺴﻤﻴﺔ‬،pulsation «‫ﺷﻜﻞ »ﻧﺒﻀﺎﺕ‬



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.