电磁场有限元计算 – 验证你的创意,优化你的设计
© 2015 ANSYS, Inc.
1
Content 1.Magnetic gears 2.Dual-fed flux-modulated motor 3. Dual-permanent-magnet-excited Synchronous Motor and Triplepermanent-magnet-excited Synchronous Motor 4.Demo show
Š 2015 ANSYS, Inc.
2
1. Magnetic gears (MGs) 1.1 Radial-flux MG 1.2 Transverse-flux MG 1.3 Axial-flux MG 1.4 Hybrid-flux MG 1.5 Intersecting axes MG 1.6 Triple-permanent-magnet-excited MG
Š 2015 ANSYS, Inc.
3
1.1 Radial-flux MGs Conventional type
Torque on low-speed rotor [Nm]
1600
Spoke type 1
Spoke type 2 Spoke type 3
800 0
-800
0
4
8
12
16
-1600 The position of the low-speed rotor [degree]
PM types Surface mounted Spoke type 1 Spoke type 2
Spoke type 3
Š 2015 ANSYS, Inc.
Maximum torque [Nm] 915.4 785.4 1543.0
Torque density [kNm/m3] 117.7 101.5 198.5
1246.7
160.3
4
Torque on low-speed rotor [Nm]
1.2 Transverse-flux MG
Permanent magnets
300 200 100 0
Torque on low-speed rotor [Nm]
500 400 300 200 100 0
Torque density [kNm/m3]
Silicon steel
443.8
57.1
SMC
534.0
68.7
Torque on low-speed rotor [Nm]
0 20 40 60 80 The axial length of high-speed rotor [mm]
Maximum stall torque [Nm]
Š 2015 ANSYS, Inc.
400
0 4 8 12 16 20 24 The thickness of ferromagnetic segments [mm]
Ferromagnetic segments
Materials
500
500 400 300 200 100 0 0 0.2 0.4 0.6 0.8 1 The ratio of slot opening to tooth pitch 5
Torque on low-speed rotor [Nm]
1.3 Axial-flux MGs
axial magnetized azimuthally magnetized
800 600 400 200 0
0 0.2 0.4 0.6 0.8 1 The ratio of slot opening to tooth pitch
Maximum torque [Nm]
Torque density [kNm/m3]
Axial magnetized PMs
360.9
92.8
Azimuthally magnetized PMs
445.7
114.6
Magnetization direction of PMs
Š 2015 ANSYS, Inc.
6
1.4 Hybrid-flux MGs Permanent magnets
Iron segments
Permanent magnets
Torque [kNm]
3 2
Modulation segment
Permanent magnet
1 Stator
0 -1
Transverse-flux Axial-flux Hybrid-flux
-2 -3 0
100 200 Rotor position angle [deg] Š 2015 ANSYS, Inc.
Floating shaft
Rotor
Magnetic gear High speed
300 Rotor
Low speed
Shaft connecting to mechanical load
7
1.5 Intersecting axes MG Bearing
28 Iron segments To load
Rotor 1 with 18 magnet pole-pairs
Rotor 2 with 10 magnet pole-pairs
To prime mover L2 Hs Rc
Rs
Ri Hpm
L1
Š 2015 ANSYS, Inc.
8
1.6 Triple-permanent-magnet-excited MG MGII
MGIV
Outer rotor PMs on outer rotor
Outer rotor PMs on outer rotor
Stationary ferromagnetic segments
Stationary ferromagnetic segments
PMs on ferromagnetic segments
PMs on ferromagnetic segments
b1
b2
b3
PM
PM
b4
PMs on the inner rotor
Inner rotor
Stationary ferromagnetic segments PMs on ferromagnetic segments
PMs on the inner rotor
Inner rotor
Š 2015 ANSYS, Inc.
Inner rotor
300
Outer rotor PMs on outer rotor
PM
Fe
Torque of low-speed rotor [Nm] .
MGIII
h1
PMs on the inner rotor
MG IV with optimization
250
MG IV MG III
200 150
MG II
100
MG I
50
Conventional MG
0 0
60
120 Time [ms]
180 9
2. Dual-fed flux-modulated motor
Š 2015 ANSYS, Inc.
10
2.1 The operating principle of electric machines
Š 2015 ANSYS, Inc.
11
2.2 The operating principle of magnetic gear
Š 2015 ANSYS, Inc.
12
2.3 The operating principle of dual-fed fluxmodulated motor
Š 2015 ANSYS, Inc.
13
2.4 The main advantage of dual-fed fluxmodulated motor Simple brushless structure: the outer stator has one set of windings, the inner stator has one set of windings, the rotor has ferromagnetic segments. Wide rotor speed range:
nr 60 f outer finner pr where fouter : the frequency of currents in the outer stator; finner : the frequency of currents in the inner stator; pr
© 2015 ANSYS, Inc.
: the number of pole pairs of the rotor.
14
2.5 Performance analysis of the motor using FEM The numerical method of finite element method (FEM) presents the advantage of taking into account the real geometry of the motor as well as the magnetic saturation of the iron parts, high-order harmonics. Electric circuit
FEM of magnetic field
Performance
Mechanical motion Š 2015 ANSYS, Inc.
15
2.6 Numerical modeling of dual-fed fluxmodulated motor T11 T11 k 1 S 0 S S Q A A 13 T 12 11 t Blb t k A T k 1 0 0 T S12 A tS 22 S12 i k T k 1 ad S A 0 k 13 tS 33 T S 0 T B 13 il Blb t t B B lb lb lb Qe 0 R e lp 0 0 lp
© 2015 ANSYS, Inc.
16
2.7 Performance analysis of the motor using FEM
Š 2015 ANSYS, Inc.
17
2.8 Optimetrics bt1 r1
bt2
r2
r5
iron_ang
h0
r3
r6
r4
h3
b11
b21
b31
b32
b12
b22
h11
h12 h21
Š 2015 ANSYS, Inc.
hs1
hs2
h22 18
2.9 Comparison of pole-pair / slot combinations To compare the performance of different poles-slots combinations, we keep the power load as constant value, and the main geometry size of the slots equal or in equal ratio when the slots number is changed. ZPN1I1=constant1 ZcN2I2=constatn2 where ZP and Zc respectively refer to the slots number of the power stator and the control stator; N1 and N2 are the conductor number in each slots; separately, I1 and I2 are the effective phase current value while the motor model is excited by current source. © 2015 ANSYS, Inc.
19
Both single-layer windings design PP
1
2
3
4
5
6
7
8
9
10
PC 10
9
8
7
6
5
4
3
2
1
Zp
24
30
36
Zc
24
30
36
In the power stator winding: ZPN1I1=8856; In the control stator winding: ZcN2I2=3225.6.
© 2015 ANSYS, Inc.
20
Simulation results of both single-layer windings PP-PC
24
ZC
30
36
Š
1-10 2-9 3-8 4-7 5-6 6-5 7-4 8-3 9-2 10-1 1-10 2-9 3-8 4-7 5-6 6-5 7-4 8-3 9-2 10-1 1-10 2-9 3-8 4-7 5-6 6-5 7-4 8-3 9-2 2015 ANSYS, Inc. 10-1
ZP 24 12.653996/2.305364 N.A N.A 31.055468/1.891703 N.A N.A 34.521078/2.787207 N.A N.A 25.085346/11.540016 14.567458/2.265993 N.A N.A 28.644088/2.896934 N.A N.A 31.574178/6.278873 N.A N.A 21.205712/5.632234 17.058354/4.491309 N.A N.A 31.409164/6.324496 34.33171/2.079869 N.A 32.004301/6.720948 27.134594/8.108634 N.A 17.772049/7.447104
30 10.868122/1.476392 N.A N.A 21.678703/3.029008 N.A N.A 36.289055/5.684175 N.A N.A 30.506726/3.399484 12.554278/1.280318 N.A N.A 31.744494/1.855499 N.A N.A 34.711821/3.29783 N.A N.A 25.819503/1.778963 15.497451/3.140545 N.A N.A 23.835673/11.286876 41.710879/1.477239 N.A 37.057262/5.186661 36.539244/6.089241 N.A 22.657312/1.721916
36 9.681833/1.463719 N.A 23.831564/6.822740 27.741483/5.586738 N.A 34.355542/2.535554 29.656606/7.785960 N.A N.A 31.062111/6.020188 N.A 10.93759/1.087308 N.A 30.292615/5.627261 31.598125/4.402131 N.A 23.797408/12.702548 N.A N.A 26.713164/2.577073 13.838112/2.804149 N.A 35.889192/1.379556 34.912905/10.293869 36.779825/1.776102 37.652763/1.533067 28.508769/9.590789 N.A N.A 21 22.78109/2.542968
One double-layer + one single-layer design PP
2
3
4
5
6
7
8
9 10
PC 10 9
8
7
6
5
4
3
2
Zp
Zc
1
12
15
18
18
21
24
24
1
27
30
36
In the power stator winding:
ZPN1I1=27000; In the control stator winding: ZcN2I2=18000.
© 2015 ANSYS, Inc.
22
Simulation results of one concentrated double-layer + one single-layer P -Z
3
6
1
0.866
2
0.866 0.866
9
12
15
18
21
24
27
ZC
30
18 PP-PC 0.866
4
0.866 0.945 0.866
15
5
0.945 0.933 0.866
6
0.866
0.866 0.933 0.951 0.866 0.951
ZP
21
0.902 0.945
9 10
0.866
52.30/ 11.0 42.43/ 8.33
18
24 8
7-4 60.62/ 4.85
12
3
7
8-3
24
0.945
0.953
0.933
0.866
27
0.877 0.866
30
Table 1. The winding factor of different Z/P combinations in double-
layer concentrated winding type. 1. P means the pole-pair number and the Z means the slots number;
77.11/ 4.36
9-2
36 10-1
4-7
5-6
6-5
8-3
23.87/ 74.24/ 48.89/ 7.20 6.22 14.37 59.78/ 72.03/ 12.640 6.10 54.66/ 46.99/ 8.76 8.95
60.57/ 28.1
76.11/ 6.36
59.72/ 61.13/ 8.76 5.83 58.90/ 7.52
Table 2. The Average Torque and Standard-deviation value of different winding distri butions in concentrated double-layer type in the power stator and single layer in the control stator.
2. The factor values in yellow shadow stand for the corresponding Z/P combination have unbalance radial magnetic force issue, which should be avoided adopting. Š 2015 ANSYS, Inc.
23
2.10 Parameters optimization start Set the initial/increment values and the limitations of the optimization variables Within the limitations?
No
Adjust increments
Yes Solve the magnetic field using FEM
Termination criteria reached?
No
Yes Optimal solution end
Š 2015 ANSYS, Inc.
24
3.1 Dual-permanent-magnet-excited Synchronous Motor Stator
PMs
Rotor back
Torque (Nm)
Torque/Total volume (kNm/m3)
Torque/PM volume (kNm/m3)
68.99
65
781
Armature windings
Copper loss (W) 173.11
Š 2015 ANSYS, Inc.
Core loss (W) 214
Solid loss (W)
Outpu t Power (W)
27
4334.6
Efficiency (%) 91.28
25
3.1 Dual-permanent-magnet-excited Synchronous Motor
Torque/Total volume (kNm/m3)
Torque/PM volume (kNm/m3)
77
Š 2015 ANSYS, Inc.
Input Power (W)
Copper loss (W)
Core loss (W)
5286.29
172.24
179
885 Eddycurrent loss in PMs (W) 23
Efficiency (%) 92.92 26
3.2 Triple-permanent-magnet-excited Synchronous Motor
Torque/Total volume (kNm/m3)
Torque/PM volume (kNm/m3)
95
Š 2015 ANSYS, Inc.
Input Power (W)
Copper loss (W)
Core loss (W)
6560.96
172.24
165
761 Eddycurrent loss in PMs (W)
28
Efficiency (%) 94.43 27
© 2015 ANSYS, Inc.
28
Thank you
© 2015 ANSYS, Inc.
29