验证你的创意,优化你的设计

Page 1

电磁场有限元计算 – 验证你的创意,优化你的设计

© 2015 ANSYS, Inc.

1


Content 1.Magnetic gears 2.Dual-fed flux-modulated motor 3. Dual-permanent-magnet-excited Synchronous Motor and Triplepermanent-magnet-excited Synchronous Motor 4.Demo show

Š 2015 ANSYS, Inc.

2


1. Magnetic gears (MGs) 1.1 Radial-flux MG 1.2 Transverse-flux MG 1.3 Axial-flux MG 1.4 Hybrid-flux MG 1.5 Intersecting axes MG 1.6 Triple-permanent-magnet-excited MG

Š 2015 ANSYS, Inc.

3


1.1 Radial-flux MGs Conventional type

Torque on low-speed rotor [Nm]

1600

Spoke type 1

Spoke type 2 Spoke type 3

800 0

-800

0

4

8

12

16

-1600 The position of the low-speed rotor [degree]

PM types Surface mounted Spoke type 1 Spoke type 2

Spoke type 3

Š 2015 ANSYS, Inc.

Maximum torque [Nm] 915.4 785.4 1543.0

Torque density [kNm/m3] 117.7 101.5 198.5

1246.7

160.3

4


Torque on low-speed rotor [Nm]

1.2 Transverse-flux MG

Permanent magnets

300 200 100 0

Torque on low-speed rotor [Nm]

500 400 300 200 100 0

Torque density [kNm/m3]

Silicon steel

443.8

57.1

SMC

534.0

68.7

Torque on low-speed rotor [Nm]

0 20 40 60 80 The axial length of high-speed rotor [mm]

Maximum stall torque [Nm]

Š 2015 ANSYS, Inc.

400

0 4 8 12 16 20 24 The thickness of ferromagnetic segments [mm]

Ferromagnetic segments

Materials

500

500 400 300 200 100 0 0 0.2 0.4 0.6 0.8 1 The ratio of slot opening to tooth pitch 5


Torque on low-speed rotor [Nm]

1.3 Axial-flux MGs

axial magnetized azimuthally magnetized

800 600 400 200 0

0 0.2 0.4 0.6 0.8 1 The ratio of slot opening to tooth pitch

Maximum torque [Nm]

Torque density [kNm/m3]

Axial magnetized PMs

360.9

92.8

Azimuthally magnetized PMs

445.7

114.6

Magnetization direction of PMs

Š 2015 ANSYS, Inc.

6


1.4 Hybrid-flux MGs Permanent magnets

Iron segments

Permanent magnets

Torque [kNm]

3 2

Modulation segment

Permanent magnet

1 Stator

0 -1

Transverse-flux Axial-flux Hybrid-flux

-2 -3 0

100 200 Rotor position angle [deg] Š 2015 ANSYS, Inc.

Floating shaft

Rotor

Magnetic gear High speed

300 Rotor

Low speed

Shaft connecting to mechanical load

7


1.5 Intersecting axes MG Bearing

28 Iron segments To load

Rotor 1 with 18 magnet pole-pairs

Rotor 2 with 10 magnet pole-pairs

To prime mover L2 Hs Rc

Rs

Ri Hpm

L1

Š 2015 ANSYS, Inc.

8


1.6 Triple-permanent-magnet-excited MG MGII

MGIV

Outer rotor PMs on outer rotor

Outer rotor PMs on outer rotor

Stationary ferromagnetic segments

Stationary ferromagnetic segments

PMs on ferromagnetic segments

PMs on ferromagnetic segments

b1

b2

b3

PM

PM

b4

PMs on the inner rotor

Inner rotor

Stationary ferromagnetic segments PMs on ferromagnetic segments

PMs on the inner rotor

Inner rotor

Š 2015 ANSYS, Inc.

Inner rotor

300

Outer rotor PMs on outer rotor

PM

Fe

Torque of low-speed rotor [Nm] .

MGIII

h1

PMs on the inner rotor

MG IV with optimization

250

MG IV MG III

200 150

MG II

100

MG I

50

Conventional MG

0 0

60

120 Time [ms]

180 9


2. Dual-fed flux-modulated motor

Š 2015 ANSYS, Inc.

10


2.1 The operating principle of electric machines

Š 2015 ANSYS, Inc.

11


2.2 The operating principle of magnetic gear

Š 2015 ANSYS, Inc.

12


2.3 The operating principle of dual-fed fluxmodulated motor

Š 2015 ANSYS, Inc.

13


2.4 The main advantage of dual-fed fluxmodulated motor Simple brushless structure: the outer stator has one set of windings, the inner stator has one set of windings, the rotor has ferromagnetic segments. Wide rotor speed range:

nr  60 f outer  finner  pr where fouter : the frequency of currents in the outer stator; finner : the frequency of currents in the inner stator; pr

© 2015 ANSYS, Inc.

: the number of pole pairs of the rotor.

14


2.5 Performance analysis of the motor using FEM The numerical method of finite element method (FEM) presents the advantage of taking into account the real geometry of the motor as well as the magnetic saturation of the iron parts, high-order harmonics. Electric circuit

FEM of magnetic field

Performance

Mechanical motion Š 2015 ANSYS, Inc.

15


2.6 Numerical modeling of dual-fed fluxmodulated motor   T11   T11 k 1  S 0   S  S Q  A   A 13 T 12    11 t    Blb t k          A   T k 1  0 0 T    S12 A tS 22    S12   i k     T k 1   ad   S A  0    k    13  tS 33 T     S 0   T  B  13   il   Blb  t    t  B B lb  lb lb  Qe      0  R     e   lp    0 0   lp     

© 2015 ANSYS, Inc.

16


2.7 Performance analysis of the motor using FEM

Š 2015 ANSYS, Inc.

17


2.8 Optimetrics bt1 r1

bt2

r2

r5

iron_ang

h0

r3

r6

r4

h3

b11

b21

b31

b32

b12

b22

h11

h12 h21

Š 2015 ANSYS, Inc.

hs1

hs2

h22 18


2.9 Comparison of pole-pair / slot combinations To compare the performance of different poles-slots combinations, we keep the power load as constant value, and the main geometry size of the slots equal or in equal ratio when the slots number is changed. ZPN1I1=constant1 ZcN2I2=constatn2 where ZP and Zc respectively refer to the slots number of the power stator and the control stator; N1 and N2 are the conductor number in each slots; separately, I1 and I2 are the effective phase current value while the motor model is excited by current source. © 2015 ANSYS, Inc.

19


Both single-layer windings design PP

1

2

3

4

5

6

7

8

9

10

PC 10

9

8

7

6

5

4

3

2

1

Zp

24

30

36

Zc

24

30

36

In the power stator winding: ZPN1I1=8856; In the control stator winding: ZcN2I2=3225.6.

© 2015 ANSYS, Inc.

20


Simulation results of both single-layer windings PP-PC

24

ZC

30

36

Š

1-10 2-9 3-8 4-7 5-6 6-5 7-4 8-3 9-2 10-1 1-10 2-9 3-8 4-7 5-6 6-5 7-4 8-3 9-2 10-1 1-10 2-9 3-8 4-7 5-6 6-5 7-4 8-3 9-2 2015 ANSYS, Inc. 10-1

ZP 24 12.653996/2.305364 N.A N.A 31.055468/1.891703 N.A N.A 34.521078/2.787207 N.A N.A 25.085346/11.540016 14.567458/2.265993 N.A N.A 28.644088/2.896934 N.A N.A 31.574178/6.278873 N.A N.A 21.205712/5.632234 17.058354/4.491309 N.A N.A 31.409164/6.324496 34.33171/2.079869 N.A 32.004301/6.720948 27.134594/8.108634 N.A 17.772049/7.447104

30 10.868122/1.476392 N.A N.A 21.678703/3.029008 N.A N.A 36.289055/5.684175 N.A N.A 30.506726/3.399484 12.554278/1.280318 N.A N.A 31.744494/1.855499 N.A N.A 34.711821/3.29783 N.A N.A 25.819503/1.778963 15.497451/3.140545 N.A N.A 23.835673/11.286876 41.710879/1.477239 N.A 37.057262/5.186661 36.539244/6.089241 N.A 22.657312/1.721916

36 9.681833/1.463719 N.A 23.831564/6.822740 27.741483/5.586738 N.A 34.355542/2.535554 29.656606/7.785960 N.A N.A 31.062111/6.020188 N.A 10.93759/1.087308 N.A 30.292615/5.627261 31.598125/4.402131 N.A 23.797408/12.702548 N.A N.A 26.713164/2.577073 13.838112/2.804149 N.A 35.889192/1.379556 34.912905/10.293869 36.779825/1.776102 37.652763/1.533067 28.508769/9.590789 N.A N.A 21 22.78109/2.542968


One double-layer + one single-layer design PP

2

3

4

5

6

7

8

9 10

PC 10 9

8

7

6

5

4

3

2

Zp

Zc

1

12

15

18

18

21

24

24

1

27

30

36

In the power stator winding:

ZPN1I1=27000; In the control stator winding: ZcN2I2=18000.

© 2015 ANSYS, Inc.

22


Simulation results of one concentrated double-layer + one single-layer P -Z

3

6

1

0.866

2

0.866 0.866

9

12

15

18

21

24

27

ZC

30

18 PP-PC 0.866

4

0.866 0.945 0.866

15

5

0.945 0.933 0.866

6

0.866

0.866 0.933 0.951 0.866 0.951

ZP

21

0.902 0.945

9 10

0.866

52.30/ 11.0 42.43/ 8.33

18

24 8

7-4 60.62/ 4.85

12

3

7

8-3

24

0.945

0.953

0.933

0.866

27

0.877 0.866

30

Table 1. The winding factor of different Z/P combinations in double-

layer concentrated winding type. 1. P means the pole-pair number and the Z means the slots number;

77.11/ 4.36

9-2

36 10-1

4-7

5-6

6-5

8-3

23.87/ 74.24/ 48.89/ 7.20 6.22 14.37 59.78/ 72.03/ 12.640 6.10 54.66/ 46.99/ 8.76 8.95

60.57/ 28.1

76.11/ 6.36

59.72/ 61.13/ 8.76 5.83 58.90/ 7.52

Table 2. The Average Torque and Standard-deviation value of different winding distri butions in concentrated double-layer type in the power stator and single layer in the control stator.

2. The factor values in yellow shadow stand for the corresponding Z/P combination have unbalance radial magnetic force issue, which should be avoided adopting. Š 2015 ANSYS, Inc.

23


2.10 Parameters optimization start Set the initial/increment values and the limitations of the optimization variables Within the limitations?

No

Adjust increments

Yes Solve the magnetic field using FEM

Termination criteria reached?

No

Yes Optimal solution end

Š 2015 ANSYS, Inc.

24


3.1 Dual-permanent-magnet-excited Synchronous Motor Stator

PMs

Rotor back

Torque (Nm)

Torque/Total volume (kNm/m3)

Torque/PM volume (kNm/m3)

68.99

65

781

Armature windings

Copper loss (W) 173.11

Š 2015 ANSYS, Inc.

Core loss (W) 214

Solid loss (W)

Outpu t Power (W)

27

4334.6

Efficiency (%) 91.28

25


3.1 Dual-permanent-magnet-excited Synchronous Motor

Torque/Total volume (kNm/m3)

Torque/PM volume (kNm/m3)

77

Š 2015 ANSYS, Inc.

Input Power (W)

Copper loss (W)

Core loss (W)

5286.29

172.24

179

885 Eddycurrent loss in PMs (W) 23

Efficiency (%) 92.92 26


3.2 Triple-permanent-magnet-excited Synchronous Motor

Torque/Total volume (kNm/m3)

Torque/PM volume (kNm/m3)

95

Š 2015 ANSYS, Inc.

Input Power (W)

Copper loss (W)

Core loss (W)

6560.96

172.24

165

761 Eddycurrent loss in PMs (W)

28

Efficiency (%) 94.43 27


© 2015 ANSYS, Inc.

28


Thank you

© 2015 ANSYS, Inc.

29


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.