a pair of two such units for others. UTF-16 is generally considered a bad idea today. It seems almost intentionally designed to invite mistakes. It’s easy to write programs that pretend code units and characters are the same thing. And if your language doesn’t use two-unit characters, that will appear to work just fine. But as soon as someone tries to use such a program with some less common Chinese characters, it breaks. Fortunately, with the advent of emoji, everybody has started using two-unit characters, and the burden of dealing with such problems is more fairly distributed. Unfortunately, obvious operations on JavaScript strings, such as getting their length through the length property and accessing their content using square brackets, deal only with code units. // Two emoji characters, horse and shoe let horseShoe = "🐴👟"; console.log(horseShoe.length); // → 4 console.log(horseShoe[0]); // → (Invalid half-character) console.log(horseShoe.charCodeAt(0)); // → 55357 (Code of the half-character) console.log(horseShoe.codePointAt(0)); // → 128052 (Actual code for horse emoji)
JavaScript’s charCodeAt method gives you a code unit, not a full character code. The codePointAt method, added later, does give a full Unicode character. So we could use that to get characters from a string. But the argument passed to codePointAt is still an index into the sequence of code units. So to run over all characters in a string, we’d still need to deal with the question of whether a character takes up one or two code units. In the previous chapter, I mentioned that a for/of loop can also be used on strings. Like codePointAt, this type of loop was introduced at a time where people were acutely aware of the problems with UTF-16. When you use it to loop over a string, it gives you real characters, not code units. let roseDragon = "🌹🐉"; for (let char of roseDragon) { console.log(char); }
96