3 minute read

TIMEGLASMODELLENS SEKS FASER

Introduktion

Ideen med introduktionen er at motivere eleverne for det nye emne og synliggøre dagsordenen. Der lægges op til en samtale med eleverne om, hvorfor det er vigtigt at bruge tid på de aktuelle faglige begreber.

Intro-aktiviteter

Inden de nye matematiske begreber indføres og forklares, er det vigtigt, at eleverne involveres aktivt, så de kommer til at tænke i de rigtige baner. Der lægges op til, at eleverne enkeltvis eller parvis arbejder med aktiviteter, der genopfrisker tidligere lærte faglige begreber og relevante erfaringer på en måde, så de peger frem mod og skaber behov for en ny gennemgang.

Matematisk gennemgang

Det er bevidst gjort tydeligt, at der nu foretages et “spring“ ind i matematikkens verden. Der samles op på aktiviteterne, så fælles træk og karakteristika udpeges. Mødet med det abstrakte matematiske begreb tager altså direkte udgangspunkt i de erfaringer (matematiske og dagligdags), som eleverne „får op til over aden“ i introen.

Øvelser

Her trænes centrale færdigheder i tilknytning til det nye stof. Øvelserne er inddelt i særlige øvelseskategorier, så træningen af fagligt kernestof gøres så synligt og præcist som muligt for eleverne. Der lægges op til mange gentagelser af den samme arbejdsproces. Når en elev behersker en øvelseskategori, er det meningen, at han/hun går videre til næste aktivitet.

Opgaver

Opgaverne har til formål at forstærke begrebsdannelsen ved at skabe ere relationer mellem de forskellige begreber hos den enkelte. Den simple forståelse, der er etableret gennem arbejdet i øvelsesafsnittet, bliver udfordret i denne fase. I forhold til øvelserne er opgaverne mere varierede og komplekse. Opgavernes forskellige sværhedsgrad gør dem velegnede til differentiering. Det er på ingen måde meningen, at alle elever skal løse samtlige opgaver. De sidste opgaver i hvert kapitel er vanskelige.

Evaluering

Siderne har fokus på evaluering og kompetencer, begrebsforståelse og færdigheder. Evalueringens rolle er først og fremmest at gøre eleverne bevidste om, hvordan det går med at arbejde sig hen mod målene.

Matematrix som undervisningsværktøj

Hvordan gennemfører man en matematikundervisning, hvor der er en klar og tydelig sammenhæng mellem de mål, man har for elevernes læring, og den praksis, man som lærer udøver, når man planlægger, tilrettelægger, gennemfører og evaluerer sin undervisning? Det har altid været et meget centralt spørgsmål at tænke over som matematiklærer, men med folkeskolereformen fra 2014 er spørgsmålet kommet særligt i fokus under mantraet om læringsmålstyret undervisning.

På de følgende sider vil vi fremlægge vores ideer til, hvordan man kan gribe denne udfordring an, og

Problembehandling

Modellering

Ræsonnement

Tankegang

Repræsentation

Symbolbehandling Kommunikation

Årsplanlægning

hvordan vi har tilstræbt og erfaret, at Matematrix kan være en støtte hertil. Udgangspunktet er denne model, som forbinder årsplanlægning, forløbstilrettelæggelse og konkret gennemførelse af matematikundervisningen.

Modellen og de efterfølgende anbefalinger stammer fra udviklings- og forskningsprojektet, KOmpetenceMål i PraksIS (KOMPIS). I projektet blev der i stort omfang eksperimenteret og gjort erfaringer med målstyret undervisning blandt andet i matematik og med afsæt i opgaver fra Matematrix.

Tal og Geometri Statistik og algebra og måling sandsynlighed

Lærerens didaktiske mulighedsrum

– set i forhold til Fælles Mål

Planlægning handler i høj grad om at vælge indhold. Årsplanlægning handler følgelig om at vælge indhold og undervisningsforløb, som svarer til matematikundervisningen til et klassetrin. At gennemføre læringsmålstyret årsplanlægning af undervisningen indebærer, at valget af indhold er styret af valg af mål for elevernes læring.

I forbindelse med årsplanlægningen bør arbejdet med læringsmål og indhold foregå på en måde, der gør det muligt at bevare overblikket over og holde fokus på de store linjer i, hvad man vil prioritere og derfor lægge vægt på i sin undervisning. Det kan man fx gøre ved at tage udgangspunkt i ovenstående matrixmodel af matematikundervisningens mål og indhold, som har vist sig at fungere godt som en overordnet ramme for udvikling af målstyret matematikundervisning. I Læseplanen for matematik på Undervisningsministeriets side www.emu.dk foreslås det da også, at man benytter en sådan model.

Årsplanlægning gennem forløb med egne læringsmål – a edt af Fælles Mål.

Tilrettelæggelse af de enkelte forløb med fokus på at realisere læringsmålene gennem relevante aktiviteter.

Gennemførelse med afsæt i egen målstyrede tilrettelæggelse:

• Aktiviteter

• Evaluering

• Tegn på læring.

Matrix-modellen består af en krydsning af de otte faglige kompetencemål, som udgør det ene såkaldte kompetenceområde i Fælles Mål for matematik, og de tre stofområder, som man i Fælles Mål har valgt at betegne som de tre andre kompetenceområder. I modellen er de matematiske kompetencer gennemgående på alle klassetrin, hvorimod stofområderne er samlebetegnelser for en række centrale matematiske begreber, som naturligt vil a øse hinanden som fokuspunkter på de forskellige klassetrin. Eksempelvis er der pr. tradition fokus på addition i 1. klasse, på division i 4. klasse og på funktioner i 7. klasse. I årsplanlægningen skal man helt konkret beslutte sig for, hvilke begreber fra hvert stofområde, man vil prioritere at arbejde med på de enkelte klassetrin. Til hvert af disse begreber formulerer man så relevante færdigheds- og vidensmål, som giver modspil til de faglige kompetencemål.

Sådan har man gjort i Fælles Mål for matematik, og sådan har vi afstemt hermed gjort ved udarbejdelsen af Matematrix. Vi har lavet en samlet analyse af, hvilke matematiske begreber vi ville og skulle sætte

This article is from: