24 minute read

Oversigt over kapitlernes begreber

Kapitel Fagligt område

1 Mødet med matematik Ræsonnement og tankegangSpørgsmål

2 Detektiv på data Statistik og kombinatorik

3 Addition på menuen Addition

4 Før og efter kuppet pluspar mindre hel og halv end, mindre end og lig

>, < og =

Faglig læsning

Faglig læsning i matematik betyder, at eleverne kan læse, forstå og bruge fagets tekster. I matematik bruges ord og vendinger, som eleverne også kender fra andre sammenhænge, men som ikke altid har samme betydning. Eleverne skal arbejde med at kunne afkode de ord, der typisk indgår i opgaveformuleringer og tekster. Ord som find,forklar og regn vil ofte tydeligt beskrive forventningerne i kommunikationen med eleverne, mens ord som løs, bestem og vis er mindre tydelige. I indskolingen skal den faglige læsning i matematik også medvirke til, at eleverne får øje på ord i tekster, der enten anviser forskellige regningsarter eller fordrer, at eleverne anvender bestemte strategier.

Matematiske tekster indeholder foruden ord også symbolsprog. Symbolsprog indgår både i sammenhæng med anden tekst og som rent symbolsprog, som fx i regneudtryk. I matematik forbindes både hverdagssprog og symbolsprog desuden ofte med visuelle præsentationer, som fx diagrammer eller billeder af figurer eller antal. På kort sigt er formålet med arbejdet med faglig læsning, at eleverne lærer matematikholdige ord og faglige begreber at kende, og derved udvider deres ordforråd i tilknytning til faget matematik. På længere sigt er formålet, at eleverne kan læse og forstå matematikholdige tekster i forbindelse med problemløsning og modellering af omverden.

I Reflex skal eleverne arbejde med faglige begreber og læsestrategier for at fremme deres forståelse af matematikholdige tekster. Kapitlerne i Reflex indledes med et omdrejningspunkt, som har til formål at aktivere elevernes forforståelse og umiddelbare opfattelser. Omdrejningspunktet skal hjælpe med at skabe sammenhæng mellem elevernes egen virkelighed og den indsigt, som matematikkens verden indeholder. Eleverne skal lede efter ord og begreber, som de kender og forstår betydningen af, og de skal forholde sig til nye ord og begreber, der defineres og uddybes i omdrejningspunktets undersøgelse. Eleverne skal udtrykke deres viden om de faglige begreber med ord og billeder i den opsamlende samtale i Min Rygsæk, der afrunder hvert omdrejningspunkt.

Den faglige læsning har også et anvendelsesperspektiv. Den faglige læsning skal gøre eleverne i stand til at navigere rundt i alle bogens elementer. Eleverne skal i Reflex bl.a. arbejde med multimodale tekster, som fx tekster fortalt med både lyd, billeder, ord og symbolsprog. Det kan være lyd og video, tegneseriestriber, diagrammer, der kræver aflæsning, tal og symboler, der skal bearbejdes, samt instruktionsvideoer til spil eller GeoGebra. Eleverne præsenteres også for faglige begreber, der vises med ord, illustrationer og forklarende faglige film. Matematikhistorier fortalt gennem billeder og lyd er ligeledes et gennemgående element i Reflex. Eleverne producerer desuden selv matematikhistorier, hvori de anvender tilegnede faglige begreber og ord. De fortæller historier, hvori ord som tilsammen, i alt og forskel indgår, når de fx leger Vis og forklar, hvor begrebsbrikker skal afkodes og forklares for andre.

Faglig læsning i Reflex kommer til udtryk i:

• Bogens opbygning og struktur: Den gennemgående struktur i det første opslag i hvert kapitel, ikoner, meningsrammer, opgavenumre og instruerende opgavetitler fortæller, hvordan bogen skal anvendes.

• Evalueringen i kapitel 1: I forbindelse med første kapitel i bogen fokuseres der på, hvordan bogen skal læses og forstås. Her skal eleverne undersøge deres matematikbog og gå på jagt efter udvalgt indhold.

• Introtegningen: Her er formålet at give eleverne mulighed for at italesætte, hvad de ved om emnet i forvejen og afklare klassens fælles begrebsforståelse.

• Luppen: Ved at aflæse elevernes tegninger i luppen kan de erfare, hvordan andre forstår kapitlets faglige begreber og matematiske pointer.

• De illustrerede begreber: Begreberne viser de væsentlige matematikholdige pointer fortalt med ord og illustrationer samt i en forklarende video, der har til opgave at afklare begreberne og formidle, hvordan disse skal forstås i en matematik sammenhæng.

• Min Rygsæk: Eleverne fastholder det centrale i de faglige begreber ved at notere, og de får mulighed for at gøre viden til deres egen.

• Meningsrammerne: Giver eleverne overblik over opgavernes indhold, inden de går i gang med et opslag.

• Min viden 1 og 2: Her evaluerer eleverne deres begrebsforståelse.

De seks moduler

Opgaver og aktiviteter i Reflex tager udgangspunkt i forskellige måder at arbejde på, for at eleverne kan erfare, at matematikfaglig viden og færdigheder kan opnås gennem forskellige tilgange og arbejdsmetoder. De forskellige måder at arbejde på er repræsenteret i Moduler

De seks typer Moduler, der arbejdes struktureret med, er:

• Vi udvikler strategier

• Vi skaber

• Vi kommunikerer

• Vi gamer

• Vi problembehandler

• Vi øver

Hensigten med Modulerne er at sætte fokus på processerne i faget og samtidig støtte elevernes mulighed for at opnå de kompetencer, der er afgørende for deres progression.

De seks moduler tager afsæt i systemets tre didaktiske hjørnesten og i de matematiske kompetencer, der er beskrevet i ministeriets læseplan.

Hvert opslag i elevbogens kapitler, efter de indledende omdrejningspunkter, består af et udvalgt modul, der danner udgangspunkt for den måde, som eleverne hovedsageligt vil arbejde med opgaverne på. Modulet fremgår af de meningsrammer, der vises på hvert af opslagene, og som er beskrevet i side til side-vejledningen.

Af hensyn til det konkrete faglige indhold, den individuelle fordybelse og variationen i elevernes arbejde, indgår øvrige tilgange til det faglige indhold også.

I første kapitel i elevbogen præsenteres eleverne for de seks moduler. Hensigten er at lade dem stifte bekendtskab med de arbejdsmetoder og tilgange til læring, som de vil møde i de efterfølgende kapitler.

Vi udvikler strategier

Hensigten med dette modul er, at eleverne opnår kompetence i at anvende alsidige fremgangsmåder, afprøve nye metoder samt tilpasse og videreudvikle strategier og regnemetoder. Særligt for regnestrategier gælder det, at eleverne ikke nødvendigvis udvikler disse af sig selv, fordi det i begyndelsen kan virke besværligt og langsommeligt at bruge nye metoder. Elever, der er gode til at tælle, og som har udviklet gode tællestrategier, skal ind i mellem opfordres til at skifte tællestrategierne ud med regnestrategier.

Ved bevidst både at arbejde med udvikling af elevernes generelle strategier, fx til problembehandling, og med deres regnestrategier, støttes eleverne i processen med at forlade tællestrategierne og opnå en større sikkerhed med hensyn til tilgange og metoder. I denne proces er det hensigten, at eleverne skal tænke aktivt, og at de udfordres i relation til deres egne strategier samt præsenteres for nye strategier, som de kan afprøve, arbejde videre med og dermed tilegne sig. I arbejdet med at udvikle strategier rettes elevernes opmærksomhed mod tanker og handlinger i selve opgaveløsningen. Nogle problembehandlings- og regnestrategier vil undervejs i disse processer blive så automatiserede, at de for den enkelte elev vil kunne betragtes som metoder. Målet for udviklingen af elevernes regnestrategier er, at de bliver i stand til at foretage beregninger på effektive, velovervejede og fleksible måder, som desuden kan tilpasses nye regnesituationer.

I Reflex indgår modulet Vi udvikler strategier fx, når eleverne præsenteres for nye strategier og arbejder med at afprøve dem, samt når de forholder sig til andres anvendelse af strategier ved såkaldte strategimøder. Eleverne afprøver fx tællestrategier, hvor de tæller videre fra det største tal. Eleverne gøres i den forbindelse opmærksom på, at de kan automatisere talbillederne, og at disse talbilleder kan hjælpe dem til at tælle smartere. Arbejdet hen imod regnestrategier kan være langsommeligt og kræve af eleverne, at de forholder sig til deres egne metoder. Foruden strategimøderne og arbejdet med at afprøve specifikke strategier, arbejder eleverne også med strategier, når de forklarer egne løsninger, og når de sætter sig ind i andres måder at tænke på.

Vi skaber

Hensigten med dette modul er, at eleverne opnår kompetencer inden for innovative, kreative og skabende processer samt generering af ideer. At skabe handler i matematik om sammenhængen mellem matematik og omverdenen. Eleverne skal være produktivt og visuelt skabende. Der lægges op til, at eleverne arbejder på mange forskellige måder og ved brug af flere forskellige sanser. Eleverne arbejder både digitalt og analogt med at få idéer samt at skabe visuelle, kreative løsninger og produkter. Opgaverne vil være præget af en høj grad af åbenhed med mange forskellige muligheder for løsninger. Eleverne arbejder med at skabe ideer samt at designe og forme et produkt ud fra givne krav og mål og med en stor grad af frihed til at vælge. Der fokuseres på, at eleverne innovativt og kreativt anvender deres matematikfaglige viden og færdigheder i nye sammenhænge.

I Reflex indgår modulet Vi skaber, når eleverne enten selv eller i samarbejde med andre får ideer og skaber konkrete produkter med udgangspunkt i matematik. Eleverne designer, skaber og reflekterer over produkter eller løsninger. Produktet kan have mange forskellige udtryk. Fx kan eleverne skabe digitale tegninger, mønstre eller figurer, vise regneudtryk som illustrationer i matematikhistorier, skabe installationer, hvor de viser deres begrebsforståelse, eller tage på fotojagt efter matematik i hverdagen.

Vi kommunikerer

Hensigten med dette modul er, at eleverne opnår kompetence inden for kompetent formidling. Eleverne skal udvikle denne kompetence ved at udtrykke sig overfor hinanden og ræsonnere inden for matematik. De deltager i samtaler og forskellige former for formidling, som fx dialog, præsentation, argumentation og visuel kommunikation i form af lyd og billede. Der fokuseres på, at eleverne ved at lytte, tale, læse, notere, tegne og aflæse tegninger opbygger et matematisk fagsprog, som de også bliver i stand til at anvende.

I Reflex indgår modulet Vi kommunikerer, når eleverne arbejder med at styrke deres kommunikationskompetence. Det sker fx ved at deltage i klassesamtaler, optage lyd, lytte til matematikhistorier og indgå i dialog med hinanden. Ved at kommunikere får eleverne mulighed for at præsentere deres egne tanker, sætte sig ind i andres beskrivelser og dermed konsolidere deres viden om matematiske symboler, sammenhænge og begreber. Eleverne arbejder både visuelt, mundtligt og skriftligt med at udtrykke sig fx gennem billeder, installationer, mundtlige forklaringer og skriftlige noter.

Vi gamer

Hensigten med dette modul er, at eleverne opnår kompetencer inden for sproglig udvikling, problemløsning og strategisk tænkning gennem deltagelse i spil og leg. Der fokuseres på, at eleverne tilegner sig viden gennem aktiviteter, hvor leg og bevægelse er et gennemgående element. Dette sker, når eleverne ved deres deltagelse gør sig overvejelser om hensigtsmæssige metoder til at skabe, vinde eller videreudvikle forskellige lege og spil. De fleste elever er glade for kortspil og brætspil, fangelege, rollelege og andre aktiviteter, hvor spil og leg indgår. Med udgangspunkt i elevernes motivation arbejdes der i modulet med gamer-relaterede aktiviteter, som fx spiludvikling, kodning og spildesign.

I Reflex indgår modulet Vi gamer, når eleverne gennemfører spil, leger sammen, øver matematiske færdigheder gennem spil og lege, vurderer eller justerer spil ud fra givne krav, samt når de selv skaber spil, som andre afprøver. Eleverne udtrykker deres matematikfaglige viden ved at deltage i og forklare forskellige typer spil og lege. Eleverne arbejder med forskellige tilgange, som fx at opfinde spilleregler, designe spilleplader, kode spil og vurdere vinderchancer. Der inddrages både digitale og analoge spil, herunder også kodning og programmering. Udgangspunktet er elevernes motivation for lege og spilrelaterede aktiviteter, og således skal eleverne fx videreudvikle allerede eksisterende spil og lege samt arbejde med at påvirke et spil. Desuden kan eleverne skabe ideer, designe og forme nye spil ud fra givne krav og med en stor grad af frihed.

Vi problembehandler

Hensigten med dette modul er, at eleverne opnår kompetencer i problembehandling, modellering, innovation samt hensigtsmæssig brug af både konkrete og digitale hjælpemidler i relation til problembehandling. Udgangspunktet for elevernes problembehandling kan både være virkelighedsnære sammenhænge og rent matematiske kontekster. En væsentlig del af denne proces er, at eleverne selv afgør, hvilke færdigheder og metoder som skal i brug.

I Reflex indgår modulet Vi problembehandler, når eleverne selv undersøger problemstillinger og ikke får anvist konkrete metoder til besvarelse. Eleverne arbejder med at forstå og afgrænse undersøgelsen og problemstillingen, ligesom de eksperimenterer og afprøver forslag og vurderer forskellige bud på strategier til problembehandling og svarmuligheder. I dette modul arbejder eleverne således også med at udvikle generelle strategier til problembehandling, som fx at gætte og prøve efter, eller at opliste alle muligheder.

Vi øver

Hensigten med dette modul er, at eleverne konsoliderer deres grundlæggende matematiske kompetencer, viden og færdigheder. For at kunne anvende matematik i nye situationer samt arbejde skabende, kreativt og problembehandlende er der brug for, at eleverne fordyber sig i det faglige indhold, udvikler sikkerhed i strategier og metoder samt kvalificerer deres viden om matematiske begreber. Der fokuseres på, at eleverne effektiviserer disse metoder, automatiserer talbilleder og små plus- og minusstykker, samt at de opnår større fortrolighed med faglige begreber.

I Reflex indgår modulet Vi øver, når der er særligt fokus på, at eleverne udvikler og konsoliderer deres færdigheder og træner den viden, som de har tilegnet sig, ved at anvende den i allerede kendte eller nye sammenhænge. Konsolideringen handler også om fx at automatisere små mængder i form af talbilleder samt mindre plus- og minusstykker. Den automatiserede viden kan eleverne bl.a. bruge, når de skal udvikle strategier og metoder, og netop derfor er det væsentligt at bruge tid på dette. I dette modul arbejder eleverne med fagligt indhold, som de tidligere har været præsenteret for. Det sker gennem repetition af tidligere faglige områder og fordybelse i udviklingen af strategier og begreber. Eleverne får dermed mulighed for at konsolidere de faglige områder og at anvende matematikken i nye kontekster. Eleverne vil i dette modul i højere grad end andre moduler skulle arbejde individuelt, hvilket giver dem mulighed for at arbejde på eget niveau og med inddragelse af konkrete materialer i det omfang, der passer dem individuelt.

Meningsrammer

For at bevidstgøre eleverne om indholdet i opgaver og aktiviteter, præsenteres modulerne sammen med faglige mål i Meningsrammer. Der findes en Meningsramme på hvert af de opslag, der følger efter omdrejningspunktet. I Meningsrammen er det faglige mål og det udvalgte modul beskrevet i en kort tekst og vist i en forklarende illustration. Dette eksempel på en meningsramme er fra kapitel 5:

Teksten Vi gætter på chancen formidler meningen med læringsmålet: ”Jeg kan give et kvalificeret gæt på chancen ” Det fremhævede ord gætter henviser til modullet Vi gamer, og det skal vise eleverne, at arbejdsmetoden i de efterfølgende opgaver hovedsageligt er spil, lege og bevægelsesaktiviteter.

Det anbefales at tale med eleverne om indholdet i Meningsrammerne forud for arbejdet med opgaverne på hvert opslag i elevbogen. Meningsrammerne findes også på det tilhørende website, så det kan vises på en skærm i klassen, mens der i fællesskab tales om indholdet. Hensigten er at synliggøre meningen med undervisningen og gradvist opøve elevernes fortrolighed med de forskellige tilgange til læring, der lægges op til i Reflex.

Loop-opgaver

For at give eleverne mulighed for individuelt at øve sig, repetere og fordybe sig i de faglige begreber og det faglige indhold er der i hvert kapitel indlagt to forløb med Loop-opgaver. Det første forløb er placeret midtvejs i kapitlet umiddelbart før den første evaluering. Opgaverne er udarbejdet på ét niveau. Det andet forløb med Loop-opgaver er placeret som afslutning af kapitlet umiddelbart før den anden evaluering, og består af opgaver på tre niveauer. De tre niveauer gør det muligt for eleverne at arbejde differentieret ud fra deres viden og kunnen, når de skal repetere og fordybe sig i kapitlets faglige indhold.

I Loop 2-opgaverne har eleverne har mulighed for at vælge forskellige niveauer ud fra deres forståelse af det faglige indhold i de enkelte kapitler. Det niveau, som den enkelte elev skal arbejde på, afgøres i samråd med læreren. Loop-opgaverne er selvrettende opgaver på web, som eleverne løser individuelt. Eleverne har tre forsøg, hvorefter facit vises.

De tre niveauer er tilrettelagt ud fra følgende struktur:

• Niveau 1: Eleven har vanskeligt ved flere af de faglige begreber og metoder, der indgår i kapitlet, og har brug for at øve det grundlæggende faglige indhold.

• Niveau 2: Eleven kan arbejde med de fleste af de faglige begreber og metoder, der indgår i kapitlet, og har brug for yderligere fordybelse for at opnå sikkerhed i det faglige indhold.

• Niveau 3: Eleven kan forklare kapitlets faglige begreber, bruge de matematiske metoder og kan med fordel udfordres i sine færdigheder.

Loop 1 Loop 2

Min viden

Evaluering af elevernes viden og færdigheder er væsentlig for tilrettelæggelsen af undervisningen. I Reflex er både formativ og summativ evaluering en integreret del af hvert kapitel. Den summative evaluering indgår som opgaver, hvor der er fokus på at gøre status over, hvad eleverne kan og ved på det pågældende tidspunkt. Den formative evaluering indgår med det formål, at eleverne løbende kan justere og kvalificere deres viden og kunnen. Den formative evaluering foregår ved, at eleverne midtvejs i hvert kapitel udarbejder et produkt i evalueringen Min viden 1. Ved afslutningen af hvert kapitel vender eleverne i Min viden 2 tilbage til deres produkt og kvalificerer og videreudvikler det med afsæt i deres nye viden.

I evalueringerne er der desuden lagt vægt på, at eleverne skal give og modtage feedback. I den afsluttende evaluering i Min Viden 2 indgår feedback ved, at eleverne ser hinandens produkter. Formålet med denne feedback er, at eleverne, fx ved at afprøve, svare på eller på anden måde forholde sig til andres produkter, oplever, at produkterne også har værdi for andre. Produkterne i evalueringerne kan fx være en leg eller et spil, en matematikhistorie, et foto eller et design.

Evalueringsopgaverne Min viden 1 og 2 findes på web, og de tager udgangspunkt i de faglige begreber, der indgår i kapitlet. Evalueringerne foregår i forlængelse af de to forløb med Loop-opgaver. Den didaktiske hjørnesten Det anerkendende læringsrum kommer særligt til udtryk i elevernes feedback, fordi der med gensidig feedback skabes en klassekultur, hvor eleverne lærer at forholde sig til andres arbejde og produkter samt at lytte til andres meninger om og syn på deres eget arbejde. Efterhånden som eleverne bliver ældre, vil der i evalueringerne lægges op til, at elevernes feedback, bliver mere konstruktiv og i højere grad skal kunne anvendes til at vurdere det matematikfaglige indhold i produkterne. Feedbackens formål vil fortsat være at skabe glæde ved at forholde sig til det at skabe produkter og at opleve, at produkterne har værdi for andre.

Før elevernes arbejde med evalueringerne vises de faglige film, og indholdet drøftes i fællesskab i klassen. I elevbogen er de faglige begreber fra filmene desuden gengivet med illustrationer. På den måde får eleverne mulighed for at genopfriske deres forståelse af begreberne, før deres arbejde med opgaverne i evalueringerne. Hver enkelt elev vælger selv, hvilket niveau de vil arbejde på. Eleverne kan vælge at arbejde på forskellige niveauer fra kapitel til kapitel alt efter deres faglige indsigt inden for de enkelte områder. Hvis der er behov for det, kan en elev tilbydes hjælp til at vurdere sit niveau. Dette gøres ved at tage afsæt i elevens forståelse af kapitlets faglige indhold. Brug evt. billederne af de faglige begreber i bogen til at vurdere niveauet ud fra denne anvisning:

De tre niveauer i Min viden 1 og 2 er differentieret ud fra følgende kriterier, der svarer til de niveauer, der også anvendes for Loop 2-opgaverne:

• Niveau 1: Det vurderes, at eleven har brug for at arbejde grundlæggende med alle kapitlets faglige begreber.

• Niveau 2: Det vurderes, at eleven kender enkelte begreber, men har brug for yderligere fordybelse.

• Niveau 3: Det vurderes, at eleven kender begreberne og med fordel kan udfordres på sin viden.

I Min viden 1 på web præsenteres eleverne for stilladserede opgaver, der trinvis guider dem gennem udarbejdelsen af deres produkt. Opgaverne er differentierede som angivet, så eleverne har mulighed for at arbejde med en evaluering, der svarer til deres aktuelle faglige udgangspunkt.

Når eleverne har udarbejdet deres produkter i Min viden 1, skal produkterne gemmes til Min viden 2, hvor eleverne arbejder videre med dem. Det aftales på forhånd med eleverne, hvordan dette kan foregå, fx om elevernes tegninger skal påføres navn, indsamles og gemmes fælles, om eleverne skal have hver deres portfoliomappe, om elevernes billeder skal uploades i skyen eller på en læringsplatform, eller om installationer fx kan få en plads i klasselokalet, indtil de skal bruges igen. Metoden behøver ikke at være ens for hvert kapitel, men det skal være tydeligt for eleverne, hvad de skal gøre.

I Min viden 2 skal eleverne arbejde på samme niveau, som de valgte under evalueringen i Min viden 1. På den måde sikres det, at eleverne videreudvikler deres produkt på baggrund af den individuelle faglige progression. I Min viden 2 på web præsenteres eleverne for stilladserede opgaver, der guider dem i at videreudvikle deres produkt, og anviser, hvordan de skal give og modtage feedback.

Min viden 1

Min viden 2

Evalueringsstrukturer

I hvert kapitel arbejdes der i evalueringerne med en af følgende fire Evalueringsstrukturer:

• Matematikhistorier

• Fotoformidling

• Design

• Spil og leg

I hver af de fire Evalueringsstrukturer skal eleverne udforme forskellige typer af produkter, der viser kapitlets matematiske indhold. Gennem produktet formidles den faglige viden på det niveau, der afhænger af en enkelte elevs faglige ståsted. Der er lagt vægt på, at eleverne opfordres til at tænke kreativt og innovativt i skabelsen af produkterne.

Evalueringerne i et kapitel tager afsæt i en udvalgt struktur, som eleverne er blevet introduceret for og har arbejdet med undervejs i kapitlet. Hvis eleverne fx skal arbejde med fotoformidling eller matematikhistorier som Evalueringsstrukturer, vil de i de forudgående opgaver være blevet præsenteret for opgaver med fokus på matematikhistorier. Evalueringsstrukturen er valgt med udgangspunkt i, hvilke faglige kompetencer der er centrale i det pågældende kapitel, samt overvejelser omkring, hvilket produkt der passer bedst til at bearbejde kapitlets faglige begreber.

Matematikhistorier

Eleverne anvender og forbinder matematiske begreber og processer gennem mundtlig, skriftlig eller visuel formidling. Dette sker enten i fagsprog eller hverdagssprog ved brug af tal og symboler eller gennem grafer og tegninger. Matematikhistorier indgår, når eleverne fx fortæller historier, der passer til tabeller og diagrammer, eller når de fx tegner og fortæller om en situation, der viser minus. Matematikhistorier indgår også som fortællinger om figurer og geometrisk design eller i en gengivelse af hverdagssituationer, som fx indkøb, antalsbestemmelse og vægtbestemmelser. Der er mulighed for, at eleverne kan optage deres matematikhistorier som lydfiler på web, så de efterfølgende kan afspilles og evt. løses af andre.

Fotoformidling

Eleverne viser med fotos, collager, tegninger eller billeder fra nettet, hvordan matematik anvendes i omverdenen. Fotoformidling indgår, når eleverne viser matematiske begreber, udregninger, mønstre og kategorier. Det kan være billeder, hvor tal, symboler eller geometriske former bruges på forskellige måder. Eleverne kan også tage billeder af egne produkter, som det kan være vanskelige at fastholde i traditionel skriftlig form fx en opstilling, der viser placeringerne over, under og ved siden af. Der kan evt. være tale om billeder af, hvordan de har sorteret brikker med geometriske former efter forskellige kriterier eller om fotos af hverdagssituationer, som fx et indkøb eller en samling data - eksempelvis bilerne på en parkeringsplads.

Design

Eleverne skaber produkter med konkrete materialer eller med digitale hjælpemidler. De arbejder med matematik på skabende, innovative og kreative måder. Eleverne anvender fx matematik til at bygge og designe genstande, der beskriver matematiske begreber, modeller og situationer. Matematik kan både indgå som en del af designprocessen og i selve udformningen af produktet. Produkterne, der designes, kan fx være: En papkasseinstallation, der formidler forskellige regneudtryk i hverdagsscenarier, et design af en plakat med figurmønstre eller figurmonstre eller et maleri med symmetri. Centralt for arbejdet med design er, at eleverne kan afgrænse og begrunde, hvordan matematik indgår som en del af det skabte.

Spil og leg

Eleverne skaber selv spil eller udvikler lege. Når eleverne skal udvikle et spil eller en leg, kan matematikken fra den skabende proces indgå i reglerne. Matematikken kan også vise sig i udformningen af det endelige produkt, fx i form af en spilleplade, brikker eller kort. Eleverne kan fx vælge at ændre på et spil eller skabe et helt nyt spil med baggrund i allerede kendte spil, som fx et vendespil, et puslespil eller brætspillet Ludo. Der kan også være tale om, at eleverne skaber lege, der efterfølgende leges i mindre grupper eller fælles i klassen, som fx figurstafet, talsalat, eller gemmeleg.

Færdighedsevalueringer

I elevbogen er der indlagt færdighedsevalueringer på web to gange i løbet af arbejdet med elevbogen. Første gang er som afslutning på kapitel 5 og anden gang i kapitel 9 efter afslutning af hele bogen. Færdighedsevalueringernes udformning svarer som udgangspunkt til Loop-opgaverne og fungerer som repetition af det faglige indhold i de foregående kapitler. Opgaverne er tilrettelagt, så de tager 20-30 min. at gennemføre. Eleverne har mulighed for at svare tre gange på opgaverne, hvorefter facit vises. En oversigt over elevernes besvarelser findes på det tilhørende lærersite.

Færdighedsevalueringerne på reflex.alinea.dk

Digitale ressourcer

De digitale ressourcer til Reflex er samlet på systemets website reflex.alinea.dk. Ressourcerne omfatter opgaver i GeoGebra og Excel, selvrettende fordybelses- og færdighedsopgaver, differentierede evalueringer, mulighed for elevbesvarelser som lydoptagelser samt øvrige aktiviteter til de enkelte opgaver. På web kan eleverne få læst opgaveteksterne op. Derudover er der på websitet adgang til samtalebilleder, faglige film, spilinstruktioner på film, lydoptagelser, arbejdsark, Fælles Mål, facit og tavlebog. Beskrivelsen af, hvordan disse er tænkt at skulle anvendes, findes i side til side-vejledningen i tilknytning til de enkelte opgaver. I elevbogen vises et web-ikon, når der hører digitale ressourcer til opgaverne.

I Reflex er de digitale ressourcer en integreret del af hvert kapitel. Arbejdet med digitale værktøjer udgør en væsentlig del af elevernes hjælpemiddelkompetence. Ligesom forskellige analoge hjælpemidler kan vælges ud fra den aktuelle situation, er digitale værktøjer tilsvarende en ressource, der skal vurderes i forhold til løsningen af den konkrete opgave.

Digitale ressourcer kan inddrages i matematik på baggrund af forskellige formål, som fx at lære et program at kende eller at forstå matematik. Begge dele er væsentlige. Eleverne vil ikke kunne løse matematiske problemstillinger digitalt, hvis de ikke kender de tilgængelige programmer, værktøjer og deres muligheder.

Digitale ressourcer og opgaver er ikke kun en erstatning for papir og blyant, men et hjælpemiddel der betyder, at eleverne kan nå længere i deres forståelse, end de ville kunne, hvis opgaverne havde været analoge. Ved undersøgelser af fx egenskaber ved figurer eller eksperimenter med længden af kanterne i en firkant kan det lette opgaven betydeligt at arbejde i et dynamisk geometriprogram i stedet for at arbejde med papir og blyant. Det vil tage eleverne lang tid at udføre sådanne opgaver i hånden og i forhold til det faglige formål, vil denne tid måske ikke modsvare elevens udbytte og læring. Ydermere vil tegningen i hånden ikke være lige så præcist udført, som det er tilfældet ved brug af en digital ressource. Det er væsentligt, at eleverne forholder sig til valget af hjælpemiddel og bliver bevidste om, hvordan arbejdet kan lettes ved brug af det rette hjælpemiddel. At arbejde digitalt med geometri er ikke en erstatning for at opøve kompetence i at tegne figurer med lineal. Det væsentlige er, at der kan være et forskel- lige formål med at arbejde med figurerne, og at disse formål hver især lægger op til anvendelse af forskellige hjælpemidler.

I Reflex skal eleverne arbejde med GeoGebra, regneark og CAS. Hensigten er, at eleverne bliver fortrolige med disse programmer, og at de gennem hele skoleforløbet videreudvikler deres kompetencer i brugen af disse, så de bliver en integreret del af arbejdet med faget. I Reflex introduceres brugen af udvalgte værktøjer løbende, når eleverne skal bruge dem. Værktøjerne præsenteres i film, som eleverne kan gense, hvis de på et senere tidspunkt bliver usikre på, hvordan programmets værktøjer virker.

Som lærer er det ikke en forudsætning at kende samtlige funktioner i et program, for at eleverne kan arbejde med et digitalt værktøj. Mange af programmerne er komplekse og indeholder funktioner, der ikke nødvendigvis skal benyttes. Det handler derimod om at turde springe ud i arbejdet med digitale værktøjer. Eleverne vil ofte hurtigt kunne sætte sig ind i et program, ligesom de vil kunne inspirere hinanden til at lære og beherske programmets funktioner.

Når eleverne arbejder med programmerede GeoGebra-filer i Reflex, er værktøjslinjen blevet tilpasset, så der kun vises de aktuelle værktøjer, som eleverne skal bruge i opgaven. På den måde bliver funktionerne mere overskuelige og intuitive at bruge. Det anbefales dog også at lade eleverne være nysgerrige og lege med hele programmet, så de i fællesskab kan finde ud af, hvad programmet kan.

De seks moduler, der indgår i Reflex, afspejler varierende aktiviteter og opgaver. Der lægges op til en undervisning, hvor der veksles mellem elevernes deltagelse i form af lege, øvelser og spil, deres deltagelse i arbejdet med digitale værktøjer og ressourcer på web, kommunikation eleverne imellem, samtaler om strategier, træning og konsolidering af viden samt skabende, kreative og innovative aktiviteter.

De varierende samarbejdsformer afspejler desuden de didaktiske hjørnesten, der ligger til grund for Reflex. Det anerkendende læringsrum og Den nysgerrige samtale indgår dels, når eleverne deler deres viden med få, flere eller alle i klassen, og dels når de i fællesskab reflekterer over eget og andres arbejde. Samtidig giver de varierende arbejdsformer mulighed for at differentiere undervisningen ud fra hver enkelt elevs individuelle evner inden for de forskellige arbejdsformer. Disse arbejdsformer indebærer, at der i klassen er et åbent læringsrum, hvor eleverne i fællesskab lærer, undersøger, gætter og prøver sig frem. For at fremme en sådan læringskultur, er det vigtigt at støtte eleverne med en anerkendende tilgang og på den måde skabe tryghed, så eleverne tør kaste sig ud i undersøgelser, foreløbige ideer og løsninger. Det er hensigten, at eleverne derigennem vil opleve, at de hver især bidrager med værdifulde betragtninger og er aktive medspillere i matematikundervisningen.

I elevbogen vises det optimale antal deltagere i opgaver, der skal løses i samarbejde, med et ikon. Gruppernes størrelser kan dog varieres og tilpasses med baggrund i klassens faktiske elevtal.

Paraktivitet

Gruppeaktivitet på tre personer

Gruppeaktivitet på fire personer

Gruppeaktivitet på fem personer

Klasseaktivitet

Fælles aktiviteter i hjemmet

Webopgave på reflex.alinea.dk

Samarbejdsformer

I Reflex er der fokus på, at eleverne arbejder alsidigt og afvekslende med varierende arbejdsformer, både med hensyn til aktiviteter og organisering af undervisningen. Afhængigt af indholdet og målet med de enkelte opgaver, veksler eleverne mellem at arbejde alene, i par, i mindre grupper og hele klassen i fællesskab. Når eleverne arbejder alene, er formålet at fordybe sig og opøve færdigheder. Når eleverne arbejder parvist, er det for at inddrage feedback eller idéudveksling og dermed dele viden med hinanden. Parvist arbejde handler om i fællesskab at nå frem til en løsning, en forklaring, et forslag eller et produkt. Eleverne arbejder i grupper, når der spilles og leges, eller når der lægges op til at udveksle ideer og dele viden med andre for at styrke forståelsen af faglige begreber, pointer og strategier.

Bagerst i elevbogen findes et oplæg til aktiviteter, som forældre og børn kan afprøve sammen derhjemme. Aktiviteterne er udvalgt med fokus på at opnå gode oplevelser med matematikken og samtidig understøtte det faglige arbejde, der foregår i skolen.

Til hvert kapitel er der to aktiviteter med udgangspunkt i de faglige områder, som eleverne arbejder med i det specifikke kapitel. Aktiviteterne indeholder de samme faglige pointer og elementer som opgaverne i bogen. Der er også lagt vægt på, at aktiviteterne er nemme at gå til, og at de materialer, der skal anvendes, findes i hjemmet.

På denne måde kan forældrene få et indblik i, hvad der arbejdes med i undervisningen på skolen, og hvordan de bedst kan støtte elevernes faglige udvikling og trivsel.

Side til side-vejledning

Nederst på hver side i elevbogen findes en kort instruktion til de enkelte opgaver, som kan læses op for eleverne. Reflex er et omfattende undervisningsmateriale, der rummer mange muligheder. Det anbefales at prioritere kapitlernes indledende undersøgelse og omdrejningspunkt samt at lægge sig fast på en tidsperiode på 2-3 uger for arbejdet med hvert kapitel. På de enkelte opslag i elevbogen kan det være nødvendigt at vælge aktiviteter fra eller at anvende dem i forbindelse med andre fag, fx idræt, billedkunst eller i den understøttende undervisning. Mange af aktiviteterne er derfor vist med illustrationer, hvor eleverne ikke skal skrive eller tegne netop for at imødegå elevernes oplevelse af, at der er “huller” i bogen. I denne efterfølgende Side til side-vejledning uddybes formål, organisering og anvendte materialer for de enkelte opgaver.

Side 1

Min matematikrygsæk

Klasseaktivitet

Arbejdsark 1-2

Materialer: Sakse, lim og farveblyanter

Print arbejdsark 1, så der er et ark pr. elev. Eleverne skal vælge forskellige ting, der har med matematik at gøre og lægge dem i deres rygsæk. Formålet er, at eleverne udtrykker deres umiddelbare opfattelse af faget og samtidig får personliggjort deres matematikbog. Begynd med at læse spørgsmålet i taleboblen højt: “Hvad skal med i matematikrygsækken?” Tal efterfølgende med eleverne om, hvad de kunne forestille sig at have med i rygsækken.

Vejledende spørgsmål til klassesamtalen:

• Hvad kunne I tænke jer at have med i rygsækken i matematik?

• Hvad synes I, det er vigtigt at have med i rygsækken, når I har matematik?

• Kan I give eksempler på, hvornår I har brugt matematik derhjemme?

• Kan I give eksempler på, hvad I bruger matematik til?

• Hvilke redskaber og materialer bruger I, når I arbejder med matematik?

• Kan I give eksempler på nogle lege og spil, der har med matematik at gøre?

• Er der noget matematik, som I synes er særlig sjovt?

• Hvad tror I, at matematikbogen handler om?

• Bruger I også matematik på nettet?

Del arbejdsark 1 og 2 ud til eleverne. Brikkerne viser eksempler på, hvad eleverne kan have med i rygsækken. Vis også arbejdsarkene med brikkerne på en skærm i klassen og tal med eleverne om, hvad de synes, at brikkerne viser. På de første seks brikker er vist læringsmodulerne i Reflex, på de næste syv brikker er vist de matematikfaglige områder, På de næste fire brikker er vist hjælpemidler i matematik. På de sidste fire brikker vises forskellige samarbejdssituationer. Lad eleverne selv sætte ord på, hvad brikkerne viser. Når klassen har talt sammen om, hvad brikkerne viser, skal eleverne hver især finde fire til fem brikker, som de klipper ud og limer ind i rygsækken. Eleverne skal desuden skrive navn og klasse på rygsækken og farvelægge tegningen.

Vejledende spørgsmål til samtalen om brikkerne:

• Hvad synes du, at tegningerne på brikkerne viser?

• Er der noget, som du synes, det er særlig vigtigt at have med i rygsækken?

• Kan du finde brikker, der viser redskaber, der kan bruges i matematik?

• Kan du finde en brik, der viser noget om at spille eller lege i matematik?

• Kan du finde en brik, der viser noget om digitale hjælpemidler?

• Kan du finde brikker, der handler om at bruge sproget?

• Kan du finde en brik, der handler om samarbejde?

• Kan du finde brikker, der handler om matematiske emner, som fx tal, figurer, mønstre og sprog?

• Kan du finde en brik, der handler om at dele viden?

• Hvorfor har du valgt netop den brik?

• Vil du selv tegne noget, som du synes, er vigtigt?

Aktiviteten afsluttes med, at eleverne skal gå rundt mellem hinanden, finde sammen i par og vise og fortælle hinanden om deres valg. Eleverne kan bruge hjælpesætningen: Jeg har valgt..., fordi … eller Jeg har tegnet ..., fordi… Når eleverne har udvekslet deres valg, finder de sammen i nye par og gentager aktiviteten.

This article is from: