PCR primer design and marker development
Contact: Marwa Mahmoud Ghonaim marwa_ghonaim@yahoo.com
Polymerase Chain Reaction PCR primer design is the creation of short nucleotide sequences for use in amplifying region of DNA (random or specific regions): Amplifies a single or a few copies of DNA molecular to generate up to billion of copies of a particular DNA sequence. PCR is most common and often indispensable technique used in molecular biological research labs for a variety of applications.
PCR Method
The polymerase chain reaction (PCR) is a method by which DNA is amplified Method for exponential amplification of DNA sequences Basic requirements: – Template: DNA or RNA; – One or two DNA-oligonucleotides (also called DNA primers), are complementary to either end of the target sequence but lie on opposite strands; – Thermostable DNA polymerase (Taq, Tth, Pfu polymerases);
– Desoxynucleotides (dATP, dTTP, dCTP, dGTP) and appropriate reaction buffer;
The DNA synthesis and exonuclease activities of DNA polymerases
The DNA synthesis and exonuclease activities of DNA polymerases
Temperature cycling 3 step process: • Annealing temperature (usually 37-68°C) - primers hybridize to template • Extension temperature (usually 68-72°C) - DNApolymerase synthesized new DNA chain from primer • Denaturation temperature (usually 94-98°C) separates complemented DNA strands
• Process repeated for approximately 20 to 40 cycles
Polymerase Chain Reaction
Why are primers important?
• Primers are what gives PCR its SPECIFICITY! • Good primer design: PCR works correctly • Bad primer design: PCR works not efficient
PCR primers are designed to: Highly conserved DNA regions Protein-coding regions with low degeneracy More conserved regions that flank variable regions
PCR Primer Design
ďƒźPrimer design is a critical step in all types of PCR methods to ensure specific and efficient amplification of target sequence so it is the key for successful PCR.
General primer design guidelines Primer Specificity primers must be specific for desired sequence (conserved nucleotide or protein regions) to be amplified; Primer length primers should be long enough to ensure specificity (usually 18-30 bases), If the length is too short, it is difficult to design gene-specific primers and choose optimal annealing temperature;
• Good primer must be:
• no complementarity between forward and reverse primers or primers and product. • Melting temperature (55-80°C). Base composition • G+C content should be between 40% and 80%, with an even distribution of all four bases along the length of the primer.
PCR primers design factors Characteristics of primers: Specificity Specific for the intended target sequence (avoid nonspecific hybridization)
Thoughts on primer design: Uniqueness Linguistic Complexity Length
Stability Forms table duplex with template under PCR conditions
Melting Temperature Annealing Temperature Stability at the 3′ end in primer
Compatibility Primers used as a pairs shall work under the same PCR conditions
Primer Pair Matching
PCR primers design factors 1. Primer efficiency - of a reasonably high Tm, - without dimers, especially on their 3’-ends (to prevent self-extension), - without hairpin stems, especially on their 3’-ends (to prevent selfpriming), - Avoid repetitive sequences to ensure quick and correct annealing. - all primers in one incubation mixture should not form significant 3’dimers between each other. 2. High specificity - long enough to increase specificity, - unique, especially at its 3’-end, to avoid false priming, - moderately stable at its 3’-end (as opposed to highly GC-rich) to ensure that a very short fragment won’t initialize the extension (too low 3’-end stability hurts the priming efficiency).
Sequence linguistic complexity (LC) linguistic complexity : nucleotides arrangement and composition Linguistic complexity (LC) values for sequence length (s) are converted to percentages, in which 100% means maximal ‘vocabulary richness’ of a sequence: Primer sequence
LC, %
5’-AAAAAAAAAAAAAAAAAAAAA
8
5’-ACACACACACACACACACACA
15
5’-TTTTTTTTTTGGGGGGGGGAG
36
5’-GCTACCAATGAGAAGGTCACGT
98
5’-TGTTCTCCCATAGCACAAGAGGA
98
5’-TGGCTATTCTGAACCAGCGTTGC
100
Uniqueness
optimal primers should hybridize only to the target sequence, particularly when complex genomic DNA is used as the template. Amplification problems can arise due to primers annealing to repetitious sequences (retrotransposons, DNA transposons, or tandem repeats).
ďƒ˜To improve Uniqueness avoid regions of homology. Primers designed for a sequence must not amplify other genes in the mixture. ďƒ˜You can BLAST the templates against the appropriate database. It will identify regions with significant cross homologies in each template and avoid them during primer search.
Length Primer length has effects on uniqueness and
melting/annealing temperature: • the longer the primer, the more chance that it’s unique (18-30 bases) • the longer the primer, the higher melting/annealing temp.
3’ Stability & 5’ Stability: Primer elongation starts at 3’ end. Therefore, once the 3’ end hybridizes to the template stably, the elongation begins. 5’ end sequence plays less important role. The presence of G or C bases within the last five bases from the 3' end of primers (GC clamp) helps promote specific binding at the 3' end due to the stronger bonding of G and C bases. Ideal situation: More than 3 G's or C's should be avoided in the last 5 bases at the 3' end of the primer.
Melting temperature (Tm) calculation the temperature in degrees Celsius, at which 50% of all molecules of a given DNA sequence are hybridized into a double strand, and 50% are present as single strands. Factors affecting Tm: Concentration of DNA. Concentration of ions in the solution, most notably Mg+ and K+.
DNA sequence. Length of DNA.
Generally, sequences with higher fraction of GC base pairs, have a higher Tm than do AT-rich sequences.
The simplest equation based on base content is the “Wallace rule” (where L is the length of the hybrid duplex in base pairs):
Tm ( C ) 2( L G C )
Melting temperature (Tm) calculation
The stability of the DNA double helix depends on a fine balance of interactions including hydrogen bonds between bases. Base-stacking interactions increase with increasing salt concentration, as high salt concentrations mask the destabilising charge repulsion between the two negatively charged phosphodiester backbones. DNA duplex stability therefore increases with increasing salt concentration. Divalent cations such as Mg2+ are more stabilising than Na+ ions, and some metal ions bind to specific loci on the DNA duplex.
Annealing Temperature (Ta) calculation The range of temperatures where efficiency of PCR amplification is maximal without non-specific products. Generally, you should use an annealing temperature about 5°C below the Tm of your primers. The optimal annealing temperature (Ta Opt) for any given primer pair on a particular target can be calculated as follows:
Ta = 0.3 x Tm(primer) + 0.7 Tm (product) – 14.9 where, Tm(primer) = Melting Temperature of the primers Tm(product) = Melting temperature of the product
Too high Ta
primer-template hybridization
low PCR
product yield.
Too low Ta
non-specific products
caused by a high
number of base pair mismatches,. Mismatch tolerance have the strongest influence on PCR specificity.
Annealing Temperature (Ta) calculation Gradient of PCR annealing Tm: 45 - 58 C
Tm Taopt Taopt-Tm
40 52 12
41 54 13
49 >58 ~10
45 56 11
53 >58 ~10
55 >58 ~10
CG%
50%
50%
67%
58%
75%
75%
Secondary Structure ď śThe Presence of the primer secondary structures produced by intermolecular or intramolecular interactions can lead to poor or no yield of the product. They adversely affect primer template annealing and thus the amplification. Hairpins: It is formed by intramolecular interaction within the primer and should be avoided.
ďƒ˜
Self Dimer: formed by intermolecular interactions between the two (same sense) primers, where the primer is homologous to itself.

Generally a large amount of primers are used in PCR compared to the amount of target gene. When primers form intermolecular dimers much more readily than hybridizing to target DNA, they reduce the product yield.
ďƒ˜ Cross Dimer: Primer cross dimers are formed by intermolecular interaction between sense and antisense primers, where they are homologous.
Intra-molecular interactions will give rise to hairpins inter-molecular hybridization will give rise to dimers.
Primer dimer detection criteria (A–C) Interactions between primers; (D) Hairpin structures; (E) Undesirable binding of primers to template sequence.
Primer-dimers involving one or two sequences may occur in a PCR reaction. Stable primer dimer formation is very effective at inhibiting PCR since the dimers formed are amplified efficiently and compete with the intended target.
What is a primer-dimer
3’-end dimer:
5’-end and internal dimers:
Complementarity • PRIMER-PRIMER – Excessive similarity between primers, especially at the 3’ ends, leads to the formation of “primer dimers” • PRIMER-TARGET – Ideally should be 100% similar for maximal specificity. – Primers don’t HAVE to be perfectly similar to target to work.
ďƒ˜ Repeats:
A repeat is a di-nucleotide occurring many times
consecutively and should be avoided because they can misprime. For example: ATATATAT. A maximum number of di-nucleotide repeats
acceptable in an oligo is 4 di-nucleotides. ďƒ˜Runs: Primers with long runs of a single base should generally be
avoided as they can misprime. For example, AGCGGGGGATGGGG has runs of base 'G' of value 5 and 4. A maximum number of runs accepted is 4bp.
for Primer Design: Fixed Primers, Vary Conditions • With a given primer pair, the Tm can be calculated. • Run multiple PCR reactions, each using a different annealing temperature (= Tm - 5). • “Bracket” Ta: – 10C, -5C, 0C, +5C, +10C • Temp too low: Smearing due to non-specific priming • Temp too high: No amplification due to no priming • Choose conditions which give the best results.
Web sites related to PCR primer designer
PrimerDigital online tools: http://primerdigital.com/tools/ NCBI/Primer-BLAST (Primer3): http://www.ncbi.nlm.nih.gov/tools/primer-blast/ Oligomer online PCR tools: http://www.oligomer.fi/en/analyysityokalut IDT online SciTools: http://idtdna.com/scitools/scitools.aspx
MWG /Operon tools: http://www.eurofinsgenomics.eu/
sequence
PrimerID
Sequence(5'-3')
Tm(째C)
Primer_Quality(%)
PCR_Fragment_Size(bp)
1F33_1_651-671
tacctctggggagcaacttgg
59.2
92
1R83_1_756-777
gtagctgatgaactcggagtgc
57.5
95
1F39_1_745-764
ctgatcaagaagcactccga
54.7
93
1R35_1_1788-1807
ccttgatgaccttgcagagg
55.8
93
1F39_1_745-764
ctgatcaagaagcactccga
54.7
93
1R27_1_1938-1957
acccagacatgctggagtcc
59.5
93
1F47_1_1013-1033
tctacaagagcttgaccaacg
54.9
93
1R73_1_1046-1065
gaagtgcttcacggcaagat
56.2
93
1F47_1_1013-1033
tctacaagagcttgaccaacg
54.9
93
1R35_1_1788-1807
ccttgatgaccttgcagagg
55.8
93
1F47_1_1013-1033
tctacaagagcttgaccaacg
54.9
93
1R27_1_1938-1957
acccagacatgctggagtcc
59.5
93
1F48_1_1039-1058
gaggagcatcttgccgtgaa
57.9
93
1R54_1_1419-1438
tggagtcctcgtggatgcca
61.2
93
1F48_1_1039-1058
gaggagcatcttgccgtgaa
57.9
93
1R35_1_1788-1807
ccttgatgaccttgcagagg
55.8
93
1F48_1_1039-1058
gaggagcatcttgccgtgaa
57.9
93
1R30_1_1893-1912
gctccatgttggcggtccaa
61.1
93
1F48_1_1039-1058
gaggagcatcttgccgtgaa
57.9
93
1R27_1_1938-1957
acccagacatgctggagtcc
59.5
93
Topt(째C)
127
62
1063
61
1213
61
53
58
795
61
945
61
400
63
769
62
874
64
919
64
Primer Evaluation
Primer list analysis
nt A T C G GC% Tm°C Molecular Weight(g/mole) nmol µg/OD260 Linguistic_Complexity(%) Primer's_PCR_Efficiency(%)
Name
Sequence
1f33_1_651-671
tacctctggggagcaacttgg
21 4 5 5 7
57.1
59.2
6462.2
5.1
32.7
87
92
1r83_1_756-777
gtagctgatgaactcggagtgc
22 5 5 4 8
54.5
57.5
6815.5
4.6
31.6
90
95
1f39_1_745-764
ctgatcaagaagcactccga
20 7 3 6 4
50
54.7
6095
5.1
30.9
86
93
1r35_1_1788-1807 ccttgatgaccttgcagagg
20 4 5 5 6
55
55.8
6133
5.3
32.6
76
93
1f39_1_745-764
ctgatcaagaagcactccga
20 7 3 6 4
50
54.7
6095
5.1
30.9
86
93
1r27_1_1938-1957 acccagacatgctggagtcc
20 5 3 7 5
60
59.5
6087
5.2
31.9
89
93
1f47_1_1013-1033 tctacaagagcttgaccaacg
21 7 4 6 4
47.6
54.9
6399.2
4.9
31.3
89
93
1r73_1_1046-1065 gaagtgcttcacggcaagat
20 6 4 4 6
50
56.2
6166.1
5.1
31.1
92
93
1f47_1_1013-1033 tctacaagagcttgaccaacg
21 7 4 6 4
47.6
54.9
6399.2
4.9
31.3
89
93
1r35_1_1788-1807 ccttgatgaccttgcagagg
20 4 5 5 6
55
55.8
6133
5.3
32.6
76
93
1f47_1_1013-1033 tctacaagagcttgaccaacg
21 7 4 6 4
47.6
54.9
6399.2
4.9
31.3
89
93
1r27_1_1938-1957 acccagacatgctggagtcc
20 5 3 7 5
60
59.5
6087
5.2
31.9
89
93
1f48_1_1039-1058 gaggagcatcttgccgtgaa
20 5 4 4 7
55
57.9
6182.1
5.1
31.3
92
93
1r54_1_1419-1438 tggagtcctcgtggatgcca
20 3 5 5 7
60
61.2
6149
5.3
32.6
84
93
1f48_1_1039-1058 gaggagcatcttgccgtgaa
20 5 4 4 7
55
57.9
6182.1
5.1
31.3
92
93
1r35_1_1788-1807 ccttgatgaccttgcagagg
20 4 5 5 6
55
55.8
6133
5.3
32.6
76
93
1f48_1_1039-1058 gaggagcatcttgccgtgaa
20 5 4 4 7
55
57.9
6182.1
5.1
31.3
92
93
1r30_1_1893-1912 gctccatgttggcggtccaa
20 3 5 6 6
60
61.1
6109
5.4
33.1
84
93
1f48_1_1039-1058 gaggagcatcttgccgtgaa
20 5 4 4 7
55
57.9
6182.1
5.1
31.3
92
93
1r27_1_1938-1957 acccagacatgctggagtcc
20 5 3 7 5
60
59.5
6087
5.2
31.9
89
93
Primer Evaluation • Let’s assume we selected the first primer pair (for + rev) • Website for online primer evaluation:
Enter Sequence
TCATTGTTTGCCTCCCTGC TAGAAACCCCAACCCGTGAAA
Live Example Primer Design Primer Design Workflow: 1. Pick a gene. ie. BRCA1 2. Pull up sequence for the gene. a. http://www.ncbi.nlm.nih.gov/ b. search Nucleotide Database for brca1 c. scroll through accessions for desired one 3. Copy sequence to text editor. 4. Pull up a primer design website. a. http://frodo.wi.mit.edu/ b. copy sequence c. select options and choose Pick Primers 4b. Verify primers find target (optional) a. http://www.ncbi.nlm.nih.gov/BLAST/ b. select nucleotide blast c. enter primer sequence, choose blast 4c. Analyse and double-check the primers a. http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/Default.aspx b. enter sequence, view 5. Order oligos. a. http://www.operon.com
Tool name
URL
CODEHOP
http://blocks.fhcrc.org/codehop.html
Gene Fisher
http://bibiserv.techfak.uni-bielefeld.de/genefisher/
DoPrimer
http://doprimer.interactiva.de/
Primer3
http://frodo.wi.mit.edu/primer3/
Primer Selection
Http://alces.med.umn.edu/rawprimer.html
Web Primer
http://genome.www2.stanford.edu/cgi.bin/SGD/web.primer
PCR designer
http://cedar.genetics.ston.ac.uk/public_html/primer.html
Primo pro 3.4
http://www.changbioscience.com/primo.html
Primo Degenerate
http://www.changbioscience.com/primo/primod.html
3.4 PCR Primer Design
http://pga.mgh.harvard.edu/serviet/org.mgh.proteome.primer
The Primer
http://www.med.jhu.edu/medcenter/primer/primer.cgi
Generator EPRIMERS
http://bioweb.pasteur.fr/seqanal/interfaces/eprimer3.html
PRIMO
http://bioweb.pasteur.fr/seqanal/interfaces/eprimo.html3
PrimerQuest
http://www.idtdna.com/biotools/primer_quest/primer_quest.asp
MethPrimer
http://itsa.uscf/~uralab/methprimer/index1.html
Rawprimer
http://alces.med.umn.edu/rawprimer.html
MEDUSA
http://www.cgr.ki.se/cgr/MEDUSA/
The Primer Prim’er
http://www.nmr.cabm.rutgers.edu/bioinformatics/primer_primer_proj
Project
ect/primer.html
GAP
http://promoter.ics.uci.edu/primers/
54
Software name Primerselect
Description Analyses a template DNA sequence and chooses primer pairs for PCR and primers for DNA sequencing
DANSIS Max
DANASIS Max is a fully integrated program that includes a wide range of standard sequence analysis features.
Primer Primer 5
Primer design for windows and power macintosh.
Primer Primer:
Comprehensive primer design for windows and Power Macintosh.
NetPrimer
Comprehensive analysis of individual primers and primer pairs.
Array Designer 2
For fast, effective design of specific oligos or PCR primer pairs for microarrays.
AlleleID 7
Design molecular beacons and TaqMan probes for robust amplification and fluorescence in real time PCR.
GenomePRIDE 1.0
Primer design for DNA-arrays/chips.
Fast PCR
Software for Microsoft Windows has specific. Ready-to-use template for many PCR and sequencing applications; standard and long PCR inverse PCR. Degenerate PCR directly on amino acid sequence. Multiplex PCR.
OLIGO 7
Primer Analysis Software for Mac and Windows.
Primer Designer 4
Will find optimal primers in target regions of DNA or protein molecules, amplify leatures in molecules, or create products of a specified length.
GPRIME
Software for primer design.
Sarani Gold
Genome Oligo Designer is a Software for automatic large scale design of optimal oligonucleotide probes for microarray experiments.
PCR Help
Primer and template design and analysis.
Genorama chip Design
Genorama Chip Design Software is a complete set of programs required for
Software
genotyping chip design.The programs can also be bought separately.
Primer Designer
The Primer Designer features a powerful, yet extremely simple, real-time interface to allow the rapid identification of theoretical ideal primers for your PCR reactions.
Primer Primer
Automatic design tools for PCR. Sequencing or hybridization probes, degenerate primer design, restriction, Nested/Multiplex primer design, restriction enzyme analysis and more.
PreimerDesign
DOS-program to choose primer for PCR or oligonucleotide probes.
55
How we use primers in Retro-markers
There are several techniques using retroelements as molecular markers:
S-SAP (Sequence-Specific Amplified Polymorphism) IRAP (Inter Retrotransposon Amplified Polymorphism) REMAP (REtrotransposon Microsatellite Amplification polymorphisms) RBIP (Retrotransposons-Based Insertion Polymorphism) iPBS (inter Primer Binding Sites amplification)
iPBS (inter Primer Binding Sites amplification)