324
CAPíTuLO 8
Relaciones periódicas entre los elementos
8.1 Desarrollo de la tabla periódica En el siglo xix, cuando los químicos sólo tenían una vaga idea respecto de los átomos y las moléculas, y sin saber aún de la existencia de los electrones y protones, desarrollaron una tabla periódica utilizando su conocimiento de las masas atómicas. Ya se habían hecho mediciones exactas de la masa atómica de muchos elementos. Ordenar los elementos de acuerdo con sus masas atómicas en una tabla periódica parecía una idea lógica para los químicos de aquella época, quienes pensaban que el comportamiento químico debería estar relacionado, de alguna manera, con las masas atómicas. En 1864, el químico inglés John Newlands1 observó que cuando los elementos se ordenaban según sus masas atómicas, cada octavo elemento mostraba propiedades semejantes. Newlands se refirió a esta peculiar relación como la ley de las octavas. Sin embargo, tal “ley” resultó inadecuada para elementos de mayor masa que el calcio, por lo cual el trabajo de Newlands fue rechazado por la comunidad científica. En 1869, el químico ruso Dmitri Mendeleev2 y el químico alemán Lothar Meyer3 propusieron de manera independiente una disposición en tablas mucho más amplia para los elementos, basada en la repetición periódica y regular de sus propiedades. El sistema de clasificación de Mendeleev superó sobremanera al de Newlands, en particular en dos aspectos. Primero, agrupó los elementos en forma más exacta, de acuerdo con sus propiedades, y segundo, porque hizo viable la predicción de las propiedades de varios elementos que aún no se descubrían. Por ejemplo, Mendeleev planteó la existencia de un elemento desconocido que llamó ekaaluminio y predijo algunas de sus propiedades (eka es una palabra en sánscrito que significa “primero”; así, el eka-aluminio sería el primer elemento bajo el aluminio en el mismo grupo). Cuando se descubrió el galio cuatro años más tarde, notó que sus propiedades coincidían significativamente con las propiedades que pronosticó para el eka-aluminio: Masa atómica Punto de fusión Densidad Fórmula del óxido
El galio se funde en la mano de una persona (la temperatura corporal es de aproximadamente 37°C).
En el apéndice 1 se explican los nombres y los símbolos de los elementos.
Eka-aluminio (Ea) 68 uma Bajo 5.9 g/cm3 Ea2O3
Galio (Ga) 69.9 uma 29.78°C 5.94 g/cm3 Ga2O3
La tabla periódica de Mendeleev incluyó los 66 elementos que se conocían hasta entonces. En 1900 ya se habían incorporado en la lista alrededor de 30 elementos más, con lo que se completaron algunos de los espacios vacíos. En la figura 8.1 se muestra una tabla cronológica del descubrimiento de los elementos. A pesar de que esta tabla periódica tuvo gran éxito, sus primeras versiones mostraron algunas incongruencias. Por ejemplo, la masa atómica del argón (39.95 uma) es mayor que la del potasio (39.10 uma). Si los elementos se hubieran ordenado sólo de acuerdo con su masa atómica creciente, el argón debería aparecer en la posición que ocupa el potasio en la tabla periódica actual (vea la parte interna de la cubierta del libro). Pero ningún químico colocaría el argón, un gas inerte, en el mismo grupo que el litio y el sodio, dos metales muy reactivos. Dichas discrepancias sugirieron que otra propiedad diferente a la masa atómica debería ser la base de la periodicidad observada. Resultó que dicha propiedad se relaciona con el número atómico, concepto desconocido para Mendeleev y sus contemporáneos. 1
John Alexander Reina Newlands (1838-1898). Químico inglés. El trabajo de Newlands constituyó un paso más en el camino correcto para la clasificación de los elementos. Por desgracia, debido a sus limitaciones, fue blanco de muchas críticas, e incluso ridiculizado. En una reunión se le preguntó si alguna vez había tratado de examinar los elementos en orden alfabético. Sin embargo, en 1887, Newlands fue honrado por la Real Sociedad de Londres por sus contribuciones.
2
Dmitri Ivanovich Mendeleev (1836-1907). Químico ruso. Su trabajo acerca de la clasificación periódica de los elementos es considerado por muchos como el logro más importante en la química del siglo xix.
3
Julius Lothar Meyer (1830-1895). Químico alemán. Además de su contribución a la tabla periódica, Meyer también descubrió la afinidad química de la hemoglobina por el oxígeno.
08_CHAPTER 8.indd 324
12/20/09 5:32:23 PM
8.1
Tiempos antiguos
1735–1843
1894–1918
Edad Media-1700
1843–1886
1923–1961
1965–
1
2
H 3
Li 11
Na 19
K
37
Rb 55
Cs 87
Fr
325
Desarrollo de la tabla periódica
He 4
5
Be 12
Mg 20
21
Sc
38
39
Sr 56
Ba 88
Ra
Y
57
22
Ti 40
Zr
V
41
Nb
O
13
14
15
16
42
Mo
43
Tc
44
27
Co 45
Ru
Rh
28
Ni 46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
35
Br
52
53
Te
Hg
Tl
Pb
Bi
Po
At
Rn
89
104
105
106
107
108
109
110
111
112
113
114
115
116
(117)
118
90
Th
59
60
Pr
Nd
91
92
Pa
U
61
Pm 93
Np
62
Sm 94
Pu
63
Eu 95
Am
64
Gd 96
Cm
65
Tb 97
Bk
66
Dy 98
Cf
67
Ho 99
Es
68
Er 100
Fm
69
85
54
Xe
Au
58
84
I
36
Kr
Pt
Ce
83
34
Se
Ir
Rg
82
33
As
77
Ds
81
32
Ge
76
Mt
80
31
Ga
18
Ar
Os Hs
79
30
Zn
17
Cl
Re Bh
78
29
Cu
S
W Sg
75
26
Fe
P
10
Ne
Ta Db
74
25
Mn
Si
9
F
Hf Rf
73
24
Cr
8
N
La Ac
72
23
7
C
Al
Ca
6
B
70
86
71
Tm
Yb
Lu
101
102
103
Md
No
Lr
Figura 8.1 Tabla cronológica del descubrimiento de los elementos. Hasta la fecha se han identificado 117 elementos. Al utilizar los datos experimentales de dispersión de partículas a (vea la sección 2.2), Rutherford calculó el número de cargas positivas que había en el núcleo de algunos elementos, pero la importancia de esos números se comprendió unos años más tarde. En 1913, el joven físico inglés, Henry Moseley,4 descubrió una correlación entre lo que él llamó número atómico y la frecuencia de los rayos X que se generaban al bombardear un elemento con electrones de alta energía. Moseley observó que la frecuencia de los rayos X emitidos por los elementos se podía correlacionar con la ecuación v = a( Z – b)
(8.1)
donde v es la frecuencia de los rayos X emitidos y a y b son constantes para todos los elementos. Así, a partir de la raíz cuadrada de la frecuencia medida de los rayos X emitidos, es posible determinar el número atómico de un elemento. Con muy pocas excepciones, Moseley encontró que el número atómico aumenta en el mismo orden que la masa atómica. Por ejemplo, el calcio es el vigésimo elemento en orden de masa atómica creciente y tiene un número atómico de 20. Ahora cobraban sentido las discrepancias que habían desconcertado a los antiguos científicos. El número atómico del argón es 18, y el del potasio, 19, por lo que este último debe colocarse después del argón en la tabla periódica. 4
Henry Gwyn-Jeffreys Moseley (1887-1915). Físico inglés. Moseley descubrió la relación entre el espectro de rayos X y el número atómico. Lugarteniente de los Ingenieros Reales, murió en combate a la edad de 28 años durante la campaña británica en Gallipoli, Turquía.
08_CHAPTER 8.indd 325
12/20/09 5:32:26 PM
326
CAPíTuLO 8
Relaciones periódicas entre los elementos
Por lo general, una tabla periódica moderna indica el número atómico junto al símbolo del elemento. Como ya se sabe, el número atómico también señala el número de electrones en los átomos de un elemento. La configuración electrónica de los elementos ayuda a explicar la repetición de las propiedades físicas y químicas. La importancia y la utilidad de la tabla periódica radican en el hecho de que mediante el conocimiento de las propiedades y las tendencias generales dentro de un grupo o periodo, se predicen, con bastante exactitud, las propiedades de cualquier elemento, aun cuando sea un elemento poco conocido.
8.2 Clasificación periódica de los elementos En la figura 8.2 se muestra la tabla periódica junto con la configuración electrónica en estado fundamental de los electrones externos de los elementos. (Las configuraciones electrónicas de los elementos también se encuentran en la tabla 7.3.) Empezando con el hidrógeno, observamos que los subniveles se llenan en el orden que se aprecia en la figura 7.24. De acuerdo con el tipo de subnivel que se ha llenado, los elementos se dividen en categorías: los elementos representativos, los gases nobles, los elementos de transición (o metales de transición), los lantánidos y los actínidos. Los elementos representativos (llamados también elementos del grupo principal) son los elementos de los grupos 1A a 7A, todos los cuales tienen incompletos los subniveles s o p del máximo número cuántico principal. Con excepción del helio, los gases nobles (los elementos del grupo 8A) tienen el subnivel p completamente lleno. (Las configuraciones electrónicas son 1s2 para el helio y ns2np6 para el resto de los gases nobles, donde n es el número cuántico principal del nivel más alto.) Los metales de transición son los elementos de los grupos 1B y 3B hasta 8B, los cuales tienen incompleto el subnivel d, o forman fácilmente cationes con el subnivel d incompleto.
1 1A
18 8A
1
1 H 1s1
2 2A
13 3A
14 4A
15 5A
16 6A
17 7A
2 He 1s2
2
3 Li 2s1
4 Be 2s2
5 B 2s22p1
6 C 2s22p2
7 N 2s22p3
8 O 2s22p4
9 F 2s22p5
10 Ne 2s22p6
3
11 Na 3s1
12 Mg 3s2
3 3B
4 4B
5 5B
6 6B
7 7B
8
9 8B
10
11 1B
12 2B
13 Al 3s23p1
14 Si 3s23p2
15 P 3s23p3
16 S 3s23p4
17 Cl 3s23p5
18 Ar 3s23p6
4
19 K 4s1
20 Ca 4s2
21 Sc 4s23d1
22 Ti 4s23d2
23 V 4s23d3
24 Cr 4s13d5
25 Mn 4s23d5
26 Fe 4s23d6
27 Co 4s23d7
28 Ni 4s23d8
29 Cu 4s13d10
30 Zn 4s23d10
31 Ga 4s24p1
32 Ge 4s24p2
33 As 4s24p3
34 Se 4s24p4
35 Br 4s24p5
36 Kr 4s24p6
5
37 Rb 5s1
38 Sr 5s2
39 Y 5s24d1
40 Zr 5s24d2
41 Nb 5s14d4
42 Mo 5s14d5
43 Tc 5s24d5
44 Ru 5s14d7
45 Rh 5s14d8
46 Pd 4d10
47 Ag 5s14d10
48 Cd 5s24d10
49 In 5s25p1
50 Sn 5s25p2
51 Sb 5s25p3
52 Te 5s25p4
53 I 5s25p5
54 Xe 5s25p6
6
55 Cs 6s1
56 Ba 6s2
57 La 6s25d1
72 Hf 6s25d2
73 Ta 6s25d3
74 W 6s25d4
75 Re 6s25d5
76 Os 6s25d6
77 Ir 6s25d7
78 Pt 6s15d9
79 Au 1 6s 5d10
80 Hg 2 6s 5d10
81 Tl 6s26p1
82 Pb 6s26p2
83 Bi 6s26p3
84 Po 6s26p4
85 At 6s26p5
86 Rn 6s26p6
7
87 Fr 7s1
88 Ra 7s2
89 Ac 7s26d1
104 Rf 7s26d2
105 Db 7s26d3
106 Sg 7s26d4
107 Bh 7s26d5
108 Hs 7s26d6
109 Mt 7s26d7
110 Ds 7s26d8
111 Rg 7s26d9
112
113
114
115
116
(117)
7s26d10
7s27p1
7s27p2
7s27p3
7s27p4
58 Ce 6s24f15d1
59 Pr 6s24f3
60 Nd 6s24f4
61 Pm 6s24f5
62 Sm 6s24f6
63 Eu 6s24f7
64 Gd 6s24f75d1
65 Tb 6s24f9
66 Dy 6s24f10
67 Ho 6s24f11
68 Er 6s24f12
69 Tm 6s24f13
70 Yb 6s24f14
71 Lu 6s24f145d1
90 Th 7s26d2
91 Pa 7s25f26d1
92 U 7s25f36d1
93 Np 7s25f46d1
94 Pu 7s25f6
95 Am 7s25f7
96 Cm 7s25f76d1
97 Bk 7s25f9
98 Cf 7s25f10
99 Es 7s25f11
100 Fm 7s25f12
101 Md 7s25f13
102 No 7s25f14
103 Lr 7s25f146d1
118 7s27p6
Figura 8.2 Configuraciones electrónicas de los elementos en estado fundamental. Para simplificar, sólo se muestran las configuraciones de los electrones externos.
08_CHAPTER 8.indd 326
12/20/09 5:32:28 PM
8.2
(Algunas veces se hace referencia a estos metales como los elementos de transición del bloque d.) La numeración no secuencial de los metales de transición en la tabla periódica (es decir, 3B–8B, seguida por 1B–2B) obedece a la correspondencia que existe entre la configuración electrónica externa de estos elementos con la de los elementos representativos. Por ejemplo, tanto el escandio como el galio tienen tres electrones externos. Sin embargo, como se encuentran en diferentes tipos de orbitales atómicos, se colocan en distintos grupos (3A y 3B). Los metales hierro (Fe), cobalto (Co) y níquel (Ni) no cumplen con esta clasificación y los tres se colocan en el grupo 8B. Los elementos del grupo 2B, Zn, Cd y Hg, no son elementos representativos ni metales de transición. Este grupo de metales no tiene un nombre especial. Cabe hacer notar que la designación de grupos A y B no es universal. En Europa se utiliza B para los elementos representativos y A para los metales de transición, que es justamente lo opuesto al convenio de Estados unidos. La unión Internacional de Química Pura y Aplicada (IuPAC, por sus siglas en inglés) recomienda numerar las columnas de manera secuencial con números arábigos, desde 1 hasta 18 (vea la figura 8.2). Esta propuesta ha generado grandes controversias en la comunidad química internacional y se están analizando tanto las ventajas como los inconvenientes que presenta. En este texto utilizaremos el convenio de Estados unidos. Los lantánidos y los actínidos algunas veces se denominan elementos de transición del bloque f porque su subnivel f está incompleto. En la figura 8.3 se muestran los grupos de los elementos aquí estudiados. La reactividad química de los elementos está determinada en gran parte por sus electrones de valencia, que son los electrones que ocupan el nivel de energía externo. Para los elementos representativos, los electrones de valencia son los que ocupan el más alto nivel de energía n. Todos los electrones que no son de valencia en un átomo reciben el nombre de electrones internos. Al observar una vez más las configuraciones electrónicas de los elementos
1 1A 1
H 3
Li 11
Na 19
K
37
Rb 55
Cs 87
Fr
2 2A 4
Be 12
Mg 20
3 3B 21
Ca
Sc
38
39
Sr 56
Ba 88
Ra
Y
57
Elementos representativos
Zinc Cadmio Mercurio
Gases nobles
Lantánidos
Metales de transición
Actínidos
4 4B
5 5B
22
23
Ti 40
Zr
41
Nb
42
Mo
43
Tc
44
27
Co 45
Ru
Rh
5
10 28
Ni 46
Pd
29
Cu 47
Ag
30
Zn 48
Cd
8
B
C
N
O
13
14
15
16
Al 31
Ga 49
In
32
Ge 50
Sn
33
As 51
Sb
34
17
Cl 35
Se
Br
52
53
Te
54
Xe
Hg
Tl
Pb
Bi
Po
At
Rn
89
104
105
106
107
108
109
110
111
112
113
114
115
116
(117)
118
90
Th
59
60
Pr
Nd
91
92
Pa
U
61
Pm 93
Np
62
Sm 94
Pu
63
Eu 95
Am
64
Gd 96
Cm
65
Tb 97
Bk
66
Dy 98
Cf
67
Ho 99
Es
68
Er 100
Fm
69
85
36
Kr
Au
58
84
I
18
Ar
Pt
Ce
83
S
10
Ne
Ir
Rg
82
P
9
F
2
He
77
Ds
81
Si
17 7A
76
Mt
80
7
16 6A
Os Hs
79
12 2B
6
15 5A
Re Bh
78
11 1B
14 4A
W Sg
75
26
Fe
9 8B
13 3A
Ta Db
74
25
Mn
8
18 8A
Hf Rf
73
24
Cr
7 7B
Para los elementos representativos, los electrones de valencia son simplemente aquellos electrones en el nivel n de la energía principal más alta.
La Ac
72
V
6 6B
327
Clasificación periódica de los elementos
70
86
71
Tm
Yb
Lu
101
102
103
Md
No
Lr
Figura 8.3 Clasificación de los elementos. Observe que los elementos del grupo 2B muchas veces se clasifican como metales de transición a pesar de no presentar las características de dichos metales.
08_CHAPTER 8.indd 327
12/20/09 5:32:31 PM
328
CAPíTuLO 8
TABLA 8.1 Configuraciones electrónicas de los grupos 1A y 2A Grupo 1A Li Na K Rb Cs Fr
[He]2s1 [Ne]3s1 [Ar]4s1 [Kr]5s1 [Xe]6s1 [Rn]7s1
Grupo 2A Be Mg Ca Sr Ba Ra
[He]2s2 [Ne]3s2 [Ar]4s2 [Kr]5s2 [Xe]6s2 [Rn]7s2
Relaciones periódicas entre los elementos
representativos, surge un patrón claro: todos los elementos en un grupo determinado tienen el mismo número y tipo de electrones de valencia. La similitud de configuraciones electrónicas de valencia es lo que hace que los elementos en un mismo grupo tengan un comportamiento químico parecido. Por tanto, todos los metales alcalinos (los elementos del grupo 1A), por ejemplo, tienen la configuración electrónica de valencia ns1 (tabla 8.1) y tienden a perder un electrón para formar los cationes monopositivos. De manera similar, todos los metales alcalinotérreos (los elementos del grupo 2A) tienen una configuración electrónica de valencia ns2, y todos tienden a perder dos electrones para formar los cationes dipositivos. Sin embargo, debemos tener cuidado al predecir las propiedades de los elementos con base únicamente en su “pertenencia a un grupo”. Por ejemplo, todos los elementos del grupo 4A tienen las mismas configuraciones electrónicas de valencia ns2np2, pero hay una variación notable en las propiedades químicas entre los elementos: el carbono es un no metal, el silicio y el germanio son metaloides y el estaño y el plomo son metales. Como grupo, los gases nobles se comportan de manera muy similar. El helio y el neón son químicamente inertes, y hay algunos ejemplos de compuestos formados por los otros gases nobles. Esta carencia de reactividad química se debe a sus subniveles ns y np completamente llenos, una condición que suele correlacionarse con una gran estabilidad. Aunque la configuración electrónica de valencia de los metales de transición no siempre es la misma dentro de un grupo y no hay un patrón regular en el cambio de la configuración electrónica de un metal al siguiente en el mismo periodo, todos los metales de transición comparten muchas características que los distinguen de los demás elementos. La razón es que todos estos metales tienen un subnivel d incompleto. De igual manera, los elementos lantánidos (y los actínidos) se parecen entre sí, pues tienen subniveles f sin completar. EjEmpLo 8.1 un átomo de cierto elemento tiene 15 electrones. Sin consultar la tabla periódica, responda las siguientes preguntas: a) ¿Cuál es la configuración electrónica del elemento en estado fundamental? b) ¿Cómo debe clasificarse el elemento? c) ¿Los átomos de este elemento son diamagnéticos o paramagnéticos?
Estrategia a) Procedemos con base en el principio de construcción progresiva que se analizó en la sección 7.9, y escribimos la configuración electrónica con el número cuántico principal n = 1 y se continúa así hasta que todos los electrones se han acomodado. b) ¿Cuál es la configuración electrónica característica de los elementos representativos?; ¿de los elementos de transición?; ¿de los gases nobles? c) Examine el esquema de apareamiento de los electrones en el nivel externo. ¿Qué determina que un elemento sea diamagnético o paramagnético?
Solución a) Sabemos que para n = 1 tenemos un orbital 1s (2 electrones); para n = 2
tenemos un orbital 2s (2 electrones) y tres orbitales 2p (6 electrones); para n = 3 se cuenta con un orbital 3s (2 electrones). El número de electrones restantes es de 15 – 12 = 3 y estos tres electrones se colocan en los orbitales 3p. La configuración electrónica es 1s22s22p63s23p3. b) Debido a que el subnivel 3p no está completamente lleno, es un elemento representativo. Con base en la información proporcionada, es difícil precisar si se trata de un metal, un no metal o un metaloide. c) De acuerdo con la regla de Hund, los tres electrones de los orbitales 3p tienen espines paralelos (3 electrones desapareados). Como consecuencia, los átomos de este elemento son paramagnéticos. Problema similar: 8.20.
Verificación Note que para b) un metal de transición posee un subnivel d que no está lleno por completo y que un gas noble tiene un nivel externo totalmente lleno. Para c), recuerde que si los átomos de un elemento contienen un número non de electrones, el elemento debe ser paramagnético. Ejercicio de práctica un átomo neutro de cierto elemento tiene 20 electrones. a) Escriba la configuración electrónica del elemento en estado fundamental, b) clasifique el elemento y c) determine si el elemento es diamagnético o paramagnético.
08_CHAPTER 8.indd 328
12/20/09 5:32:32 PM
8.2
Clasificación periódica de los elementos
329
Representación de los elementos libres en las ecuaciones químicas una vez que se han clasificado los elementos de acuerdo con su configuración electrónica en estado fundamental, podemos estudiar la forma en que los químicos representan los metales, metaloides y no metales que aparecen como elementos libres en las ecuaciones químicas. Debido a que los metales no existen en unidades moleculares discretas, siempre se utilizan sus fórmulas empíricas en las ecuaciones químicas. Las fórmulas empíricas son los símbolos que representan a los elementos. Por ejemplo, la fórmula empírica del hierro es Fe, la misma que el símbolo del elemento. Para los no metales no hay una regla única. Por ejemplo, el carbono existe como una red tridimensional de átomos, por lo que utilizamos su fórmula empírica (C) para representar el carbono elemental en las ecuaciones químicas. El hidrógeno, el nitrógeno, el oxígeno y los halógenos existen como moléculas diatómicas, por lo que utilizamos su fórmula molecular (H2, N2, O2, F2, Cl2, Br2, I2) en las ecuaciones. La forma estable del fósforo es la molecular (P4), por lo que utilizamos P4. Con frecuencia, los químicos utilizan la fórmula empírica del azufre (S) en las ecuaciones químicas, en vez de S8, que es la forma estable. Así, en vez de escribir la ecuación para la combustión del azufre como S8(s) + 8O2(g) h 8SO2(g) por lo general escribimos S(s) + O2(g) h SO2(g) Todos los gases nobles son especies monoatómicas, por lo que utilizamos sus símbolos: He, Ne, Ar, Kr, Xe y Rn. Los metaloides, lo mismo que los metales, tienen redes complejas tridimensionales y se representan, también, con sus fórmulas empíricas, es decir, con sus símbolos: B, Si, Ge, y así sucesivamente.
Observe que estas dos ecuaciones para la combustión del azufre tienen una estequiometría idéntica. Su similitud no debe causar sorpresa, debido a que ambas ecuaciones describen el mismo sistema químico. En ambos casos, un número de átomos de azufre reacciona con el doble de átomos de oxígeno.
Configuración electrónica de cationes y aniones Dado que muchos compuestos iónicos están formados por aniones y cationes monoatómicos, resulta útil saber cómo se escriben las configuraciones electrónicas de estas especies iónicas. Al igual que para las especies neutras, utilizamos el principio de exclusión de Pauli y la regla de Hund para escribir la configuración electrónica de cationes y aniones en estado fundamental. Para su análisis, agruparemos los iones en dos categorías.
Iones derivados de los elementos representativos Los iones formados a partir de los átomos de casi todos los elementos representativos tienen la configuración electrónica externa de un gas noble, ns2np6. En la formación de un catión a partir de un átomo neutro de un elemento representativo, se pierden uno o más electrones del nivel n más alto ocupado. A continuación se encuentran las configuraciones electrónicas de algunos átomos y de sus cationes correspondientes: Na: [Ne]3s1 Ca: [Ar]4s2 Al: [Ne]3s23p1
Na+: [Ne] Ca2+: [Ar] Al3+: [Ne]
Observe que cada ion tiene la configuración estable de un gas noble. En la formación de un anión se agregan uno o más electrones al nivel n más alto, que está parcialmente lleno. Considere los ejemplos siguientes: H: F: O: N:
08_CHAPTER 8.indd 329
1s1 1s22s22p5 1s22s22p4 1s22s22p3
H–: F–: O2–: N3–:
1s2 o [He] 1s22s22p6 o [Ne] 1s22s22p6 o [Ne] 1s22s22p6 o [Ne]
12/20/09 5:32:33 PM