CALCULO DIFERENCIAL Marco Antonio HernĂĄndez MartĂnez MaestrĂa en EducaciĂłn MatemĂĄtica
Ejercicios de reforzamiento
I. Con base en las propiedades de lĂmites calcular. 1) lim 5 đ?‘Ľâ†’0
đ??śđ?‘œđ?‘› đ?‘?đ?‘Žđ?‘ đ?‘’ đ?‘’đ?‘› đ?‘’đ?‘™ đ?‘Ąđ?‘’đ?‘œđ?‘&#x;đ?‘’đ?‘šđ?‘Ž lim đ?‘? = đ?‘?, đ?‘? = đ?‘?đ?‘Ąđ?‘’. đ?‘Ľâ†’đ?‘Ž
∴ lim 5 = 5 đ?‘Ľâ†’0
2) lim đ?‘Ľ đ?‘Ľâ†’−7
lim đ?‘Ľ = đ?‘Ž
�→�
∴ lim đ?‘Ľ = −7 đ?‘Ľâ†’−7
3) lim đ?‘Ľ 4 đ?‘Ľâ†’−7
lim đ?‘“(đ?‘Ľ) = đ??ż
�→�
lim đ?‘Ľ 4 = (−7)4 = 2041 đ?‘Ľâ†’−7
∴ lim đ?‘Ľ 4 = 2041 đ?‘Ľâ†’−7
4) lim 3đ?‘Ľ đ?‘Ľâ†’−4
lim 3đ?‘Ľ = 3 lim đ?‘Ľ = (3)(−4) = −12
đ?‘Ľâ†’−4
đ?‘Ľâ†’−4
∴ lim 3đ?‘Ľ = −12 đ?‘Ľâ†’−4
5) lim[3� + 2� 2 ] �→1
lim[3đ?‘Ľ + 2đ?‘Ľ 2 ] = lim 3đ?‘Ľ + lim 2đ?‘Ľ 2 = 3 lim đ?‘Ľ + 2 lim đ?‘Ľ 2 = (3)(1) + (2)(1)2 = 3 + 2 = 5
�→1
�→1
�→1
�→1
�→1
∴ lim[3đ?‘Ľ + 2đ?‘Ľ 2 ] = 5 đ?‘Ľâ†’1
6) lim[đ?‘Ľ(đ?‘Ľ 2 − 1)] đ?‘Ľâ†’2
lim[đ?‘Ľ(đ?‘Ľ 2 − 1)] = lim[đ?‘Ľ 3 − đ?‘Ľ] = limđ?‘Ľ 3 − limđ?‘Ľ = (2)3 − 2 = 8 − 2 = 6
�→2
�→2
�→2
�→2
∴ lim[đ?‘Ľ(đ?‘Ľ 2 − 1)] = 6 đ?‘Ľâ†’2
HernĂĄndez MartĂnez Marco Antonio
42800354
PĂĄgina 1
CALCULO DIFERENCIAL Marco Antonio HernĂĄndez MartĂnez MaestrĂa en EducaciĂłn MatemĂĄtica
đ?‘Ľâˆ’2 7) lim ( ) đ?‘Ľâ†’4 đ?‘Ľ lim (
�→4
lim (đ?‘Ľ − 2) lim đ?‘Ľ − lim 2 4 − 2 đ?‘Ľâˆ’2 2 1 đ?‘Ľâ†’4 ) = đ?‘Ľâ†’4 = đ?‘Ľâ†’4 = = = đ?‘Ľ lim đ?‘Ľ lim đ?‘Ľ 4 4 2 đ?‘Ľâ†’4
�→4
đ?‘Ľâˆ’2 1 ∴ lim ( )= đ?‘Ľâ†’4 đ?‘Ľ 2
8) lim ���(�) �→0.5
lim ���(�) = ��� (0.5) = 0.008
�→0.5
∴ lim đ?‘†đ?‘’đ?‘›(đ?‘Ľ) = 0.008 đ?‘Ľâ†’0.5
9) lim3 ���(�) �→
4
lim3 đ?‘†đ?‘’đ?‘› (đ?‘Ľ) đ?‘Ľâ†’ đ?‘†đ?‘’đ?‘› (đ?‘Ľ) 0.01308 4 lim3 = = = 0.0130 lim3 đ??śđ?‘œđ?‘ (đ?‘Ľ) 0.9999 đ?‘Ľâ†’ đ??śđ?‘œđ?‘ (đ?‘Ľ) 4
�→
4
∴ lim đ?‘‡đ?‘Žđ?‘›(đ?‘Ľ) = 0.0130 3 đ?‘Ľâ†’
4
2. Encuentra los siguientes lĂmites laterales. 1) lim+ √đ?‘Ľ − 3 đ?‘Ľâ†’3
HernĂĄndez MartĂnez Marco Antonio
đ?‘Ľ+
đ?‘“(đ?‘Ľ) = √đ?‘Ľ − 3
3.1
0.3162
3.01
0.1
3.001
0.03162
3.0001
0.01
3.00001
0.00316
3.000001
0.001
� →3
No tiene lĂmite
42800354
PĂĄgina 2
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
𝐿𝑖𝑚𝑖𝑡𝑒 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑝𝑜𝑟 𝑙𝑎 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑎 𝑛𝑜𝑠 𝑞𝑢𝑒𝑑𝑎 𝑢𝑛𝑎 𝑟𝑎𝑖𝑧 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑎, 𝑝𝑜𝑟 𝑙𝑜 𝑡𝑎𝑛𝑡𝑜 𝑛𝑜 𝑡𝑖𝑒𝑛𝑒 𝑠𝑜𝑙𝑢𝑐𝑖ó𝑛 𝑒𝑛 𝑙𝑜𝑠 𝑟𝑒𝑎𝑙𝑒𝑠 → lim+ 𝑓(𝑥) ≠ lim− 𝑓(𝑥) 𝑥→3
𝑥→3
∴ lim √𝑥 − 3 𝑛𝑜 𝑒𝑥𝑖𝑠𝑡𝑒 𝑥→3
2) lim − (𝑥 + 6) 𝑥→−2
Hernández Martínez Marco Antonio
𝑥+
𝑓(𝑥) = 𝑥 + 6
-2.1
3.901
-2.01
3.99
-2.001
3.999
-2.0001
3.9999
-2.00001
3.99999
-2.000001
3.999999
↓
↓
-2
4
𝑥−
𝑓(𝑥) = 𝑥 + 6
-1.9
4.1
-1.99
4.01
-1.999
4.001
-1.9999
4.001
-1.99999
4.0001
42800354
Página 3
CALCULO DIFERENCIAL Marco Antonio HernĂĄndez MartĂnez MaestrĂa en EducaciĂłn MatemĂĄtica
-1.999999
4.00001
↓
↓
-2
4
→
lim (đ?‘Ľ + 6) =
đ?‘Ľâ†’−2+
lim (đ?‘Ľ + 6)
đ?‘Ľâ†’−2−
∴ lim (đ?‘Ľ + 6) = 4 đ?‘Ľâ†’−2
3) lim− đ?‘Ľ 3 đ?‘Ľâ†’0
đ?‘Ľâˆ’
đ?‘“(đ?‘Ľ) = đ?‘Ľ 3
-0.1
-0.01
-0.01
-0.000001
-0.001
-0.000000001
-0.0001
-0.000000000001
↓
↓
0
0
đ?‘Ľ+
đ?‘“(đ?‘Ľ) = đ?‘Ľ 3
0.1
0.01
0.01
0.000001
0.001
0.000000001
0.0001
0.000000000001
↓
↓
0
0
→ lim+ đ?‘Ľ 3 = lim− đ?‘Ľ 3 đ?‘Ľâ†’0
�→0
∴ lim đ?‘Ľ 3 = 0 đ?‘Ľâ†’0
HernĂĄndez MartĂnez Marco Antonio
42800354
PĂĄgina 4
CALCULO DIFERENCIAL Marco Antonio HernĂĄndez MartĂnez MaestrĂa en EducaciĂłn MatemĂĄtica
â&#x2C6;&#x2019;đ?&#x2018;Ľ 2 | đ?&#x2018;Ľ < 0 4) lim+ { 2 đ?&#x2018;Ľâ&#x2020;&#x2019;2 đ?&#x2018;Ľ |đ?&#x2018;Ľ â&#x2030;Ľ0
đ?&#x2018;Ľ+
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = đ?&#x2018;Ľ 2
2.1
4.41
2.01
4.0401
2.001
4.004001
2.0001
4.00040001
â&#x2020;&#x201C;
â&#x2020;&#x201C;
2
4
đ?&#x2018;Ľâ&#x2C6;&#x2019;
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = đ?&#x2018;Ľ 2
1.9
3.61
1.99
3.9601
1.999
3.996001
1.9999
3.9996001
â&#x2020;&#x201C;
â&#x2020;&#x201C;
2
4
â&#x2020;&#x2019; lim+ đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = limâ&#x2C6;&#x2019; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) đ?&#x2018;Ľâ&#x2020;&#x2019;2
HernĂĄndez MartĂnez Marco Antonio
42800354
đ?&#x2018;Ľâ&#x2020;&#x2019;2
PĂĄgina 5
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
∴ lim 𝑥 2 = 4 𝑥→2
𝐶𝑜𝑚𝑜 𝑥 → 2, 𝑒𝑛𝑡𝑜𝑛𝑐𝑒𝑠 𝑓(𝑥) = −𝑥 2 𝑛𝑢𝑛𝑐𝑎 𝑠𝑒 𝑣𝑎 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑟, 𝑦𝑎 𝑞𝑢𝑒 𝑓(𝑥) = −𝑥 2 | 𝑥 < 0
5) lim−√𝑥 + 4 𝑥→4
𝑥−
𝑓(𝑥) = √𝑥 + 4
3.9
2.81
3.99
2.8266
3.999
2.8282
3.9999
2.828409
3.99999
2.828442
↓
↓
4
2.83
𝑥+
𝑓(𝑥) = √𝑥 + 4
4.1
2.8460
4.01
2.830194
4.001
2.828603
4.0001
2.828444
↓
↓
4
2.83
→ lim+ √𝑥 + 4 = lim− √𝑥 + 4 𝑥→4
Hernández Martínez Marco Antonio
42800354
𝑥→4
Página 6
CALCULO DIFERENCIAL Marco Antonio HernĂĄndez MartĂnez MaestrĂa en EducaciĂłn MatemĂĄtica
â&#x2C6;´ lim â&#x2C6;&#x161;đ?&#x2018;Ľ + 4 â&#x2030;&#x2C6; 2.83 đ?&#x2018;Ľâ&#x2020;&#x2019;4
6) lim+ { đ?&#x2018;Ľâ&#x2020;&#x2019;0
đ?&#x2018;Ľ + 1| đ?&#x2018;Ľ < 0 â&#x2C6;&#x2019;đ?&#x2018;Ľ + 5| đ?&#x2018;Ľ â&#x2030;Ľ 0
HernĂĄndez MartĂnez Marco Antonio
đ?&#x2018;Ľ+
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = đ?&#x2018;Ľ + 1
0.1
1.1
0.01
1.01
0.001
1.001
0.0001
1.0001
0.00001
1.00001
â&#x2020;&#x201C;
â&#x2020;&#x201C;
0
1
đ?&#x2018;Ľâ&#x2C6;&#x2019;
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = â&#x2C6;&#x2019;đ?&#x2018;Ľ + 5
-0.1
5.1
-0.01
5.01
-0.001
5.001
-0.0001
5.0001
-0.00001
5.00001
â&#x2020;&#x201C;
â&#x2020;&#x201C;
42800354
PĂĄgina 7
CALCULO DIFERENCIAL Marco Antonio HernĂĄndez MartĂnez MaestrĂa en EducaciĂłn MatemĂĄtica
0
5
â&#x2020;&#x2019; lim+ đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) â&#x2030; limâ&#x2C6;&#x2019; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) đ?&#x2018;Ľâ&#x2020;&#x2019;0
đ?&#x2018;Ľâ&#x2020;&#x2019;0
â&#x2C6;´ đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; đ?&#x2018;&#x2122;đ?&#x2018;&#x2013;đ?&#x2018;&#x161;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x203A;đ?&#x2018;&#x153; đ?&#x2018;&#x2019;đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2019;
đ?&#x2018;Ľ+
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = â&#x2C6;&#x2019;đ?&#x2018;Ľ + 5
0.1
4.9
0.01
4.99
0.001
4.999
0.0001
4.9999
0.00001
4.99999
â&#x2020;&#x201C;
â&#x2020;&#x201C;
0
5
đ?&#x2018;Ľâ&#x2C6;&#x2019;
đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) = đ?&#x2018;Ľ + 1
-0.1
0.9
-0.01
0.99
-0.001
0.999
-0.0001
0.9999
-0.00001
0.99999
â&#x2020;&#x201C;
â&#x2020;&#x201C;
0
1
â&#x2020;&#x2019; lim+ đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) â&#x2030; limâ&#x2C6;&#x2019; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) đ?&#x2018;Ľâ&#x2020;&#x2019;0
đ?&#x2018;Ľâ&#x2020;&#x2019;0
â&#x2C6;´ đ?&#x2018;&#x2019;đ?&#x2018;&#x2122; đ?&#x2018;&#x2122;đ?&#x2018;&#x2013;đ?&#x2018;&#x161;đ?&#x2018;&#x2013;đ?&#x2018;Ąđ?&#x2018;&#x2019; đ?&#x2018;&#x2018;đ?&#x2018;&#x2019; đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) đ?&#x2018;&#x203A;đ?&#x2018;&#x153; đ?&#x2018;&#x2019;đ?&#x2018;Ľđ?&#x2018;&#x2013;đ?&#x2018; đ?&#x2018;Ąđ?&#x2018;&#x2019;
HernĂĄndez MartĂnez Marco Antonio
42800354
PĂĄgina 8
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
3. Dadas las funciones encuentra los límites y asíntotas verticales. 1) lim 𝑥→?
𝑥+2 𝑥−3 𝑥−3 =0 → 𝑥 =3 𝐷𝑜𝑚 𝑓 = {𝑥0 ∈ ℝ | 𝑥0 ≠ 3 } 𝑡𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑖𝑡𝑎 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑒𝑛 𝑥 = 3
lim
𝑥→3
lim
𝑥→3
𝑥+2 = 𝑥−3
(𝑥 + 2) (𝑥 + 3) (𝑥 2 + 3𝑥 + 2𝑥 + 6) (𝑥 2 + 5𝑥 + 6) = lim 2 = lim 𝑥→3 (𝑥 + 3𝑥 − 3𝑥 − 9) 𝑥→3 (𝑥 − 3) (𝑥 + 3) (𝑥 2 − 9) 30 = 𝑁𝑜 𝑠𝑒 𝑝𝑢𝑒𝑑𝑒 𝑑𝑖𝑣𝑖𝑑𝑖𝑟 𝑒𝑛𝑡𝑟𝑒 0 0
𝑦 𝑎𝑑𝑒𝑚𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑣𝑒 𝑞𝑢𝑒 𝑐𝑢𝑎𝑛𝑑𝑜 lim+ 𝑥→3
∴ lim
𝑥→3
2) lim = 𝑥→?
𝑥+2 𝑥+2 = +⋈; 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 lim− = −⋈ 𝑥→3 𝑥 − 3 𝑥−3
𝑥+2 =⋈ 𝑥−3
1 𝑥 𝐷𝑜𝑚 𝑓 = {𝑥0 ∈ ℝ | 𝑥0 ≠ 0 }
Hernández Martínez Marco Antonio
42800354
Página 9
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
𝐷𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑜𝑏𝑠𝑒𝑣𝑎 𝑞𝑢𝑒 𝑓(𝑥) =
1 𝑡𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 𝑣𝑒𝑟𝑡𝑖𝑣𝑎𝑙 𝑒𝑛 𝑥 = 0 𝑥
𝑦 𝑎𝑑𝑒𝑚𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑑𝑒 𝑓 𝑠𝑒 𝑣𝑒 𝑞𝑢𝑒 𝑐𝑢𝑎𝑛𝑑𝑜 lim+ 𝑥→0
∴ lim 𝑥→0
4) lim 𝑥→?
1 1 = +⋈; 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 lim− = −⋈ 𝑥→0 𝑥 𝑥
1 =⋈ 𝑥
1 𝑥3 − 1 3
3 𝑥 3 − 1 = 0 → 𝑥 3 = 1 → √𝑥 3 = √1 → 𝑥 = 1
𝐷𝑜𝑚 𝑓 = {𝑥0 ∈ ℝ | 𝑥0 ≠ 1 }
Hernández Martínez Marco Antonio
42800354
Página 10
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
𝐷𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑜𝑏𝑠𝑒𝑣𝑎 𝑞𝑢𝑒 𝑓(𝑥) =
1 𝑡𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 𝑣𝑒𝑟𝑡𝑖𝑣𝑎𝑙 𝑒𝑛 𝑥 = 1 𝑥3 − 1
𝑦 𝑎𝑑𝑒𝑚𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑑𝑒 𝑓 𝑠𝑒 𝑣𝑒 𝑞𝑢𝑒 𝑐𝑢𝑎𝑛𝑑𝑜 lim+ 𝑥→1
∴ lim 𝑥→1
5) lim 𝑥→?
𝑥3
1 1 = +⋈; 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 lim− 3 = −⋈ 𝑥→1 𝑥 − 1 −1
1 =⋈ 𝑥3 − 1
9 𝑥−9 𝑥−9 =0 → 𝑥 =9 𝐷𝑜𝑚 𝑓 = {𝑥0 ∈ ℝ | 𝑥0 ≠ 9 }
𝐷𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑜𝑏𝑠𝑒𝑣𝑎 𝑞𝑢𝑒 𝑓(𝑥) =
9 , 𝑡𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 𝑣𝑒𝑟𝑡𝑖𝑣𝑎𝑙 𝑒𝑛 𝑥 = 9 𝑥−9
𝑦 𝑎𝑑𝑒𝑚𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑑𝑒 𝑓 𝑠𝑒 𝑣𝑒 𝑞𝑢𝑒 𝑐𝑢𝑎𝑛𝑑𝑜 lim+ 𝑥→9
∴ lim 𝑥→9
5) lim
𝑥→? 𝑥 2
9 9 = +⋈; 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 lim− = −⋈ 𝑥→9 𝑥 − 9 𝑥−9
9 =⋈ 𝑥−9
1 − 16
Hernández Martínez Marco Antonio
42800354
Página 11
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
𝑥 2 − 16 = 0 → (𝑥 − 4)(𝑥 + 4) = 0 → (𝑥 − 4) = 0 ∧ (𝑥 + 4) = 0 𝑥1 = 4 ∧ 𝑥2 = −4 𝐷𝑜𝑚 𝑓 = {𝑥0 ∈ ℝ | 𝑥0 ≠ −4, 4 }
𝐷𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑜𝑏𝑠𝑒𝑣𝑎 𝑞𝑢𝑒 𝑓(𝑥) =
𝑥2
1 , 𝑡𝑖𝑒𝑛𝑒 𝑑𝑜𝑠 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑒𝑠 𝑢𝑛𝑎 𝑒𝑛 𝑥1 = −4, − 16
𝑥2 = 4 𝑦 𝑎𝑑𝑒𝑚𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑑𝑒 𝑓 𝑠𝑒 𝑣𝑒 𝑞𝑢𝑒 𝑐𝑢𝑎𝑛𝑑𝑜 lim+ 𝑥→4
lim
𝑥→9−
𝑥2
1 = +⋈ 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 − 16
1 1 1 = −⋈ 𝑦 lim + 2 = −⋈ 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 lim − 2 = +⋈ 𝑥→−4 𝑥 − 16 𝑥→−4 𝑥 − 16 𝑥 2 − 16 ∴ lim
𝑥→ −4 𝑥 2
6) lim 𝑥→?
1 1 =⋈ ∧ lim 2 =⋈ 𝑥→ 4 𝑥 − 16 − 16
3 𝑥−4 𝑥−4 =0 → 𝑥 =4 𝐷𝑜𝑚 𝑓 = {𝑥0 ∈ ℝ | 𝑥0 ≠ 4 }
Hernández Martínez Marco Antonio
42800354
Página 12
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
𝐷𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑠𝑒 𝑜𝑏𝑠𝑒𝑣𝑎 𝑞𝑢𝑒 𝑓(𝑥) =
3 , 𝑡𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑒 𝑒𝑛 𝑥 = 4, 𝑥−4
𝑦 𝑎𝑑𝑒𝑚𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑔𝑟𝑎𝑓𝑖𝑐𝑎 𝑑𝑒 𝑓 𝑠𝑒 𝑣𝑒 𝑞𝑢𝑒 𝑐𝑢𝑎𝑛𝑑𝑜 lim+ 𝑥→4
∴ lim 𝑥→ 4
3 3 = +⋈; 𝑦 𝑐𝑢𝑎𝑛𝑑𝑜 lim− = −⋈ 𝑥→4 𝑥−4 𝑥−4
3 =⋈ 𝑥−4
4. Dadas las funciones encuentra las asíntotas horizontales. 1) lim
𝑥→⋈
3𝑥 1+𝑥
𝑓(𝑥) = 𝑦 =
3𝑥 𝑦 → 𝑦(1 + 𝑥) = 3𝑥 → 𝑦 + 𝑦𝑥 = 3𝑥 → 𝑦 = 3𝑥 − 𝑦𝑥 → 𝑦 = 𝑥(3 − 𝑦) → 𝑥 = 1+𝑥 3−𝑦 3−𝑦 = 0 → 3 =𝑦 → 𝑦 =3 𝑇𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 ℎ𝑜𝑟𝑖𝑛𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑛 𝑦 = 3
𝐼𝑚 𝑓 = {𝑦0 ∈ ℝ | 𝑦0 ≠ 3 }
Hernández Martínez Marco Antonio
42800354
Página 13
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
lim
𝑥→⋈
3𝑥 1+𝑥
3𝑥 3𝑥 lim 3 3 3 3 𝑥 𝑥→⋈ lim = lim 𝑥 = lim = = = =3 𝑥 1 𝑥→⋈ 1 + 𝑥 𝑥→⋈ 1 𝑥→⋈ 1 0+1 1 + +1 lim + lim1 𝑥 𝑥 𝑥 𝑥 𝑥→⋈ 𝑥 𝑥→⋈ ∴ lim
3𝑥
𝑥→⋈ 1+𝑥
2) lim
𝑥→⋈
=3
4𝑥 − 3 5𝑥 + 4
𝑓(𝑥) = 𝑦 =
4𝑥 − 3 → 𝑦(5𝑥 + 4) = 4𝑥 − 3 → 5𝑥𝑦 + 4𝑦 = 4𝑥 − 3 → 4𝑦 + 3 = 4𝑥 − 5𝑥𝑦 5𝑥 + 4
4𝑦 + 3 = 𝑥(4 − 5𝑦) → 𝑥 =
4𝑦 + 3 4 − 5𝑦
4 − 5𝑦 = 0 → 4 = 5𝑦 → 𝑦 =
4 5
𝑇𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 ℎ𝑜𝑟𝑖𝑛𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑛 𝑦 =
Hernández Martínez Marco Antonio
42800354
4 5
Página 14
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
𝐼𝑚 𝑓 = {𝑦0 ∈ ℝ | 𝑦0 ≠
4 } 5
4𝑥 − 3 4𝑥 3 3 − 4− 4𝑥 − 3 𝑥 𝑥 𝑥 𝑥= lim = lim = lim = lim 4 4 𝑥→⋈ 5𝑥 + 4 𝑥→⋈ 5𝑥 + 4 𝑥→⋈ 5𝑥 𝑥→⋈ 5+ + 𝑥 𝑥 𝑥 𝑥 lim 4 − lim
𝑥→⋈
3
𝑥→⋈ 𝑥
4 lim 5 + lim 𝑥→⋈ 𝑥→⋈ 𝑥 ∴ lim
𝑥→⋈
4) lim
𝑥→⋈
=
4−0 4 = 5−0 5
4𝑥 − 3 4 = 5𝑥 + 4 5
4𝑥 𝑥+4 𝑓(𝑥) = 𝑦 =
4𝑥 → 𝑦(𝑥 + 4) = 4𝑥 → 𝑥𝑦 + 4𝑦 = 4𝑥 → 4𝑦 = 4𝑥 − 𝑥𝑦 → 4𝑦 = 𝑥(4 − 𝑦) 𝑥+4 4𝑦 4𝑦 =𝑥 →𝑥= (4 − 𝑦) (4 − 𝑦) 4−𝑦=0 →4=𝑦 →𝑦=4 𝑇𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 ℎ𝑜𝑟𝑖𝑛𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑛 𝑦 = 4
Hernández Martínez Marco Antonio
42800354
Página 15
CALCULO DIFERENCIAL Marco Antonio Hern├бndez Mart├нnez Maestr├нa en Educaci├│n Matem├бtica
ЁЭР╝ЁЭСЪ ЁЭСУ = {ЁЭСж0 тИИ тДЭ | ЁЭСж0 тЙа 4 }
lim
ЁЭСетЖТтЛИ
4ЁЭСе 4ЁЭСе lim 4 4ЁЭСе 4 ЁЭСе = lim 4 = ЁЭСетЖТтЛИ = lim ЁЭСе = lim = =4 4 4 ЁЭСетЖТтЛИ ЁЭСе + 4 ЁЭСетЖТтЛИ ЁЭСе + 4 ЁЭСетЖТтЛИ ЁЭСе + 4 1 + 0 1+ lim 1 + lim ЁЭСе ЁЭСе ЁЭСе ЁЭСе ЁЭСетЖТтЛИ ЁЭСетЖТтЛИ ЁЭСе тИ┤ lim
ЁЭСетЖТтЛИ
5) lim
ЁЭСетЖТтЛИ ЁЭСе 2
4ЁЭСе =4 ЁЭСе+4
ЁЭСе+3 тИТ 5ЁЭСе + 1
1 3 ЁЭСе+3 ЁЭСе 3 1 3 lim + lim 2 + 0+0 0 2 2 + ЁЭСе2 ЁЭСе ЁЭСе2 ЁЭСе ЁЭСе ЁЭСетЖТтЛИ ЁЭСе ЁЭСетЖТтЛИ ЁЭСе lim 2 = lim 2 = lim = = = =0 5 1 5 1 ЁЭСетЖТтЛИ ЁЭСе тИТ 5ЁЭСе + 1 ЁЭСетЖТтЛИ ЁЭСе ЁЭСетЖТтЛИ 5ЁЭСе 1 1 тИТ + 2 lim 1 тИТ lim + lim 2 1 + 0 + 0 1 тИТ + ЁЭСе ЁЭСе ЁЭСе2 ЁЭСе2 ЁЭСе2 ЁЭСе2 ЁЭСетЖТтЛИ ЁЭСетЖТтЛИ ЁЭСе ЁЭСетЖТтЛИ ЁЭСе
тИ┤ lim
ЁЭСетЖТтЛИ
ЁЭСУ(ЁЭСе) =
Hern├бndez Mart├нnez Marco Antonio
ЁЭСе2
ЁЭСе+3 =0 ЁЭСе 2 тИТ 5ЁЭСе + 1
ЁЭСе+3 ЁЭСбЁЭСЦЁЭСТЁЭСЫЁЭСТ ЁЭСвЁЭСЫЁЭСО ЁЭСОЁЭСаЁЭСЦЁЭСЫЁЭСбЁЭСЬЁЭСбЁЭСО тДОЁЭСЬЁЭСЯЁЭСЦЁЭСзЁЭСЬЁЭСЫЁЭСбЁЭСОЁЭСЩ ЁЭСТЁЭСЫ ЁЭСж = 0 тИТ 5ЁЭСе + 1
42800354
P├бgina 16
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
7) lim
𝑥→⋈ 𝑥 2
1−𝑥 + 4𝑥 + 4
1−𝑥 1 𝑥 1 1 1−𝑥 2 2 − 𝑥2 2−𝑥 𝑥 𝑥 𝑥 lim 2 = lim 2 = lim 2 = lim = 4 4 𝑥→⋈ 𝑥 + 4𝑥 + 4 𝑥→⋈ 𝑥 + 4𝑥 + 4 𝑥→⋈ 𝑥 𝑥→⋈ 4𝑥 4 1 + + + + 2 𝑥 𝑥 𝑥2 𝑥2 𝑥2 𝑥2
lim
1
𝑥→⋈ 𝑥
=
2
− lim
lim 1 + lim
𝑥→⋈
4
𝑥→⋈ 𝑥
+ lim
∴ lim
𝑥→⋈
𝑓(𝑥) =
Hernández Martínez Marco Antonio
𝑥2
1
𝑥→⋈ 𝑥
4
𝑥→⋈ 𝑥
2
=
0−0 0 = =0 1+0+0 1
1−𝑥 =0 𝑥 2 + 4𝑥 + 4
1−𝑥 𝑡𝑖𝑒𝑛𝑒 𝑢𝑛𝑎 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎 ℎ𝑜𝑟𝑖𝑛𝑧𝑜𝑛𝑡𝑎𝑙 𝑒𝑛 𝑦 = 0 + 4𝑥 + 4
42800354
Página 17
CALCULO DIFERENCIAL Marco Antonio Hernández Martínez Maestría en Educación Matemática
8) lim
𝑥→⋈
2𝑥 3 + 7 5𝑥 2 − 1
7 2𝑥 3 + 7 2𝑥 3 7 7 lim 2 + lim 3 + 3 2+ 3 2𝑥 3 + 7 3 2+0 𝑥→⋈ 𝑥 𝑥 𝑥3 𝑥 = lim 𝑥 = 𝑥→⋈ lim = lim = lim = = 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑑𝑎 1 5 1 𝑥→⋈ 5𝑥 2 − 1 𝑥→⋈ 5𝑥 2 − 1 𝑥→⋈ 5𝑥 2 𝑥→⋈ 5 1 0 − lim − lim − 𝑥 𝑥3 𝑥→⋈ 𝑥 𝑥→⋈ 𝑥 3 𝑥3 𝑥3 𝑥3
𝑓(𝑥) =
Hernández Martínez Marco Antonio
2𝑥 3 + 7 𝑛𝑜 𝑡𝑖𝑒𝑛𝑒 𝑎𝑠𝑖𝑛𝑡𝑜𝑡𝑎𝑠 ℎ𝑜𝑟𝑖𝑛𝑧𝑜𝑛𝑡𝑎𝑙𝑒𝑠 5𝑥 2 − 1
42800354
Página 18