República Bolivariana de Venezuela Ministerio del Poder Popular Para La Educación Instituto Universitario Politécnico “Santiago Mariño” Mérida Estado Mérida
Mariangel Molero C.I: 26.052.349
UNIDAD CENTRAL DE PROCESO (CPU): Es el cerebro de la computadora, pues es el coordinador de la máquina y la parte encargada de supervisar el funcionamiento de las otras secciones. La CPU le dice a la unidad de entrada cuándo debe leerse información para introducirla en la unidad de memoria, le dice a la ALU cuando la información de la unidad de memoria debe utilizarse en los cálculos y le dice la unidad de salida cuando debe enviar la información que está es la unidad de memoria a ciertos dispositivos de salida.
Un ordenador puede tener más de una CPU; esto se llama multiprocesamiento. Todas las CPU modernas son microprocesadores, lo que significa que contienen un solo circuito integrado (chip). Algunos circuitos integrados pueden contener varias CPU en un solo chip; estos son denominados procesadores multinúcleo. Un circuito integrado que contiene una CPU también puede contener los dispositivos periféricos, y otros componentes de un sistema informático; a esto se llama un sistema en un chip (SoC).
ยกSin ella no podemos usar la computadora!
ยกEs el cerebro del computador!
La Unidad Central de Procesamiento CPU se divide en dos:
Unidad de control
Unidad Aritmético-Lógica
UNIDAD DE CONTROL:
Es el componente del procesador que dirige y coordina la mayoría de las operaciones en la computadora. La unidad de control tiene un rol mucho muy parecido al que tendría un oficial de tránsito vehicular ya que está se encarga de interpretar cada una de las instrucciones generadas por un programa y después inicia las acciones apropiadas para llevar a cabo las instrucciones. Los tipos de componentes internos que la unidad de control dirige incluyen la unidad lógico y aritmética, los registros, y los buses.
UNIDAD ARITMÉTICO-LÓGICO
La unidad de aritmética y lógica es otro componente del procesador. Todas las operaciones que efectúa una computadora pertenecen a dos tipos básicos: operaciones aritméticas (como suma, resta, multiplicación y división) y operaciones lógicas (por ejemplo, la comparación de dos números para ver si son iguales o uno es mayor o mejor). La capacidad de la computadora para efectuar comparaciones le permite tomar cursos alternos de acción que dependen de la situación; esta es la razón por la que las computadoras han llegado a ser tan útiles para muchos propósitos. La ALU utiliza registros para conservar los datos que se están procesando, como si se usara un platón de mezcla para conservar los ingredientes antes de mezclarlos para hornear pan. Por ejemplo, para determinar si un empleado debería recibir un pago por horas extra, el software da la instrucción a la ALU para comparar el número de horas que un empleado trabajo durante la semana contra el tiempo regular permitido (por ejemplo 40 horas a la semana). Si las horas trabajadas son mayor que 40, el software instruye a la ALU para que realice cálculos sobre pago por salarios extra.
Un poco de historia… Los primeros ordenadores, como el ENIAC, tenían que ser físicamente re-cableados para realizar diferentes tareas, lo que hizo que estas máquinas se denominaran "ordenadores de programa fijo". Dado que el término "CPU" generalmente se define como un dispositivo para la ejecución de software (programa informático), los primeros dispositivos que con razón podríamos llamar CPU vinieron con el advenimiento del ordenador con programa almacenado.
Ordenador ENIAC El 30 de junio de 1945, antes de que se construyera la ENIAC, el matemático John von Neumann distribuyó el trabajo titulado First Draft of a Report on the EDVAC (Primer Borrador de un Reporte sobre el EDVAC). Fue el esbozo de un ordenador de programa almacenado, que se terminó en agosto de 1949. EDVAC fue diseñado para realizar un cierto número de instrucciones (u operaciones) de varios tipos. Significativamente, los programas escritos para el EDVAC se crearon para ser almacenados en la memoria de alta velocidad del ordenador y no para que los especificara el cableado físico del ordenador
John Von Neumann
Las primeras CPU fueron diseñadas a medida como parte de un ordenador más grande, generalmente un ordenador único en su especie. Sin embargo, este método de diseñar las CPU a medida, para una aplicación particular, ha desaparecido en gran parte y se ha sustituido por el desarrollo de clases de procesadores baratos y estandarizados adaptados para uno o varios propósitos. Esta tendencia de estandarización comenzó generalmente en la era de los transistores discretos, computadoras centrales y microcomputadoras y fue acelerada rápidamente con la popularización del circuito integrado (IC), este ha permitido que sean diseñados y fabricados CPU más complejas en espacios pequeños en la orden de nanómetros). Tanto la miniaturización como la estandarización de las CPU han aumentado la presencia de estos dispositivos digitales en la vida moderna mucho más allá de las aplicaciones limitadas de máquinas de computación dedicadas. Los microprocesadores modernos aparecen en todo, desde automóviles hasta teléfonos móviles o celulares y juguetes de niños Los relés eléctricos y los tubos de vacío (válvulas termoiónicas) eran usados comúnmente como elementos de conmutación; un ordenador útil requiere miles o decenas de miles de dispositivos de conmutación. La velocidad global de un sistema depende de la velocidad de los conmutadores. Los ordenadores de tubo, como el EDVAC, tendieron en tener un promedio de ocho horas entre fallos, mientras que los ordenadores de relés, (anteriores y más lentos), como el Harvard Mark I, fallaban muy raramente. Al final, los CPU basados en tubo llegaron a ser dominantes porque las significativas ventajas de velocidad producidas generalmente pesaban más que los problemas de confiabilidad. La mayor parte de estas tempranas CPU síncronas corrían en frecuencias de reloj bajas comparadas con los modernos diseños microelectrónicos. Eran muy comunes en este tiempo las frecuencias de la señal del reloj con un rango desde 100 kHz hasta 4 MHz, limitado en gran parte por la velocidad de los dispositivos de conmutación con los que fueron construidos.
CPU de transistores y de circuitos integrados discretos: La complejidad del diseño de las CPU aumentó junto con la facilidad de la construcción de dispositivos electrónicos más pequeños y confiables. La primera de esas mejoras vino con el advenimiento del transistor. Las CPU transistorizadas durante los años 1950 y los años 1960 no tuvieron que ser construidos con elementos de conmutación abultados, no fiables y frágiles, como los tubos de vacío y los relés eléctricos. Con esta mejora, fueron construidas CPU más complejas y más confiables sobre una o varias tarjetas de circuito impreso que contenían componentes discretos (individuales). Los ordenadores basados en transistores tenían varias ventajas frente a sus predecesores. Aparte de facilitar una creciente fiabilidad y un menor consumo de energía, los transistores también permitían que CPU operara a velocidades mucho más altas debido al corto tiempo de conmutación
de un transistor en comparación a un tubo o relé. Gracias tanto a esta creciente fiabilidad como al dramático incremento de velocidad de los elementos de conmutación que por este tiempo eran casi exclusivamente transistores, se fueron alcanzando frecuencias de reloj de la CPU de decenas de megahercios. Además, mientras que las CPU de transistores discretos y circuitos integrados se usaban comúnmente, comenzaron a aparecer los nuevos diseños de alto rendimiento como procesadores vectoriales SIMD (single instrucción múltiple data – instrucción única, datos múltiples). Estos primeros diseños experimentales dieron lugar más adelante a la era de los superordenadores especializados, como los hechos por Cray Inc
Microprocesadores: En la década de 1970 los inventos fundamentales de Federico Faggin (ICs Silicon Gate MOS con puertas autoalineadas junto con su nueva metodología de diseño de lógica aleatoria) cambió el diseño e implementación de las CPU para siempre. Desde la introducción del primer microprocesador comercialmente disponible, el Intel 4004, en 1970 y del primer microprocesador ampliamente usado, el Intel 8080, en 1974, esta clase de CPU ha desplazado casi totalmente el resto de los métodos de implementación de la Unidad Central de procesamiento. los microprocesadores son CPU fabricados con un número muy pequeño de IC; usualmente solo uno. El tamaño más pequeño del CPU, como resultado de estar implementado en una simple pastilla, significa tiempos de conmutación más rápidos debido a factores físicos como el decrecimiento de la capacitancia parásita de las puertas. Esto ha permitido que los microprocesadores síncronos tengan tiempos de reloj con un rango de decenas de megahercios a varios gigahercios. Adicionalmente, como ha aumentado la capacidad de construir transistores excesivamente pequeños en un IC, la complejidad y el número de transistores en un simple CPU también se ha incrementado dramáticamente. Mientras que, en los pasados sesenta años han cambiado drásticamente, la complejidad, el tamaño, la construcción y la forma general de la CPU, es notable que el diseño y el
funcionamiento básico no ha cambiado demasiado. Casi todos los CPU comunes de hoy se pueden describir con precisión como máquinas de programa almacenado de von Neumann.
Oblea de un microprocesador Intel 80486DX2 (Tamaño: 12×6,75 mm) en su empaquetado
OPERACIÓN: La operación fundamental de la mayoría de las CPU es ejecutar una secuencia de instrucciones almacenadas llamadas «programa». El programa es representado por una serie de números que se mantienen en una cierta clase de memoria de ordenador. Hay cuatro pasos que casi todos las CPU de arquitectura de von Neumannusan en su operación: fetch, decode, execute, y writeback, (leer, decodificar, ejecutar y escribir). Fetch El primer paso, leer, implica el recuperar una instrucción, (que es representada por un número o una secuencia de números), de la memoria de programa Frecuentemente, la instrucción a ser leída debe ser recuperada de memoria relativamente lenta, haciendo detener al CPU mientras espera que la instrucción sea devuelta. Esta cuestión se trata en gran medida en los procesadores modernos por los cachés y las arquitecturas pipeline (ver abajo). Decode En el paso de decodificación, la instrucción es dividida en partes que tienen significado para otras unidades de la CPU. La manera en que el valor de la instrucción numérica es interpretado está definida por la arquitectura del conjunto de instrucciones (el ISA) de la CPU. A menudo, un grupo de números en la instrucción, llamados opcode, indica qué operación realizar. Las partes restantes del número usualmente proporcionan información requerida para esa instrucción, como por ejemplo, operandos para una operación de adición.
Execute Después de los pasos de lectura y decodificación, es llevado a cabo el paso de la ejecución de la instrucción. Durante este paso, varias unidades del CPU son conectadas de tal manera que ellas pueden realizar la operación deseada. Si, por ejemplo, una operación de adición fue solicitada, una unidad aritmético lógica (ALU) será conectada a un conjunto de entradas y un conjunto de salidas. Writeback El paso final, la escritura, simplemente «escribe» los resultados del paso de ejecución a una cierta forma de memoria. Muy a menudo, los resultados son escritos a algún registro interno del CPU para acceso rápido por subsecuentes instrucciones. En otros casos los resultados pueden ser escritos a una memoria principal más lenta pero más barata y más grande. Algunos tipos de instrucciones manipulan el contador de programa en lugar de directamente producir datos de resultado