LA CONSTRUCCIÓN DEL SIGNIFICADO DE LAS FRACCIONES ALGEBRAICAS Y SUS OPERACIONES A PARTIR DE LAS FRACCIONES ARITMÉTICAS
2 Escuela de Matemáticas y Estadística UPTC Duitama
1
LA CONSTRUCCIÓN DEL SIGNIFICADO DE LAS FRACCIONES ALGEBRAICAS Y SUS OPERACIONES A PARTIR DE LAS FRACCIONES ARITMÉTICAS ENRIQUE ANTONIO CABRA TAMARA Licenciatura en Matemáticas y Estadística -UPTC-Duitama
meaningful learning also help overcome some difficulties and errors found in a preliminary diagnosis, which is manifested in the lack of meanings associated with concepts, processes and uses. This didactic sequences designed were designed incorporating a variety of activities with the methodology of teaching constructive workshop.
Key words: algebraic fractions, errors, obstacles, learning mathematics.
Resumen En este artículo se presenta una experiencia de investigación- acción generada en el marco de las asignaturas Proyecto Pedagógico VI , que se imparte en la Licenciatura de Matemáticas y Estadística de la Universidad Pedagógica y Tecnológica de Colombia, sede Duitama, con el fin de incidir en la construcción del conocimiento profesional de los estudiantes para profesores. Se describe el diseño, gestión y resultados de una propuesta de enseñanza para el tema fracciones algebraicas, dirigida a estudiantes de 9º, con el fin de incorporar una estrategia metodológica innovadora que facilite al estudiante un una mejor comprensión de los conceptos y garantice un aprendizaje significativo, igualmente ayude a superar algunas dificultades y errores encontrados en un diagnóstico preliminar, en el cual se manifiesta la carencia de significados asociados a los conceptos, los procedimientos y sus usos. Para ello se diseñaron secuencias didácticas encaminadas la incorporación de diversas actividades con la metodología de taller constructivo.
Palabras claves: fracciones algebraicas, errores, obstáculos, aprendizaje de las matemáticas
Abstract This article presents an action research experience generated within subjects vii educational project, which is taught in the bachelor of mathematics and statistics at the pedagogical and technological university of Colombia in Duitama, in order to influence professional knowledge construction of students to teachers. we describe the design, management and results of an educational proposal for the algebraic fractions, for students in 9th, with the aim of developing strategies to provide the innovative methodological student a better understanding of the concepts and ensure a 2 Escuela de Matemáticas y Estadística UPTC Duitama
INTRODUCCIÓN Este trabajo se ha realizado para corregir los errores encontrados en el diagnostico preliminar realizado a 27 estudiantes de grado noveno del Colegio Guillermo León Valencia de la ciudad de Duitama, con el fin de mejorar los significados que tienen los estudiantes en los diferentes conceptos y procedimientos de las operaciones de fracciones algebraicas, educándolos para tengan gusto hacia las matemáticas y mitigando prejuicios que en el trascurso de la historia les han dado a las matemáticas. Es importante que durante los procesos de enseñanza y aprendizaje, se vayan corrigiendo los errores que vienen cometiendo los estudiantes. De esta manera la escuela de Matemáticas y Estadística de la Universidad Pedagógica y Tecnológica de Colombia ha brindado cursos de apoyo para el aprendizaje de las matemáticas a instituciones educativas oficiales con la planeación de estrategias metodológicas que ayuden a formar conceptos y procedimientos significativos. Para este proyecto se adopta un enfoque constructivista que concibe la enseñanza como una actividad crítica y al docente como un profesional autónomo que investiga y se cuestiona sobre actividades didácticas y de cómo enseñar, reflexionando sobre su práctica y que percibe el error como un indicador de los procesos intelectuales del estudiante. Este trabajo se compone de los resultados obtenidos en la etapa de diagnóstico, evidenciando de esta manera los errores sobre las operaciones de fracciones algebraicas cometidos por los estudiantes. Posteriormente se presenta un análisis de los resultados obtenidos, anexando al final las respectivas secuencias didácticas y las matrices de idoneidad didáctica propuestas por (Godino y Batanero, 2
1. JUSTIFICACION El análisis de los errores en el proceso de enseñanza y aprendizaje, es un tema de permanente investigación en educación Matemática. Los resultados obtenidos en la etapa de diagnóstico, evidenciaron errores sobre las operaciones de Fracciones Algebraicas, cometidos por los alumnos que respondieron el cuestionario inicial propuesto. Teniendo en cuenta que los obstáculos presentes en los alumnos fomentan el aprendizaje incorrecto de nuevos contenidos y al mismo tiempo dejan vacíos, lo cual a futuro será perjudicial, por esto, es imprescindible y de constante interés para todos los docentes idear e implementar métodos que faciliten superar los obstáculos y errores que persistan en el estudiantado. Por lo tanto, este proyecto de aula se centra en brindar un apoyo que facilite la superación de los errores detectados durante la etapa diagnóstica. Las operaciones de fracciones algebraicas tendrán su dominio conceptual en el pensamiento variacional sistemas algebraicos y analíticos; El aspecto fundamental a tener en cuenta en la selección, elaboración y organización de contenidos, es lo significativo para los estudiantes. Los contenidos serán abordados en sus tres categorías: conceptual, Incluyendo saberes vinculados con aspectos de los campos disciplinarios y/o con la vida cotidiana; procedimental el saber – hacer, presentando diferentes grados de generalidad, relacionados con varias disciplinas; y actitudinal el interés, el entusiasmo y el valor que se manifieste por lo que enseña, serán transmitidos a los estudiantes y se constituirán en factores motivadores fundamentales para el aprendizaje.
PROBLEMA DE INVESTIGACION 2. PLANTEAMIENTO DEL PROBLEMA La mayoría de investigaciones sobre los procesos cognitivos implicados en el aprendizaje del álgebra; tratan temas relativos a la detección y a la clasificación de errores y, en general, a las dificultades y obstáculos que encuentran los alumnos que comienzan a estudiar el álgebra. Kieran y Filloy (1989) y Malisani (1993) han hecho principales investigaciones relativas: a los 2 Escuela de Matemáticas y Estadística UPTC Duitama
3
errores que efectúan los alumnos cuando resuelven ecuaciones y problemas algebraicos y a los cambios conceptuales necesarios en la fase de transición entre el pensamiento aritmético y el pensamiento algebraico. El error no es sólo el efecto de la ignorancia, de la duda o del azar, como suponían las teorías conductistas del aprendizaje, sino que es la consecuencia de un conocimiento anterior que se manifiesta falso o no apropiado a una nueva situación. Es importante que durante los procesos de enseñanza y aprendizaje, se corrijan los errores que cometen los estudiantes para que en grados siguientes no lleguen con estos vacios. Para esto la escuela de Matemáticas y Estadística de la Universidad Pedagógica y Tecnológica de Colombia ha brindado cursos de apoyo para el aprendizaje de las matemáticas a instituciones educativas oficiales con la planeación de estrategias metodológicas que ayuden a formar conceptos, procedimientos significativos y con sentido. Por esta razón se adopta un enfoque constructivista que concibe la enseñanza como una actividad crítica y al docente como un profesional autónomo que investiga y se cuestiona sobre actividades didácticas y de cómo enseñar, reflexionando sobre su práctica y que percibe el error como un indicador de los procesos intelectuales del estudiante. Se observó que los estudiantes continuamente presentan grandes dificultades al momento de dar cuenta del análisis de situaciones en las que intervienen las fracciones algebraicas con sus operaciones ya que se noto los errores mas recurrentes como, la falsa generalización de la cancelación con productos, hacen la suma de fracciones algebraicas de forma lineal, termino a termino sin tener en cuenta el común denominador, e ignoran la variable a la hora de sumar presentando un error. Tal vez estos errores se presentan por falta de claridad de cada una de las relaciones que se encuentran en las diferentes operaciones y / o representaciones o porque a través del estudio de las fracciones en aritmética quedaron grandes vacíos que llevaron a continuas repeticiones de errores aprendidos lo que ocasiona frustración al momento en el lenguaje algebraico. Si bien el error puede tener procedencias diferentes, generalmente tiende a ser considerado como la presencia de un esquema cognitivo inadecuado en el estudiante y no solamente como consecuencia de una falta específica de 2 Escuela de Matemáticas y Estadística UPTC Duitama
4
conocimientos, por lo tanto se debe tener en cuenta que las oportunidades de los estudiantes para aprender dependen del entorno y del tipo de actividades desarrolladas en el aula, por ello es importante aplicar diferentes secuencias didácticas que conlleven al estudiante a obtener un aprendizaje significativo. 3. OBJETO DE ESTUDIO El análisis de los errores cometidos por los alumnos en su proceso de aprendizaje provee una rica información acerca de cómo se construye el conocimiento matemático; por otro lado, constituye una excelente herramienta para relevar el estado de conocimiento de los alumnos, imprescindible a la hora de realimentar el proceso de enseñanza-aprendizaje con el fin de mejorar los resultados. Según Socas (1997), el error debe ser considerado como la presencia en el alumno de un esquema cognitivo inadecuado y no sólo la consecuencia de una falta específica de conocimiento o una distracción. Lo cual determina las siguientes categorías de errores en el algebra así: CATEGORIAS Según Brousseau (cit. Palarea y Socas, 1994)
TIPO DE ERROR En la prueba
La naturaleza y significado de los Ignoran la variable a la hora de sumar, de cierta forma cierran la operación suma y símbolos y las letras. olvidan el comun denominador, aplicando algoritmos incorrectos para sumar La comprensión de la aritmética por Manejan de forma inapropiada la parte de los estudiantes. distribución del signo menos antepuesto de una fracción. Errores relativos al mal uso de la No identifican la propiedad distributiva. propiedad distributiva. Hacen mal uso de la propiedad distributiva. Errores relativos recíprocos.
al
uso
de
los Hacen la suma de forma lineal sin tener en cuenta el denominador común. Sobregeneralizan los algoritmos aprendidos con los números en aritmética.
2 Escuela de Matemáticas y Estadística UPTC Duitama
5
Errores de cancelación.
Sobregeneralizan la cancelación con productos. Simplifican de forma directa sin importar la operación que haya.
Errores debido a las falsas Aplican la propiedad del neutro de la generalizaciones sobre números. multiplicación de forma incorrecta, al simplificar fracciones.
4. PREGUNTA DE INVESTIGACIÓN ¿Qué ventajas tiene una propuesta constructivista del significado de las fracciones algebraicas y sus operaciones a partir de las fracciones aritméticas? 5. OBJETIVOS GENERAL Diseñar, implementar y evaluar una propuesta constructivista utilizando como herramienta las fracciones aritméticas para la construcción del significado de operaciones en fracciones algebraicas en estudiantes de noveno grado del Colegio Guillermo León Valencia-Duitama. ESPECÍFICOS
Consultar la información teórica, en la construcción del significado de operaciones en fracciones algebraicas. Consolidar información de apoyo y conocimiento aplicativo en operaciones en fracciones algebraicas. Diseñar instrumentos que permitan la recolección de información. Socializar el Plan diagnostico y Cuestionario Inicial Valorar si las propuestas de la unidad didáctica y secuencias. Organizar, analizar y representar la información recopilada. Elaborar el informe de sistematización.
6. MARCO TEÓRICO
2 Escuela de Matemáticas y Estadística UPTC Duitama
6
Para esta investigación describiremos los errores, que se presentan en los estudiantes, aplicables en fracciones algebraicas con sus operaciones, de las cuales tendremos noción acerca del error y el significado de fracciones que vamos a tratar, de los cuales están clasificados así: La naturaleza y significado de los símbolos y las letras, El objetivo de la actividad y la naturaleza de las respuestas en álgebra, La comprensión de la aritmética por parte de los estudiantes, y El uso inapropiado de “fórmulas” o “reglas “de procedimientos”. El análisis de los errores, tiene un doble interés ya que sirve por una parte para ayudar a los profesores a conducir mejor la enseñanza-aprendizaje del álgebra, concentrándose en aquellos aspectos en los que los alumnos cometen errores, y de paso también sirve para una mejor preparación de las estrategias para la corrección de los mismos. En este sentido, el profesor debe entender los errores que cometen sus alumnos, donde el enseñante buscara estrategias las cuales se expondrán al estudiante, de las cuales se harán comparaciones en diferentes grupos, donde se sacaran conclusiones acerca de ello. Es común en los alumnos observar que los errores los cometen una y otra vez, y lo mas grave aun es que los siguen cometiendo con seguridad, sin ponerle el interés de poder superar esos errores. 6.1 CONCEPTO DE ERROR De acuerdo con Brousseau, Davis y Werner (1986) (citados por Rico, 1995), señalan, en el mismo sentido, que los errores son el resultado de un procedimiento sistemático imperfecto que el alumno utiliza de modo consistente y con confianza. Según Socas (1997), el error debe ser considerado como la presencia en el alumno de un esquema cognitivo inadecuado y no sólo la consecuencia de una falta específica de conocimiento o una distracción. Según Socas (1997), el error debe ser considerado como la presencia en un alumno de un esquema cognitivo inadecuado y no sólo la consecuencia de una falta específica de conocimiento o de una distracción. Los errores aparecen cuando se enfrentan a conocimientos nuevos que los obliga a hacer una revisión o reestructuración, y un uso de los que ya saben.
2 Escuela de Matemáticas y Estadística UPTC Duitama
7
La posición cognitiva sugiere que la mente no es una página en blanco. El alumno tiene un conocimiento anterior que parece suficiente y establece en su mente un cierto equilibrio, estos son los significados personales globales (Godino y Batanero, 1994; Godino y Font, 2007). En la adquisición de un nuevo conocimiento hay que tener en cuenta que éste debe tener significado para el alumno, y para ello contestar a preguntas que él se ha hecho a sí mismo; o por lo menos recuperar algunas representaciones que ya estaban en su mente. El alumno debe asumir la responsabilidad de la construcción del saber y considerar los problemas como suyos y no como problemas del profesor. El conocimiento nuevo debe provocar una estructuración nueva del conocimiento total. Errores en el aprendizaje del álgebra. Según Socas (1996) determina las siguientes categorías de errores en el algebra así: a) La naturaleza y significado de los símbolos y las letras El mayor cambio conceptual en el aprendizaje del álgebra se centra alrededor de su diferencia con la aritmética: significado de los símbolos e interpretaciones de las letras. Los símbolos son un recurso que permite denotar y manipular abstracciones. Una de las teorías iníciales de los estudiantes será el reconocimiento de la naturaleza y el significado de los símbolos para poder comprender como operar con ellos y cómo interpretar los resultados. b) La comprensión de la aritmética por parte de los estudiantes El algebra es la generalización de la aritmética. Luego la asimilación de la generalización de relaciones y procesos se lleva a cabo en la aritmética. A veces, las dificultades que los estudiantes presentan en el álgebra no son tanto dificultades en el algebra sino problemas que se quedan sin corregir en la aritmética. c) El uso inapropiado de “fórmulas” o “reglas de procedimientos”. Algunos errores de los estudiantes se deben al uso inadecuado de operaciones, formulas o reglas conocidas en situaciones nuevas. Entre estos se encuentran los errores de linealidad como son: c1) Errores relativos al mal uso de la propiedad distributiva.
2 Escuela de Matemáticas y Estadística UPTC Duitama
8
Los errores anteriores pueden venir de lo que al estudiante se le expone en clase como por ejemplo: ( ) ( ) c2) Errores relativos al uso de los recíprocos. Estos errores resultan generalmente de la aritmética, y que al sumar fracciones algebraicas, dan como resultado cualquiera de las siguientes expresiones.
c3) Errores de cancelación. Se encuentran errores como: Que probablemente viene de: , donde esta regla da origen a diversas situaciones como
6.2 ESTÁNDARES BÁSICOS A TRABAJAR Los Lineamientos Curriculares de Matemáticas plantean el desarrollo de los procesos curriculares y la organización de actividades a un aspecto importante en el aprendizaje del algebra que corresponde a la utilización con sentido formal de los objetos algebraicos (variables, constantes, parámetros, términos, formulas y otras expresiones algebraicas, para lo cual es necesario ampliar la notación del lenguaje aritmético y utilizar las propiedades características con respecto a la adición y la multiplicación. De esta manera el cálculo algebraico surge como generalización del trabajo aritmético con modelos numéricos en situaciones de variación de los valores de las mediciones de cantidades relacionadas funcionalmente. Los estándares que se trabajaran en este proyecto están basados en la interacción entre la faceta práctica y la formal de las matemáticas y entre el conocimiento conceptual y el procedimental de las operaciones en estudio,
2 Escuela de Matemáticas y Estadística UPTC Duitama
9
como el tema pertenece al pensamiento variacional sistemas algebraicos y analíticos, nos limitamos a trabajar los siguientes estándares básicos: Cconstruyo expresiones algebraicas equivalentes a una expresión algebraica dada. Uso procesos inductivos y lenguaje algebraico para formular y poner a prueba conjeturas. 6.3 PERSPECTIVA EPISTEMOLÓGICA El uso de un simbolismo adecuado favorece el desarrollo del pensamiento algebraico, por este motivo en la historia del álgebra tiene importancia no sólo la historia de los conceptos sino también el sistema de símbolos utilizados para poder expresarlos (Arzarello et al., pág. 10 -11). Según Nesselman se pueden determinar tres períodos distintos: 1- FASE RETORICA: anterior a Diofanto de Alejandría (250 d.C.), en la cual se usa exclusivamente el lenguaje natural, sin recurrir a algún signo. 2- FASE SINCOPADA: desde Diofanto hasta fines del Siglo XVI, en la cual se introducen algunas abreviaturas para las incógnitas y las relaciones de uso frecuente, pero los cálculos se desarrollan en lenguaje natural. 3- FASE SIMBOLICA: introducida por Viète (1540-1603), en la cual se usan letras para todas la cantidades y signos para representar las operaciones, se utiliza el lenguaje simbólico no sólo para resolver ecuaciones sino también para demostrar reglas generales. (1) El Trattato d'Algibra, escrito a fines del siglo XIV, representa mucho más que un clásico tratado de ábaco, es un texto de álgebra amplio y orgánico: ya que no sólo desarrolla todos los temas mercantiles que caracterizan este tipo de tratado, sino que también contiene una entera sección dedicada al álgebra. La misma constituye un importante aporte a la teoría de la resolución de ecuaciones. Franci y Pancanti (1988, pág. VI) consideran que es uno de los mejores textos medievales y renacentistas que ellas hayan analizado y señalan que los capítulos correspondientes al álgebra son esenciales para la reconstrucción de la historia de esta disciplina entre los siglos XIII y XVI. (2) Mohammed ibn Musa al-Khowârizmî (»780-»850) escribió un tratado de aritmética llamado: Algorithmi de numero indorum. El vocablo "Algoritmo" proviene precisamente de la alteración del nombre al-Khowârizmî atribuido a 2 Escuela de Matemáticas y Estadística UPTC Duitama
10
Mohammed. Este término, después de haber sufrido numerosas variaciones tanto de significado como de denominación, comenzó a utilizarse para designar un constante procedimiento de cálculo (Loria, pág. 336-337). AlKhowârizmî escribió también un libro de álgebra: Al-jabr w'al muqâbala y en este título indicó precisamente las dos operaciones fundamentales para la resolución de ecuaciones de primer grado con una incógnita. El vocablo al-jabr significa "restablecer", es decir, restablecer el equilibrio entre los miembros de una ecuación mediante la transposición de términos y la palabra al muqâbala significa "simplificación", esto es, el agrupar los términos semejantes. La palabra al-jabr se transformó en algebrista en España, se convirtió en algebrae traducida en latín y por último, fue abreviada en álgebra para indicar el nombre de la disciplina. (3) Los egipcios, escribían las fracciones de numerador distinto de 1 y diferente de 2/3 como sumas de fracciones unitarias (con numerador igual a 1). Su aritmética era esencialmente aditiva, porque efectuaban las cuatro operaciones con fracciones utilizando precisamente la descomposición en fracciones unitarias. De este modo, los cálculos se volvían laboriosos y complicados en su ejecución. Un análisis detallado sobre este tema se encuentra en Loria (pág. 41-47) y Malisani (1996, pág. 27-28). 6.4. CONFIGURACION EPISTEMICA ALGEBRAICA Y SUS OPERACIONES
DEL
CONCEPTO
DE
FRACCION
LENGUAJE Verbal Propiedad distributiva, ley de los signos, parentesis, factor comun, agrupacion de terminos, trinomio cuadrado, diferencia de cuadrados, maximo comun divisor , minimo comun multiplo, potenciacion, fraccion, simplificacion expresiones algebraicas, descomposicion en factores, etc Grafico Dibujos, representaciones graficas donde se contextualizacion los conceptos y procedimientos Simbolico +, - , ( ) , { } , [ ] , , , ,
SITUACIONES
2 Escuela de Matemáticas y Estadística UPTC Duitama
11
Problemas contextualizados en los que hay que hallar dimensiones, perimetros, volumenes utilizando expresiones algebraicas. Simplificacion y operaciones de fracciones utilizando situaciones practicas en donde se pide descomponer, hallar el m.c.d. y el m.c.cm., se pide cunto falta , se compara y se formaliza.
PROCEDIMIENTOS Contextualizacion de enunciados descontextualzados. • Iniciar con el manejo de la aritmetica. • Aplicar los algoritmos de la suma y de la esta. • Comprobacion de los resultados. • Resolucion de situaciones - problema que involucran operaciones con fracciones algebraicas. ARGUMENTOS •
-
6.5.
CONCEPTOS Previos Fraccion como parte de un todo. Expresiones algebraicas. Factorizacion. Minimo comun multiplo. Maximo comun divisor. Potenciacion y sus propiedades. Emergentes Fraccion algebraica. Simplificacion de fracciones. Suma y resta de fracciones algebraicas con igual y distinto denominador Producto de fracciones algebraicas. PROPIEDADES Distributiva Conmutativa Asociativa. Propiedades de al potenciacion.
Comprobacion de las propiedades de las fracciones en casos particulares. Justificacion de las propiedades utilizando ejercicios de aplicación. Justificacion de los algoritmos a partir de las caracteristicas de las fracciones aritmeticas. Argumentacion de los procedimientos paradesarrollar las operaciones con fracciones algebraicas.
PROPUESTA DIDÁCTICA
MARCO TEÓRICO El siguiente diagrama muestra la conformación del conjunto numérico de los números reales (R).
2 Escuela de Matemáticas y Estadística UPTC Duitama
12
Naturales N Z+ Números enteros positivos y cero Enteros Z
ZNúmeros enteros positivos y cero
Fracciones (no enteras) POSITIVAS Y NEGATIVA
Números Racionales Q
Números Irracionales I
Números Real R
LOS NÚMEROS NATURALES (N) Los números naturales fueron los primeros que utilizó el hombre, pues sirven para contar LOS NÚMEROS ENTEROS (Z) A medida que la historia del hombre fue transcurriendo, así mismo se vio en la necesidad de ampliar su conjunto numérico, es por esto que empezó a utilizar números relativos. LOS NÚMEROS RACIONALES (Q) a Una fracción es una expresión de la forma donde . En esta b expresión los números a y b se llaman términos de la fracción, más específicamente se llama a numerador y b denominador. a b La inversa de la fracción es la fracción . Una fracción es propia si el b a numerador es estrictamente menor que el denominador y es impropia cuando a c el numerador es mayor que el denominador. Dos fracciones y son b d equivalentes, si al aplicarlas al mismo número, obtenemos el mismo resultado. Para recordar: 2 Escuela de Matemáticas y Estadística UPTC Duitama
13
a. Si se multiplica el numerador y el denominador de una fracción por un mismo número distinto de cero, la nueva fracción es equivalente a la primera. b. Si se divide el numerador y el denominador de una fracción por un número que sea divisor de ambos se obtiene una fracción equivalente a la primera c. Mediante la amplificación y la simplificación de una fracción se obtienen fracciones equivalentes. El conjunto de todas las fracciones equivalentes entre sí forman una clase. Cada una de estas clases es un número racional. a c a c Si y son números racionales, entonces < sí y solo sí a . d < b . c o b d b d a c geométricamente, si está a la izquierda de en la recta numérica. b d Todo número racional puede expresarse mediante un decimal finito o mediante un decimal infinito periódico. Es importante recordar que un número racional lo podemos interpretar de varias formas así: RAZÓN O FRACCIÓN 1 2 1 4 6.6.
NÚMERO DECIMAL
FRACCIÓN DECIMAL
0,5
50 100 25 100
0,25
PORCENTAJ E 50 % 25 %
IDONEIDAD DIDÁCTICA
En diversos trabajos Godino y colaboradores (Godino, Contreras y Font, 2006; Godino, Bencomo, Font y Wilhelmi, 2007) han introducido la noción de “idoneidad didáctica” de un proceso de estudio matemático con la intención de orientar el análisis y valoración de tales procesos. La Idoneidad Didáctica es el criterio sistémico de pertinencia o adecuación de un proceso de instrucción al proyecto educativo, cuyo principal indicador empírico puede ser la
2 Escuela de Matemáticas y Estadística UPTC Duitama
14
adaptación entre los significados personales logrados por los estudiantes y los significados institucionales pretendidos / implementados. La noción de idoneidad didáctica de un proceso de instrucción (Godino, Contreras y Font, 2006; Godino, Bencomo, Font y Wilhelmi, 2007) que se define como la articulación coherente y sistémica de las seis componentes siguientes: -
Idoneidad epistémica, se refiere al grado de representatividad de los significados institucionales implementados (o pretendidos), respecto de un significado de referencia.
-
Idoneidad cognitiva, expresa el grado en que los significados pretendidos/ implementados estén en la zona de desarrollo potencial de los alumnos, así como la proximidad de los significados personales logrados a los significados pretendidos/ implementados.
-
Idoneidad interaccional. Un proceso de enseñanza-aprendizaje tendrá mayor idoneidad desde el punto de vista interaccional si las configuraciones y trayectorias didácticas permiten, por una parte, identificar las dificultades potenciales de los alumnos (que se puedan detectar a priori), y por otra parte permita resolver los conflictos que se producen durante el proceso de instrucción.
-
Idoneidad mediacional, grado de disponibilidad y adecuación de los recursos materiales y temporales necesarios para el desarrollo del proceso de enseñanza-aprendizaje.
-
Idoneidad emocional, grado de implicación (interés, motivación, …) del alumnado en el proceso de estudio. La idoneidad emocional está relacionada tanto con factores que dependen de la institución como con factores que dependen básicamente del alumno y de su historia escolar previa.
7.
METODOLOGÍA DE INVESTIGACIÓN
El proyecto se llevo a cabo los días sábados comprendidos entre el 16 de abril y el 28 de mayo del presente año en el horario de 8:00 am a 11:30 am en las 2 Escuela de Matemáticas y Estadística UPTC Duitama
15
instalaciones de la Universidad Pedagógica y Tecnológica de Colombia seccional Duitama. 7.1. IDENTIFICACION DE INVESTIGACIÓN El tipo de investigación a utilizar en este proyecto de aula es la metodología de la Investigación - Acción que representa un proceso por medio del cual los sujetos investigados son auténticos coinvestigadores, participando activamente en el planteamiento del problema a ser investigado. Obviamente esto es algo que les interesa y les afecta. El investigador actúa como organizador de discusiones, facilitador del proceso, en general, como un técnico y recurso disponible para ser consultado. 7.2. PROCESO METODOLÓGICO Las etapas necesarias para la realización del proyecto de aula son: Exploración y reflexión: se investigo sobre el significado de error y se tuvo como referencia la noción de Socas M. citado por Rico, L. Castro, E y otros. (1997). El siguiente paso fue el diseño y ejecución de un cuestionario inicial que constaba de siete ítems y cada un de ellos se elaboro con el fin de detectar las categorías de errores en el algebra según la clasificación encontrada. Al recoger toda la información se hizo un riguroso análisis a cada paso de la solución del ítem e identificando los tipos de errores que cometen los estudiantes. Planificación: se diseña y desarrolla un proyecto de aula para reforzar los conceptos y procedimientos en la enseñanza de las fracciones algebraicas y sus operaciones a partir de las fracciones aritméticas, y ayudar a superar errores además de incrementar el gusto hacia las matemáticas. Acción y Observación: el desarrollo y sistematización del proyecto de aula se llevo a cabo en las instalaciones de la UPTC, los sábados a partir del 16 de abril al 28 de mayo del presente año con 15 estudiantes de grados 901, 902, 903, 906, 909, 910, 911 del Colegio Guillermo León Valencia de la ciudad de Duitama. Este proyecto se hizo con el fin de fortalecer la construcción de las fracciones algebraicas y sus operaciones a partir de las fracciones aritméticas. 2 Escuela de Matemáticas y Estadística UPTC Duitama
16
Evaluación: todos los sábados se tomaron 30 minutos después de la clase para socializar y reflexionar la experiencia, con los compañeros de Proyecto Pedagógico VI enriqueciendo y retroalimentando nuestra actividad docente. 8. POBLACION Y MUESTRA La población a la cual esta dirigida la propuesta constructivista para la construcción del significado de operaciones en fracciones algebraicas esta conformada por 27 alumnos de los grados novenos del “Colegio Guillermo León Valencia-Duitama”. La muestra fue tomada de la base de datos llevada por los docentes del colegio, de acuerdo a los estudiantes con bajo rendimiento académico. 9. PROPUESTA SECUENCIAL DE ENSEÑANZA El proyecto se baso en torno a la comprensión significativa de las fracciones algebraicas y sus operaciones a partir de las fracciones aritméticas, en el cual se abordaron temas previos a la noción de fracción, simplificación, factorización, máximo común divisor, Mínimo común múltiplo, productos notables, y potenciación. Para el desarrollo de estos temas, se hizo énfasis en problemas de contexto y traducción en diferentes representaciones. A continuación se presenta una descripción de cada secuencia didáctica que conformo la propuesta para la enseñanza de fracciones algebraicas. Nª TITULO DE DESCRIPCION LOGRO ESPERADO SECUENCIA 1
Concepto de fracción algebraica
Se realizo el sábado 16 de abril del presente año de 8:00 am a 11:30 am, en las instalaciones de la Universidad Pedagógica y Tecnológica de Colombia seccional Duitama. Luego de una pequeña introducción acerca de las reglas del curso se dio inicio a la clase sobre la noción de fracción. Al igual que la aritmética se encargaba de los números y de las operaciones que con ellos se pueden hacer, el Álgebra generaliza el cálculo aritmético a expresiones compuestas por números y letras. En esta secuencia se buscaba conducir al estudiante hacia la
2 Escuela de Matemáticas y Estadística UPTC Duitama
Identifica una fracción algebraica por medio de su representación simbólica.
17
2
Simplificación de fracciones algebraicas.
3
Suma y resta de fracciones algebraicas con igual denominador.
4
Suma y resta de fracciones algebraicas con diferente denominador.
noción de fracción algebraica. El tema que se trato en esta clase fue simplificación de fracciones, para que los estudiantes comprendieran se utilizaron problemas en contexto, partiendo de lo aritmético, para este tema fue muy importante recordar como calcular el máximo común divisor, llegando a la formalización de Simplificar una fracción es obtener otra, dividiendo el numerador y el denominador por una misma expresión si esta expresión es el máximo común divisor entre el numerador y el denominador. En esta sección abordamos temas previos de algunos casos de factorización, para llegar a la simplificación de fracciones con polinomios (factor común, diferencia de cuadrados, trinomio); para asi encaminarnos hacia la suma y resta de fracciones algebraicas con igual denominador, en donde vamos a utilizar los conceptos previo de factorización. También se hace uso de las distintas representaciones para que el estudiante evidencie las respuestas. En conclusión se observo que si el denominador es común, este se unifica, y en el numerador se ubican las expresiones presentes en cada fracción. El tema para esta clase recordamos el mínimo común múltiplo, la descomposición de los números en sus factores primos, ya que es indispensable para suma y resta de fracciones con distinto denominador, partiendo de la parte aritmética y haciendo uso de las distintas representaciones. Se utilizaron problemas en contexto para que los estudiantes relacionaran el tema con la vida diaria, y formalizando con respecto
2 Escuela de Matemáticas y Estadística UPTC Duitama
Simplifica fracciones algebraicas.
Comprende y aplica el proceso para adicionar o sustraer fracciones con igual denominador.
Suma y resta fracciones algebraicas con distinto denominador.
18
5
Multiplicación y división de fracciones algebraicas
6 Recapitulación fracciones algebraicas y sus operaciones (actividad lúdica)
a la parte algebraica que El mínimo común múltiplo de dos o más polinomios es el polinomio conformado por el producto de cada factor, común y no común con mayor potencia, que aparece en la factorización de cada polinomio. En esta secuencia se explico el tema de multiplicación de fracciones algebraicas, iniciando con conceptos previos de potenciación, factorización y simplificación ya que es un proceso semejante al que se hace con fracciones numéricas, sugiriendo varias actividades con distintas representaciones. Llegando a la formalización de que el producto de dos fracciones algebraicas es otra fracción algebraica donde el numerador es el producto de los numeradores y el denominador es el producto de los denominadores. En esta secuencia se hizo un breve resumen sobre fracciones algebraicas, y se realizo una actividad que implicaba el manejo de las operaciones de fracciones algebraicas explicadas en las sesiones anteriores, para ello se utilizaron tarjetas de color que deben llevar por un lado una posible pregunta y por el otro una respuesta de cualquier otra tarjeta debiéndose cerrar el juego , es decir, debiendo la pregunta de cada tarjeta, tener una respuesta y solo una en el reverso de otra tarjeta. Luego se aplico un cuestionario final donde encerraba los conocimientos de todo lo visto en el curso de apoyo con respecto a fracciones algebraicas. También se aplico una encuesta a los estudiantes donde se pretendía conocer las opiniones y sugerencias con respecto al curso de apoyo para el aprendizaje de las matemáticas.
2 Escuela de Matemáticas y Estadística UPTC Duitama
Simplifica fracciones algebraicas usando la factorización.
Efectúa operaciones con fracciones algebraicas.
19
10. CRONOGRAMA DE ACTIVIDADES
FECHA ACTIVIDAD
21 de febrero al 04 de marzo 2011
Del 07 al 11 de marzo
Del 14 al 25 de marzo
28 de marzo al 01 de abril
Del 01 al 08 de abril
Sábados del 16 abril al 28 de mayo
Del 30 mayo al 10 junio 2011
Recopilación de información teórica y diseño del Plan del Diagnóstico Socialización del Plan diagnostico y Cuestionario Inicial Etapa Diagnóstica (Observación de clases y aplicación de instrumentos) Entrega del plan diagnóstico Planificación del Proyecto de Aula y de la sistematización. Desarrollo y sistematización del proyecto de Aula “Curso de apoyo para el aprendizaje de fracciones algebraicas” Reflexión y elaboración del informe final de la sistematización de la experiencia didáctica. 2 Escuela de Matemáticas y Estadística UPTC Duitama
20
11. PROPUESTA SECUENCIAL DE ENSEÑANZA PLAN DE UNIDAD DIDÁCTICA COLEGIO GUILLERMO LEON VALENCIA NIVEL BASICO CICLO SECUNDARIA GRADO 9º ASIGNATURA MATEMÁTICAS PROFESOR Enrique Antonio Cabra Tamara UNIDAD Nº 1 TÍTULO FRACCIONES ALGEBRAICAS CON SUS OPERACIONES I.H.S. 3 Nº. HORAS PROBABLE 18. 1. DOMINIOS CONCEPTUALES PENSAMIENTO VARIACIONAL Y SISTEMAS ALGEBRAICOS Y ANALITICOS 2. ESTÁNDARES BÁSICOS A QUE RESPONDE LA UNIDAD 2.1 Construyo expresiones algebraicas equivalentes a una expresión algebraica dada. 2.2 Uso procesos inductivos y lenguaje algebraico para formular y poner a prueba conjeturas. 3. ESTRATEGIAS METODOLÓGICAS GENERALES El taller constructivo, como estrategia metodológica para aprender a pensar mediante la construcción del conocimiento matemático. Considera la enseñanza como un proceso intencional y planeado, en donde el papel del maestro es crear o diseñar situaciones de aprendizaje apropiadas que le permitan al estudiante construir en forma individual y colectiva, con la mediación del profesor, nuevos conocimientos. Las etapas de la dinámica del taller son: Revisión de conceptos previos, Construcción lógica mediante la acción cognitiva y reflexiva, Formulación, Validación, Formalización y Aplicación. El enfoque de los sistemas concretos, conceptuales y simbólicos, es una estrategia metodológica la cual desarrolla unos pasos específicos que empiezan por situaciones concretas que nos llevan a construir un sistema conceptual y que a la vez se pueden representar con signos, letras o palabras. Las etapas de de la dinámica de el enfoque de los sistemas es: partir por los sistemas concretos 2 Escuela de Matemáticas y Estadística UPTC Duitama
21
(sistemas pre-matemáticos o matemáticos que ya maneja el estudiante de alguna forma), seguir con los sistemas conceptuales (se elabora mentalmente y comprende el concepto, se abstrae) por último el sistema simbólico (se escribe, se pinta o se habla; se representa el concepto) Este sistema permite desarrollar el pensamiento crítico y la capacidad da argumentación racional y sólida con mediación del profesor. Esta actitud de investigación permanente y de análisis le ayudará al estudiante en las dificultades que se encuentran, además puede ayudar al profesor en el desarrollo integral de sus estudiantes. 4. CONTEXTOS - SITUACIONES PROBLEMÁTICAS EN DONDE SE USA ESTA UNIDAD 4.1 DE LAS MISMAS MATEMÁTICAS En la vida cotidiana nos enfrentamos a preguntas o incógnitas que se pueden resolver con el conocimiento de un dato, como por ejemplo el IVA en algunos productos, sabemos a cuanto equivale, entonces con este dato podemos hallar el precio de un producto cuando tiene IVA. El cual para saberlo es necesario averiguarlo y esto se hace mediante operaciones algebraicas y con la resolución de ecuaciones. Otra conexión con la vida cotidiana es la presión del aire (medida en libras / pulgada cuadrada) se puede expresar por medio de la expresión algebraica:
( )
(
)
(
)
en donde x representa la altitud en miles
de pies. Por otra parte la manipulación de lo general es una destreza que los alumnos deben adquirir con las expresiones algebraicas. La manipulación correcta de expresiones algebraicas le permite al estudiante manejar con propiedad los elementos matemáticos. 4.2 DE OTRAS DISCIPLINAS Puede suceder que nos corresponda interpretar problemas en química, física, que son áreas donde las fracciones algebraicas son utilizadas. 4.3 DE LA VIDA DIARIA
2 Escuela de Matemáticas y Estadística UPTC Duitama
22
En la conexión con la vida las expresiones racionales como son expresiones algebraicas, nos permiten modelar problemas de la vida real. Por ejemplo, el pago mensual p de la cuota por un préstamo de $ C hecho de n meses, con un interés mensual de i % sobre el saldo se puede expresar por medio de la siguiente fracción algebraica.
(
)
(
)
5. COMPONENTES DE LA COMPETENCIA LO QUE DEBEN “SABER” SE REFIERE A CONTENIDOS CONCEPTUALES TEMAS Y SUBTEMAS 1. Concepto de fracción algebraica. 2. Simplificación de fracciones algebraicas
3. Suma y resta de fracciones algebraicas con igual denominador.
LO QUE DEBEN “SABER HACER” SE REFIERE A CONTENIDOS PROCEDIMENTALES COMPETENCIAS INTERPRETATIVA, ARGUMENTATIVA Y PROPOSITIVA Identifica una fracción algebraica por medio de su representación. Da significado a información numérica y traduce entre diferentes representaciones. Simplifica fracciones algebraicas. Justifica al obtener un resultado o una conclusión los razonamientos y procedimientos que efectuo. Propone algoritmos para simplificar fracciones algebraicas. Adiciona o sustrae fracciones algebraicas. Decide con argumentos validos, cual es la forma mas eficiente para adicionar o sustraer fracciones. Simplifica tareas o procedimientos.
4. Suma y resta de fracciones algebraicas con distinto denominador.
7. Producto (multiplicación) de fracciones algebraicas.
8. Cociente o división de fracciones algebraicas.
Identifica y describe los procedimientos y algoritmos de las operaciones. Argumenta sobre procedimientos y propiedades. Encuentra fracciones equivalentes a fracciones dadas. Halla el mínimo común múltiplo de expresiones algebraicas. Identifica procesos para realizar operaciones con fracciones algebraicas. Relaciona la factorización de productos notables. Realiza operaciones con fracciones algebraicas. Simplifica, usando la factorización en productos de fracciones algebraicas.
NO. HORAS PROBA BLE 3 HORAS 3 HORAS
3 HORAS 3 HORAS
3 HORAS
Identifica los algoritmos de la división de fracciones algebraicas. Justifica por que en una fracción algebraica no
2 Escuela de Matemáticas y Estadística UPTC Duitama
23
3 HORAS
puede considerarse ciertos valores para la variable. Propone fracciones algebraicas que satisfacen condiciones dadas. Reconoce las propiedades de la división de fracciones algebraicas.
LO QUE DEBEN “SER” SE REFIERE A CONTENIDOS ACTITUDINALES Tener una actitud positiva ante las clases: Asistir cumplidos a las clases, mantener una buena disposición para todas las clases, participar activamente en los talleres o actividades, tomar las clases como un refuerzo que le sirve para el mejoramiento de su rendimiento académico en las matemáticas Adquirir agilidad mental, persistencia y disciplina frente a las actividades matemáticas.
Gusto por el uso de estrategias personales al resolver situaciones que precisen la utilización de polinomios. Gusto por la presentación ordenada y explicada de los trabajos realizados. Respeto por las estrategias seguidas por otros compañeros para resolver un problema con polinomios.
6. PLAN DE EVALUACIÓN 6.1 QUÉ EVALUAR?
COMPONENTES DE LA COMPETENCIA
INDICADORES DE DESEMPEÑO
LO QUE DEBEN “SABER”
CONCEPTUAL Reconocimiento y compresión significativa de conceptos, hechos, procedimientos, etc.
LO QUE DEBEN “SABER HACER”
PROCEDIMENTAL Interpretativa, argumentativa y propositiva. Procedimientos matemáticos
2 Escuela de Matemáticas y Estadística UPTC Duitama
Simplifica fracciones algebraicas usando la factorización.. Diferencia los algoritmos para realizar las operaciones en fracciones algebraicas. Efectúa adiciones y sustracciones de fracciones algebraicas, determinando inicialmente el común denominador. Identifica y diferencia los algoritmos para realizar las operaciones en fracciones algebraicas. Enuncia y describe las propiedades que cumplen las operaciones en la fracciones. Interpreta las diferentes situaciones problema que se resuelven por medio de las fracciones algebraicas. Establece y argumenta la relación entre las operaciones con fracciones algebraicas. Formula situaciones problemáticas que involucren fracciones algebraicas, en distintos contextos con significados Asiste con disposición de aprender los temas planteados. 24
LO QUE DEBEN “SER”
ACTITUDINAL
Manifiesta interés por las actividades que se realizan. Participa activamente en los diferentes talleres de las clases. Mantiene un buen comportamiento en las clases.
6. 2 PARA QUÉ EVALUAR? Para determinar si los estudiantes alcanzaron satisfactoriamente los logros y observar que tanto alcanzan los estándares básicos. Para ver que errores comenten los estudiantes en el tema. Para contribuir a que no comentan los mismos errores en el tema y desarrollar las competencias
6.3 CÓMO EVALUAR? En forma escrita, individual, y grupal. 6.4 CON QUÉ INSTRUMENTOS? Pruebas escritas, pruebas por competencias, guías de taller.
2 Escuela de Matemáticas y Estadística UPTC Duitama
25
MAPA CONCEPTUAL DE LA UNIDAD
UNIDAD DIDÁCTICA FRACCIONES ALGEBRAICAS DOMINIOS CONCEPTUALES
PENSAMIENTO VARIACIONAL Y SISTEMAS ALGEBRAICOS Y ANALITICOS
Concepto de fracción algebraica.
Operaciones y propiedades de las fracciones algebraicas.
Simplificar una fracción (Reducción)
División de fracciones algebraicas.
Suma de fracciones algebraicas Resta de fracciones algebraicas
Producto de fracciones algebraicas.
SITUACIONES PROBLEMÁTICAS
En la conexión con la vida las expresiones algebraicas, nos permiten modelar problemas de la vida real; Por ejemplo, en la parte financiera de una entidad. En relación con la física tenemos uno de tantos ejemplos como es la presión del aire (medida en libras/ pulgada). El pago mensual p de la cuota por un préstamo de $ C hecho de n meses, con un interés mensual de i % sobre el saldo se puede expresar por medio de la siguiente fracción algebraica. 2 Escuela de Matemáticas y Estadística UPTC Duitama (
)
(
)
26
10. RECURSOS HUMANOS Estudiantes del grado noveno del Colegio Guillermo León Valencia de Duitama. Profesor practicante: Enrique Antonio Cabra Tamara. Profesor Titular: Licenciado Martin Rojas Coordinadora del Proyecto Pedagógico Fase I: MAG. Ana Cecilia Medina MATERIALES DIDÁCTICOS Guías de taller, fotocopias. FINANCIEROS Los estudiantes costearan los materiales necesarios para el desarrollo de las actividades planteadas. FÍSICOS Colegio Guillermo León Valencia de Duitama. BIBLIOGRÁFICOS: Libros de algebra. Internet Explorer. Revistas. Audiovisuales: Cámara de video.
2 Escuela de Matemáticas y Estadística UPTC Duitama
27
11.
BIBLIOGRAFÍA
Socas, M.M., Camacho, M., Palarea, M. y Fernández, J. (1996). Iniciación al álgebra. Madrid: Síntesis. Rico, L, Castro, E y Otros. (1997). La educación Matemática en la enseñanza secundaria. Barcelona: Horsori. Ministerio de Educación Nacional. (2006). Estándares Básicos de calidad Matemáticas. Ministerio de Educación Nacional. (1998). Lineamientos curriculares Matemáticas. Malisani, E., (1999). Los obstáculos epistemológicos en el desarrollo del pensamiento algebraico. Revista Irice, G.R.I.M. Palarea, M. M. Revista de didáctica de las matemáticas, volumen 40, diciembre de 1999, paginas 3-28. Godino, J.D., Font, V. Wilhelmi, M. (2006). Análisis ontosemiotico de una lección sobre la suma y la resta. Revista Latinoamericana de investigación en matemática educativa. Castro, Rafael. (2005), Serie de MATEMÁTICAS para básica secundaria y media (ESPIRAL) 8°. 20 Ed. Bogotá: EDITORIAL NORMA. Samper, Carmen. (2006), Conexiones matemáticas 8°. 19 Ed. Bogotá: EDITORIAL NORMA. Fonseca, Luis. (2004), Conexiones matemáticas 5°. Bogotá: GRUPO EDITORIAL NORMA.
2 Escuela de Matemáticas y Estadística UPTC Duitama
28
2 Escuela de Matemáticas y Estadística UPTC Duitama
29
SECUENCIAS DIDACTICAS SECUENCIA DIDACTICA N° 1 ASIGNATURA: Matemáticas GRADO: 9 NUMERO DE CLASE: 1 TIEMPO: 3 HORAS FECHA: 16-04-11_ TEMA(S): Concepto de fracción algebraica. PENSAMIENTO: Sistemas algebraicos y analíticos. ESTANDAR BÁSICO: Construyo expresiones algebraicas equivalentes a una expresión algebraica dada INDICADOR(ES) DE LOGRO: Identifica una fracción algebraica por medio de su representación simbólica. Reconoce las distintas representaciones en los racionales para un mismo número. ESTRATEGIA METODOLOGICA Taller constructivo RECURSOS, MATERIAL DIDÁCTICO: Guía de aprendizaje. PROFESORES: Enrique Cabra Tamara.
PROCESO DIDACTICO
AMBIENTACION JUSTIFICACION
INSTRUCCIONES
ACTIVIDADES DE APRENDIZAJE – CONTENIDOS
En el cuestionario inicial aplicado el día 24 de marzo del presente año, se encontró errores concernientes a la construcción e identificación de fracción algebraica. El propósito de esta clase es expresar con claridad el concepto de fracción como parte de un todo; el signo de la fracción y de sus términos; algunos principios fundamentales, aplicando de forma simultánea en ejercicios propuestos, los cuales, facilitarán la comprensión de las mismas. Al igual que la aritmética se encargaba de los números y de las operaciones que con ellos se pueden hacer, el Álgebra generaliza el cálculo aritmético a expresiones compuestas por números y letras. Las fracciones a estudiar son aquellas que no tienen exponente fraccionario tanto en el numerador como en el denominador. El conocimiento y manejo de las fracciones nos permite comparar las dimensiones de los objetos con la unidad y establecer relaciones entre la unidad y las partes. Para el desarrollo, se requiere el trabajo individual, y en grupo, con el fin de desarrollar los ejercicios propuestos y de esta manera trabajar conjuntamente sobre el concepto de fracción algebraica.
FRACCIÓN COMO PARTE DE UN TODO 1) Claudia compro las siguientes hojas de papel y con ellas construyo una cometa. Observemos. 2 Escuela de Matemáticas y Estadística UPTC Duitama
30
D E S A R R O L L O
REVISION DE CONCEPTOS PREVIOS
La superficie de la cometa esta Dividida en 5 partes iguales. ¿Cuántas de esas partes son verdes? 2 ¿Qué fracción de la cometa es verde?
¿Cuál es el numerador y que significa? Rta: el numerador es 2, y significa el número de partes que se ha tomado. ¿Cuál es el denominador y que significa? Rta: el denominador es 5 y significa el número de partes en que se ha dividido la unidad. 2) A cada grupo se les entrega dos cuerdas de igual longitud y se les pedirá que una de estas cuerdas sea dividida en tantas partes como sea el número de integrantes del grupo, en cada grupo las partes de la cuerda deben ser todas iguales. Cuerda 1 Cuerda 2 Si asumimos que la longitud de una cuerda es la unidad. Diga que parte de la cuerda le corresponde a cada integrante del grupo y represéntalo en la recta numérica. Rta: grupo 1 (1/2) grupo 2: (1/3) grupo 3: (1/4) grupo 4 (1/5)
grupo 5: (1/6)
grupo 6: (1/7)
¿Si el grupo lo conformaran 16 estudiantes que parte de la cuerda le corresponde a cada integrante del grupo y represéntalo en la recta numérica? Rta: le corresponde 1/16 de cuerda. ¿Si el grupo lo conformaran la totalidad de los estudiantes presentes en el aula que parte de la cuerda le corresponde a cada integrante del grupo y represéntalo en la recta numérica? Rta: si en el aula hay 28 estudiantes, entonces 1/28 de cuerda. 2 Escuela de Matemáticas y Estadística UPTC Duitama
31
¿Si el grupo lo conformara 1 estudiante que parte de la cuerda le corresponde al integrante del grupo y represéntalo en la recta numérica? Rta: le corresponde la unidad es decir la totalidad de la cuerda. ¿Según lo observado en la recta numérica que fracción es la mayor y cual la menor y que características tienen? Rta: la mayor es la unidad y la menor 1/28. ¿Qué significa una fracción como parte de un todo? Rta: significa las porciones de una unidad que se dividió en partes iguales. FORMULACION + VALIDACION
( FORMALIZACION
)
(
)
HACIA EL CONCEPTO DE FRACCION ALGEBRAICA ACTIVIDAD 1 Pedro realizo una pintura que tiene las siguientes medidas:
3x + y
3x + 2y
REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
¿Cuál es el perímetro de la pintura, realice el procedimiento? Rta: 12x + 6y ¿Qué clase de expresión algebraica es, monomio, binomio, trinomio o polinomio por qué? Rta: binomio porque consta de dos términos. ¿Cuál es el area de la pintura, realice el procedimiento?
2 Escuela de Matemáticas y Estadística UPTC Duitama
32
Rta: ¿Qué clase de expresión algebraica es, monomio, binomio, trinomio o polinomio por qué? Rta: trinomio porque consta de tres términos. Escriba la fracción algebraica que representa la siguiente dimensión. La altura de la pintura cuya área se representa con la expresión A=
y su base es:
b= 3x + 2y
Y se sabe que
FORMULACION + VALIDACION
¿Qué es una fracción algebraica? Rta: Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios.
FRACCION ALGEBRAICA
FORMALIZACION
Se llama fracción algebraica al cociente indicado de dos polinomios de la forma ( ) , en donde P(x) y Q(x) son polinomios ,tal que Q(x) ≠ 0 ( ) En una fracción algebraica hay que considerar tres signos: el signo de la fracción , el signo del numerador y el signo del denominador.
2 Escuela de Matemáticas y Estadística UPTC Duitama
33
APLICACION
Un fabricante de baldosa quiere saber si puede usar baldosas que tengan la forma de cualquier polígono regular para cubrir un piso, de tal manera que no queden espacios entre una y otra y que no sea necesario cortarlas para que encajen. El recuerda que para hallar la medida de cada ángulo interno de un polígono regular debe usar la (
fórmula:
)
, donde n es el número de lados del polígono. Al unir k
baldosas, la suma de las medidas de los ángulos debe ser 360º, es decir
(
)
Despejando k obtenemos:
(
)
Aquellos valores de n, para los que k es un entero diferente de cero, corresponden al número de lados del polígono regular que cumplirá con el propósito La fracción
(
)
es una fracción algebraica.
UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA LICENCIATURA EN MATEMATICAS Y ESTADISTICA COLEGIO GUILLERMO LEÓN VALENCIA DUITAMA
PRUEBA 1
Nombre:_________________________________Grado:_______Fecha:_________ 2 Escuela de Matemáticas y Estadística UPTC Duitama
34
1) Determina cuales son expresiones algebraicas. Justifica tus respuestas. CRITERIOS Y DISEÑO DE EVALUACION
a.
d.
b.
e.
c.
f.
√
( (
) )
2) Determina fracciones algebraicas equivalentes mediante el uso de signos (
a.
– )
( –
(
b.
)
) (
)
3) La siguiente fracción algebraica es equivalente? Justifica la respuesta. Rta: No, porque los signos de los términos son diferentes.
? a.
BIBLIOGRAFIA
CASTRO, Rafael. (2005), Serie de MATEMÁTICAS para básica secundaria y media (ESPIRAL) 8°. 20 Ed. Bogotá: EDITORIAL NORMA. SAMPER, Carmen. (2006), Conexiones matemáticas 8°. 19 Ed. Bogotá: EDITORIAL NORMA. FONSECA, Luis. (2004), Conexiones matemáticas 5°. Bogotá: GRUPO EDITORIAL NORMA.
2 Escuela de Matemáticas y Estadística UPTC Duitama
35
SECUENCIA DIDACTICA N° 2 ASIGNATURA: Matemáticas GRADO: 9 NUMERO DE CLASE: 2 TIEMPO: 3 HORAS FECHA: 30-04-11_ TEMA(S): Simplificación de fracciones algebraicas. PENSAMIENTO: Pensamiento variacional y sistemas algebraicos y analíticos. ESTANDAR BÁSICO: Construyo expresiones algebraicas equivalentes a una expresión algebraica dada. INDICADOR(ES) DE LOGRO: Simplifica fracciones algebraicas. Justifica al obtener un resultado o una conclusión, los razonamientos y procedimientos que efectuó. Propone algoritmos para simplificar fracciones algebraicas. ESTRATEGIA METODOLOGICA Taller constructivo RECURSOS, MATERIAL DIDÁCTICO: Guía de aprendizaje. PROFESOR: Enrique Cabra Tamara.
PROCESO DIDACTICO
AMBIENTACIÓN JUSTIFICACIÓN
INSTRUCCIONES
ACTIVIDADES DE APRENDIZAJE – CONTENIDOS Se preguntara por las actividades que se habían realizado en la clase de la sesión anterior para verificar que se entendió lo visto en clase. El tema que trataremos en esta clase, simplificación de fracciones es de gran importancia, ya que se identificara los procesos de simplificación sugiriendo varias actividades , Para entender la simplificación de fracciones es conveniente utilizar los recursos que se proponen, conectándolo con conceptos que ya conocen. Así como los números naturales pueden ser expresados como producto de dos o más números, los polinomios pueden ser expresados como el producto de dos o más factores. Para el desarrollo, se requiere el trabajo individual, y en grupo, con el fin de desarrollar los ejercicios propuestos y de esta manera trabajar conjuntamente sobre factorización para la simplificación de fracciones algebraicas. SIMPLIFICACION DE FRACCIONES Logro : utilizar la simplificación de fracciones para determinar fracciones equivalentes
DESARROLLO
DESARROLLO
1) En un florero hay 36 flores, de las cuales 24 son margaritas.
2 Escuela de Matemáticas y Estadística UPTC Duitama
36
¿Qué fracción representa las margaritas respecto al total de flores? La fracción que expresa el número de margaritas respecto al total de flores que hay REVISION DE CONCEPTOS PREVIOS
en el florero es ¿Cómo puede expresarse esta fracción en su mínima expresión? El proceso de expresar una fracción en su mínima expresión se denomina simplificación. Simplifica la fracción que expresa el número de margaritas respecto al total de flores que hay en el florero. Calcule el m.c.d. del numerador y el denominador Rta. 12 Divida el numerador y el denominador de la fracción entre el m.c.d. que obtuviste ¿Qué fracción obtuvo y que puedes concluir de esta? Rta.
.
Al simplificar obtenemos una fracción equivalente
2) Divida el numerador y el denominador de la fracción
en el m.c.d. que es 3
¿Qué fracción obtienes? Rta . ¿Es equivalente a la fracción
porque? Representa las dos fracciones por medio de una
grafica Rta. Si es equivalente porque al dividir el numerador y el denominador por un mismo número obtenemos una fracción equivalente a la fracción dada.
3) Luis y Maria tienen 30 canicas cada uno. azules y
del número de canicas de Luis son
de las canicas de Maria son azules.
¿Tienen los dos el mismo número de canicas azules? Justifica tu respuesta. Rta. Si tienen el mismo número de canicas ya que son fracciones equivalentes Representa por medio de una gráfica las canicas de cada uno. ¿Qué observas?
FORMALIZACIÓN
Al dividir siempre que sea posible, el numerador y el denominador de una fracción por un mismo número, se obtiene una fracción equivalente a la fracción dada. Este procedimiento se llama simplificación.
2 Escuela de Matemáticas y Estadística UPTC Duitama
37
HACIA EL CONCEPTO DE SIMPLIFICACIÓN DE UNA FRACCIÓN ALGEBRAICA Simplificación De Fracciones Cuyos Términos Son Monomios 1) Dada la fracción Rta.
¿Cuál es el factor común del numerador y el denominador?
Divida el numerador y el denominador por el factor común. ¿Qué obtuviste?
Rta. REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
La fracción que resulta tiene factor común el numerador y el denominador? ¿Cómo se llama esta fracción? Rta. No tiene factor común, esta fracción que resulta es irreducible. 2) Dada la fracción Rta.
Cuál es el factor común del numerador y el denominador?
Al dividir el numerador y el denominador por el factor común que obtienes?
Rta.
Si desaparecen todos los factores de denominador que expresión es el resultado? Rta. El resultado es una expresión entera
Simplificación De Fracciones Cuyos Términos Son Polinomios
3)
¿Qué clase de expresión algebraica es el denominador? Rta. es un binomio
Cuál es el factor común de el denominador? ¿Al factorizar el denominador como quedaría? Rta. El factor común es , y al factorizar el denominador nos queda ( )
2 Escuela de Matemáticas y Estadística UPTC Duitama
38
Cuál es el factor común del numerador y el denominador? Rta.
Al dividir el numerador y el denominador por el factor común, que obtienes?
Rta.
VALIDACIÓN
(
)
¿Qué puedes concluir al simplificar una fracción la cual tiene más de un término? Rta. Primero que todo se descompone en factores el polinomio, para luego dividir el numerador y el denominador por su factor común.
Socializar las diferentes soluciones o conclusión a las que se llegaron en cada grupo para exponerla ante sus compañeros; generando discusiones de los procedimientos utilizados y sacando conclusiones generales.
FRACCIONES EQUIVALENTES Dos fracciones son equivalentes o iguales cuando representan la misma parte de la unidad. Para comprobar si son equivalentes aplicamos el siguiente criterio llamado productos cruzados: que el producto de extremos es igual al producto de medios, es decir: FORMALIZACIÓN
SIMPLIFICACION DE FRACCIONES ALGEBRAICAS Simplificar una fracción es obtener otra, dividiendo el numerador y el denominador por una misma expresión si esta expresión es el máximo común divisor entre el numerador y el denominador; la fracción obtenida es irreducible, y entonces la fracción esta reducida a su más simple expresión o a su mínima expresión.
Carlos y Jorge son finalistas de los 100 metros planos.
B
100 m
A
6. Cuando pasen por el punto A: APLICACIÓN 2 Escuela de Matemáticas y Estadística UPTC Duitama
39
A Habrán recorrido de la pista, que son 700 metros B Habrán recorrido 7 metros equivalentes a 7/10 de la pista. C Habrán recorrido 70 metros equivalentes a 1/7 de la pista. D Habrán recorrido que son equivalentes a de la pista. Luis encontró las siguientes tarjetas entre sus juguetes:
20 1.
9
4
45
12
27
¿Qué fracciones equivalentes se pueden formar con las tarjetas?
2. A
4 9
20 45
27 12
B
20 4
9 45
C
12 27
4 9
45 9
12 4
D
12 27 20 45 20 27
UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA LICENCIATURA EN MATEMATICAS Y ESTADISTICA COLEGIO GUILLERMO LEÓN VALENCIA DUITAMA
PRUEBA 2
Nombre:__________________________________ Fecha:_____________ 1. En una tienda de ropa hay 100 pantalones;
CRITERIOS Y DISEÑO DE EVALUACION
Grado:_______
de ellos son blancos,
son azules y
el resto son grises. a. Compara el número de pantalones azules con el de blancos; ¿Qué observas? Justifica tu respuesta. Rta. Son iguales el número de pantalones azules y blancos ya que por medio de la simplificación las fracciones son equivalentes b. ¿Cuántos pantalones son grises? Rta. 50 pantalones c. Escribe una fracción que represente el número de pantalones grises respecto del total de pantalones; ¿esta fracción es equivalente a la que representa el número de pantalones azules? Justifica tu respuesta. Rta.
no es equivalente, ya que si aplicamos el criterio de productos
2 Escuela de Matemáticas y Estadística UPTC Duitama
40
cruzados no se cumple 2. Raúl se comió
de pizza y Roció
de la misma pizza.
a. ¿Quién comió más? Justifique su respuesta Rta. Comieron igual, ya que son fracciones equivalentes b. ¿sobro pizza? Justifique su respuesta Rta. No porque lo que comió Raúl y Roció es el total de la pizza. 3. Simplifica o reduce a su más simple expresión: a.
BIBLIOGRAFÍA
CASTRO, Rafael. (2005), Serie de MATEMÁTICAS para básica secundaria y media (ESPIRAL) 8°. 20 Ed. Bogotá: EDITORIAL NORMA. SAMPER, Carmen. (2006), Conexiones matemáticas 8°. 19 Ed. Bogotá: EDITORIAL NORMA. FONSECA, Luis. (2004), Conexiones matemáticas 5°. Bogotá: GRUPO EDITORIAL NORMA.
2 Escuela de Matemáticas y Estadística UPTC Duitama
41
SECUENCIA DIDACTICA N° 3 ASIGNATURA: Matemáticas GRADO: 9 NUMERO DE CLASE: 3 TIEMPO: 3 HORAS FECHA: 07-05-11_ TEMA(S): Suma Y Resta De Fracciones Algebraicas Con Igual Denominador PENSAMIENTO: Pensamiento variacional y sistemas algebraicos y analíticos. ESTANDAR BÁSICO: Construyo expresiones algebraicas equivalentes a una expresión algebraica dada INDICADOR(ES) DE LOGRO: Comprende y aplica el proceso para adicionar o sustraer fracciones con igual denominador. Decide con argumentos válidos, cual es la forma más eficiente para adicionar o sustraer fracciones. Resuelve problemas donde se involucra la adición o sustracción con fracciones. ESTRATEGIA METODOLOGICA Taller constructivo RECURSOS, MATERIAL DIDÁCTICO: Guía de aprendizaje. PROFESOR: Enrique Cabra Tamara.
PROCESO DIDACTICO
AMBIENTACIÓN JUSTIFICACIÓN
INSTRUCCIONES
ACTIVIDADES DE APRENDIZAJE – CONTENIDOS El tema que trataremos en esta clase, es suma y resta de fracciones algebraicas con igual denominador de gran importancia, ya que es un proceso análogo al que se hizo con fracciones numéricas, sugiriendo varias actividades con distintas representaciones. Para entender la suma y resta de fracciones algebraicas con igual denominador es conveniente utilizar los recursos que se proponen, conectándolo con conceptos que ya conocen. Al resolver actividades de suma o resta de fracciones se puede indicar en la recta numérica, para así tener una mejor comprensión ya que son bases importantes para llevarlo al algebra. Para el desarrollo, se requiere el trabajo individual, y en grupo, con el fin de desarrollar los ejercicios propuestos y de esta manera trabajar conjuntamente sobre suma y resta de fracciones algebraicas con igual denominador.
Factor común Descomponer en factores ¿Cuál es el máximo común divisor de los coeficientes? Rta. 10. ¿Cuál es es factor común de las letras, con que exponente, porque? Rta. b, porque está en los dos términos y tiene el menor exponente. ¿Cuál es el factor común de la expresión? Rta. 10b. Escriba el factor común como coeficiente de un paréntesis y dentro del paréntesis escriba el cociente de dividir cada término de la expresión en su factor común. Que obtiene? Rta.
DESARROLLO
DESARROLLO
SIMPLIFICACION DE FRACCIONES CON POLINOMIOS
(
)
(
2 Escuela de Matemáticas y Estadística UPTC Duitama
) 42
REVISION DE CONCEPTOS PREVIOS
) Descomponer ( ( ) ¿Cuál es el factor común de los términos de esta expresión? Rta. Escriba el factor común como coeficiente de un paréntesis y dentro del paréntesis escriba el cociente de dividir cada término de la expresión en su factor común. Que obtiene? Rta.
(
(
)
(
)
(
(
Diferencia de cuadrados Sea el producto ( Rta.
)
)
)
)(
(
)(
)
) efectúa esta multiplicación. que obtienes?
Si tenemos la expresión ¿cual es la raíz cuadrada del prime termino? Rta. La raíz cuadrada del segundo término es? Rta. 4. Multiplica la suma de las dos raíces por su diferencia. Que obtienes? )( Rta. ( )
Trinomio de la forma )( Sea el producto ( ) efectúa esta multiplicación. que obtienes Rta. Si tenemos la expresión Si descompones en dos factores binomios, cuyo primer término sea la raíz cuadrada del primer término del trinomio que obtienes? Rta. ( )( ) Busca dos cantidades, tales que su producto sea 12, estás deben tener el mismo signo para que el producto sea positivo, y para que su suma sea -7, deben ser los dos negativos. Que obtienes? )( Rta. ( )
FORMALIZACION + VALIDACIÓN
FACTOR COMÚN Consiste en transformar la expresión dada en un producto, donde uno de los factores es común entre los términos y el otro se obtiene al dividir cada término de la expresión original entre el factor común. DIFERENCIA DE CUADRADOS Este caso se basa en la fórmula: 2 2 a – b = (a + b) (a – b) Tomando en cuenta que la factorización es el procedimiento inverso a producto notable. TRINOMIO 2 Trinomio de la forma x + ax + b: La fórmula general viene dada por: x2 + ax + b y al factorizarlo queda expresada como (x + n).(x + m) donde n.m = b y n + m = a
2 Escuela de Matemáticas y Estadística UPTC Duitama
43
REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
Si el volumen de un paralelogramo viene dado por la fórmula: V x 5x 6 x . 3
2
¿Cuáles podrían ser las medidas de las aristas (largo, ancho y altura)?
( (
) )(
)
SUMA DE FRACCIONES CON IGUAL DENOMINADOR Logro :realizar adiciones y sustracciones en fracciones Escribe la fracción que corresponde a la región sombreada, luego realiza la operación correspondiente a.
REVISION DE CONCEPTOS PREVIOS ¿Cómo son los denominadores? Rta. Iguales ¿Cómo se suman estas fracciones? Rta. Para sumar fracciones que tienen el mismo denominador, se suman los numeradores, conservando el mismo denominador. Pasar a la recta numérica cada fracción, junto con la suma de fracciones.
FORMALIZACIÓN + VALIDACIÓN
La suma de dos(o más) fracciones es otra fracción cuyo numerador es la suma de los numeradores de las fracciones dadas y de igual denominador. Es decir,
2 Escuela de Matemáticas y Estadística UPTC Duitama
44
RESTA DE FRACCIONES CON IGUAL DENOMINADOR Carolina distribuye su sueldo de la siguiente manera: REVISION DE CONCEPTOS PREVIOS
Alimentación:
del total.
Educación: del total. Transporte: del total. El resto lo ahorra a. Que parte del sueldo gasta? Rta. Gasta
de su sueldo
b. Que parte de su sueldo ahorra? Rta.
Carolina ahorra
de su sueldo
Definimos, en general, resta o diferencia entre las fracciones de igual denominador por: FORMALIZACIÓN + VALIDACIÓN
, con a ≥ c
La condición de que a sea mayor o igual que c se debe a que estamos hablando de fracciones no negativas. SUMA DE FRACCIONES ALGEBRAICAS CON IGUAL DENOMINADOR
1. Dada las siguientes fracciones
REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
Si usamos la misma forma de sumar fracciones numéricas; en estas fracciones como se aplica? ( ) Rta.
Efectuar
(
)
( (
) )(
)
RESTA DE FRACCIONES ALGEBRAICAS CON IGUAL DENOMINADOR
2. Dadas las siguientes fracciones
(
)
(
)
Si usamos la misma forma de restar fracciones numéricas; en estas fracciones como se aplica? 2 Escuela de Matemáticas y Estadística UPTC Duitama
45
Rta.
(
)
(
)
(
Efectuar
(
)
)(
)
Suma de fracciones algebraicas con igual denominador La adición y la sustracción de dos fracciones algebraicas FORMALIZACIÓN
( )
( )
( )
( )
donde Q(x) ≠ 0 y G(x)
≠ 0 , la definimos como en las fracciones aritméticas: Fracciones con igual denominador. ( )
( )
( )
( )
( )
( ) ( )
Resta de fracciones algebraicas con igual denominador ( )
( )
( )
( )
( )
( ) ( )
Puede observarse que si el denominador es común, este se unifica. En el numerador se ubican las expresiones presentes en cada fracción
(
(
)
)(
)
( (
)(
)
(
) )(
)
APLICACIÓN
2 Escuela de Matemáticas y Estadística UPTC Duitama
46
(
) (
)
UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA LICENCIATURA EN MATEMATICAS Y ESTADISTICA COLEGIO GUILLERMO LEÓN VALENCIA DUITAMA
PRUEBA 3
Nombre:__________________________________ Fecha:_____________
Grado:_______
1. Completa los siguientes cuadrados mágicos de modo que la suma de filas, columnas y diagonales de siempre el mismo número.
CRITERIOS Y DISEÑO DE EVALUACION
2.
Une con una flecha cada operación con su resultado
2 Escuela de Matemáticas y Estadística UPTC Duitama
47
3.
Efectúa la operación indicada
(
)
(
)
(
) (
)
(
(
)
( (
)(
)
)
(
)(
) )
BIBLIOGRAFÍA
CASTRO, Rafael. (2005), Serie de MATEMÁTICAS para básica secundaria y media (ESPIRAL) 8°. 20 Ed. Bogotá: EDITORIAL NORMA. SAMPER, Carmen. (2006), Conexiones matemáticas 8°. 19 Ed. Bogotá: EDITORIAL NORMA. FONSECA, Luis. (2004), Conexiones matemáticas 5°. Bogotá: GRUPO EDITORIAL NORMA.
2 Escuela de Matemáticas y Estadística UPTC Duitama
48
SECUENCIA DIDACTICA N° 4 ASIGNATURA: Matemáticas GRADO: 9 NUMERO DE CLASE: 4 TIEMPO: 3 HORAS FECHA: 14-05-11_ TEMA(S): Suma Y Resta De Fracciones Algebraicas Con Diferente Denominador PENSAMIENTO: Pensamiento variacional y sistemas algebraicos y analíticos. ESTANDAR BÁSICO: Construyo expresiones algebraicas equivalentes a una expresión algebraica dada INDICADOR(ES) DE LOGRO: Suma o resta fracciones algebraicas. Argumenta sobre procedimientos y propiedades. Encuentra fracciones equivalentes a fracciones dadas. Halla el mínimo común múltiplo de expresiones algebraicas. ESTRATEGIA METODOLOGICA Taller constructivo RECURSOS, MATERIAL DIDÁCTICO: Guía de aprendizaje. PROFESOR: Enrique Cabra Tamara.
PROCESO DIDACTICO
AMBIENTACIÓN JUSTIFICACIÓN
ACTIVIDADES DE APRENDIZAJE – CONTENIDOS
El tema que trataremos en esta clase, es suma y resta de fracciones algebraicas con diferente denominador de gran importancia, ya que es un proceso análogo al que se hizo con fracciones numéricas, sugiriendo varias actividades con distintas representaciones. Para entender la suma y resta de fracciones algebraicas con diferente denominador es conveniente utilizar los recursos que se proponen, conectándolo con conceptos que ya conocen. Al resolver actividades de suma o resta de fracciones se puede indicar en la recta numérica, para así tener una mejor comprensión ya que son bases importantes para llevarlo al algebra.
INSTRUCCIONES Para el desarrollo, se requiere el trabajo individual, y en grupo, con el fin de desarrollar los ejercicios propuestos y de esta manera trabajar conjuntamente sobre suma y resta de fracciones algebraicas con diferente denominador .
MÍNIMO COMÚN MÚLTIPLO Halle el mínimo común múltiplo de 24,36,40 Descomponga los números en sus factores primos. Rta
2 Escuela de Matemáticas y Estadística UPTC Duitama
49
REVISION DE CONCEPTOS PREVIOS
Cuáles son los factores primos comunes y no comunes elevados a los mayores exponentes? Rta.
Calcula el producto de los factores primos comunes y no comunes elevados a los mayores exponentes. Rta. .
FORMULACION + VALIDACION
FORMALIZACIÓN
¿360 será el único común múltiplo? Rta: No, pero es el mínimo común múltiplo que es lo que estamos hallando. ¿Cómo se halla el mínimo común múltiplo de dos o más números? Rta: Se descomponen los números en sus factores primos, luego se multiplica los factores primos comunes con la mayor potencia, y los no comunes. El mínimo común múltiplo (m.c.m.) de varios números es el menor de sus múltiplos comunes. Para calcularlo: Descomponemos los números. Tomamos todos los factores (comunes y no comunes) elevados a los mayores exponentes El m.c.m. es el producto de los factores anteriores
SUMA DE FRACCIONES ARITMETICAS CON DIFERENTE DENOMINADOR 1)
¿Estas fracciones se pueden sumar directamente? Rta: No, porque tienen diferente denominador.
2 Escuela de Matemáticas y Estadística UPTC Duitama
50
¿ Efectúa la operación indicada
Rta. FORMULACION + VALIDACION
¿Cuál es el proceso para sumar fracciones de diferente denominador? Rta: Se halla el mínimo común múltiplo al descomponer los números dados como denominadores en sus factores primos, luego se efectúa la operación indicada.
FORMALIZACIÓN
Para sumar dos o más fracciones de distintos denominadores, se reducen las fracciones dadas al mínimo común denominador y se efectúa la suma en la forma definida.
RESTA DE FRACCIONES ARITMETICAS CON DIFERENTE DENOMINADOR REVISION DE CONCEPTOS PREVIOS
En la carnicería Don Sergio tenia sobraron
arroba de carne, quiere saber cuanta carne vendió si le
arroba de carne
¿Estas fracciones se pueden restar directamente? Rta: No, porque tienen diferente denominador. ¿Cuál es el mínimo común múltiplo de los denominadores? Rta. m.c.m. (2, 4) = 4 Rta.
¿Cuánta carne vendió don Sergio?
3 1 32 1 4 2 4 4
2 Escuela de Matemáticas y Estadística UPTC Duitama
51
FORMULACION + VALIDACION
¿Cuál es el proceso para restar fracciones de diferente denominador? Rta: Se halla el mínimo común múltiplo al descomponer los números dados como denominadores en sus factores primos, luego se efectúa la operación indicada.
Para hallar la diferencia de dos o más fracciones de distinto denominador, se reducen las fracciones dadas al mínimo común denominador y se efectúa la diferencia. FORMALIZACIÓN
SUMA DE FRACCIONES ALGEBRAICAS CON DISTINTO DENOMINADOR Mínimo común múltiplo de dos o más monomios Hallar el mínimo común múltiplo de:
REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
RESTA DE FRACCIONES ALGEBRAICAS CON DISTINTO DENOMINADOR Dadas las siguientes fracciones
12 x 4 ( x 2) 2
-
2 x2
Si usamos la misma forma de restar fracciones numéricas; en estas fracciones como se aplica? Rta: Factorize los denominadores 2 Escuela de Matemáticas y Estadística UPTC Duitama
52
Halle el mínimo común múltiplo de los denominadores, con los factores elevados a la mayor potencia Agrupe términos semejantes y realice las operaciones
La adición y la sustracción de dos fracciones algebraicas
( )
( )
( )
( )
donde Q(x) ≠ 0 y G(x) ≠
0 , la definimos como en las fracciones aritméticas: Suma de Fracciones algebraicas con distinto denominador. FORMALIZACIÓN
( )
( )
( )
( )
( )
( ( ) ( )) ( )
( ( ) ( )) ( )
( ) ( ( ) ( ))
Resta de fracciones algebraicas con distinto denominador
( )
( )
( )
( )
( )
( ( ) ( )) ( )
( )
( ( ) ( )) ( )
( ( ) ( ))
El mínimo común múltiplo de dos o mas polinomios es el polinomio conformado por el producto de cada factor, común y no común con mayor potencia, que aparece en la factorización de cada polinomio. Factorizamos los denominadores que se puedan
1. APLICACIÓN
2 Escuela de Matemáticas y Estadística UPTC Duitama
Se calcula el m.cm. de los denominadores, este se divide por cada denominador luego el resultado se multiplica por el numerador
53
Realizamos operaciones en el numerador
Destruimos el paréntesis teniendo en cuenta el sigo que lo antecede
Agrupamos términos semejantes y operamos.
2. Dada las siguientes fracciones Si usamos la misma forma de sumar fracciones numéricas; en estas fracciones como se aplica? Rta.
1 2x 3 x 2x 3 2 x x x2
3x 3 x2
3( x 1) x2
2 Escuela de Matemáticas y Estadística UPTC Duitama
Factorize los denominadores para Hallar el mínimo común múltiplo
Agrupe términos semejantes y realice las operaciones
54
UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA LICENCIATURA EN MATEMATICAS Y ESTADISTICA COLEGIO GUILLERMO LEÓN VALENCIA DUITAMA
PRUEBA 4
Nombre:__________________________________ Fecha:_____________ Efectúa las operaciones indicadas 1)
Grado:_______
1 1 1 bc ac ab a b c abc
2) CRITERIOS Y DISEÑO DE EVALUACION
1 2 x 1 2 x 3 x 5 x 2x 15
3)
x 2 x x
x 5 2x 6 x 1 2x 1(x 5) 2(x 3) (x 1) (x 3)(x 5) (x 3)(x 5) (x 3)(x 5)
1 x2 x 1 x2 x( x 1) (1 x 2 ) x x 2 x ( x x 3) - 2 x( x 1)( x 1) x( x 1)( x 1) x 1 x( x 1) ( x 1)( x 1)
x2 x x x3 x 3 2x x 2 x( x 2 x 2) x( x 2)( x 1) x 2 x( x 1)( x 1) x( x 1)( x 1) x( x 1)( x 1) x( x 1)( x 1) x 1
BIBLIOGRAFÍA
CASTRO, Rafael. (2005), Serie de MATEMÁTICAS para básica secundaria y media (ESPIRAL) 8°. 20 Ed. Bogotá: EDITORIAL NORMA. SAMPER, Carmen. (2006), Conexiones matemáticas 8°. 19 Ed. Bogotá: EDITORIAL NORMA. FONSECA, Luis. (2004), Conexiones matemáticas 5°. Bogotá: GRUPO EDITORIAL NORMA.
2 Escuela de Matemáticas y Estadística UPTC Duitama
55
SECUENCIA DIDACTICA N° 5 ASIGNATURA: Matemáticas GRADO: 9 NUMERO DE CLASE: 5 TIEMPO: 3 HORAS FECHA: 21-05-11_ TEMA(S): Multiplicación y división de Fracciones Algebraicas PENSAMIENTO: Pensamiento variacional y sistemas algebraicos y analíticos. ESTANDAR BÁSICO: Construyo expresiones algebraicas equivalentes a una expresión algebraica dada INDICADOR(ES) DE LOGRO: Simplifica, fracciones algebraicas usando la factorización. Identifica los algoritmos de la división de fracciones algebraicas Reconoce las propiedades de la división de fracciones algebraicas ESTRATEGIA METODOLOGICA Taller constructivo RECURSOS, MATERIAL DIDÁCTICO: Guía de aprendizaje. PROFESOR: Enrique Cabra Tamara. PROCESO DIDACTICO
AMBIENTACIÓN JUSTIFICACIÓN
INSTRUCCIONES
ACTIVIDADES DE APRENDIZAJE – CONTENIDOS El tema que trataremos en esta clase, es multiplicación y división de fracciones algebraicas de gran importancia, en la revisión de conceptos de potenciación, factorización y simplificación ya que es un proceso semejante al que se hace con fracciones numéricas, sugiriendo varias actividades con distintas representaciones. Para entender la multiplicación y división de fracciones algebraicas es conveniente utilizar los recursos que se proponen, conectándolo con conceptos que ya conocen. Al resolver actividades de multiplicación y división de fracciones numéricas se puede indicar por medio de gráficos, para así tener una mejor comprensión ya que son bases importantes para llevarlo al algebra. Para el desarrollo, se requiere el trabajo individual, y en grupo, con el fin de desarrollar los ejercicios propuestos y de esta manera trabajar conjuntamente sobre suma y resta de fracciones algebraicas con diferente denominador.
PROPIEDADES DE LA POTENCIACION.
Producto de potencias de igual base.
2³ x 2⁵ = 2x2x2 x 2x2x2x2x2 = 2⁸ ¿Cuál es la vía más rápida o forma directa para obtener el resultado?
REVISIÓN DE CONCEPTOS PREVIOS
2³ x 2⁵ = 2³⁺⁵= 2⁸ Dejar la base y se suman los exponentes. En general, si a ∈ ℝ, m, n ∈ ℤ , se cumple:
2 Escuela de Matemáticas y Estadística UPTC Duitama
56
Aplicando esta propiedad hallar el resultado y dejarlo indicado en forma de potencia. c. 2². 2³. 2¹ = 2⁶ d. x². x⁵= x⁸ e. n⁴. n. n⁻¹⁰. n⁰= n⁻⁵ f. (3x²)(5x)= 15x³
Potencia de una potencia
(3⁴)⁵= (3x3x3x3)x(3x3x3x3)x(3x3x3x3)x(3x3x3x3)x(3x3x3x3)= 3²⁰ ¿Cuál es la vía más rápida o forma directa para obtener el resultado?
En general, si a ∈ ℝ, m, n ∈ ℤ , se cumple:
Aplicando esta propiedad hallar el resultado y dejarlo indicado en forma de potencia. b. (2²)⁴ =2⁸ c. (x¹²)³=x³⁶ d. (x⁴)³.(x)²=x²⁴
El cociente de dos potencias de igual base.
¿Cuál es la vía más rápida o forma directa para obtener el resultado? En general, si a ∈ ℝ, m, n ∈ ℤ , se cumple:
Aplicando esta propiedad hallar el resultado y dejarlo indicado en forma de potencia. a. b.
Obsérvese ahora el siguiente ejemplo:
2 Escuela de Matemáticas y Estadística UPTC Duitama
57
y se sabe que:
entonces
De lo que se concluye que: todo numero exponente negativo es igual a su inverso con exponente positivo En general, si a ∈ ℝ, m, n ∈ ℤ , se cumple:
Aplicando esta propiedad hallar:
a.
b.
Para todo a ∈ ℝ, m, n ∈ ℤ , se cumple: FORMALIZACIÓN
Producto de potencias de igual base.
Potencia de una potencia
El cociente de dos potencias de igual base.
Exponente negativo
2 Escuela de Matemáticas y Estadística UPTC Duitama
58
MULTIPLICACIÓN DE FRACCIONES ARITMÉTICAS REVISION DE CONCEPTOS PREVIOS
En el siguiente circulo represente la fracción
Luego halle los
de
(región sombreada)
¿A qué fracción de toda la unidad equivale los de ?
Rta.
¿Qué procedimiento matemático puede utilizar para encontrar el resultado? Rta. Una multiplicación. ¿Qué ocurre con la unidad? Rta. Queda dividida en 6 partes iguales
Para multiplicar dos o mas fracciones, multiplicamos entre si los numeradores y los FORMALIZACIÓN
denominadores y, cuando sea posible, simplificamos el resultado.
MULTIPLICACIÓN DE FRACCIONES ALGEBRAICAS a) Cuando numerador y denominador son monomios Efectúa el producto de: REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
Solución: Multiplicamos la parte numérica primero y luego la parte literal sumando los exponentes de las potencias de la misma base:
2 Escuela de Matemáticas y Estadística UPTC Duitama
59
simplificamos la parte numérica primero y luego la parte literal ( El cociente de dos potencias de igual base) restando los exponentes de las potencias de igual base y su resultado lo colocamos donde el exponente era mayor: b) Cuando numerador y denominador son polinomios Efectúa el producto de:
Solución: Factorizando y simplificando factores comunes, luego aplicando las propiedades de la potenciación:
La multiplicación de fracciones algebraicas
( )
( )
( )
( )
donde Q(x) ≠ 0 y G(x) ≠ 0 y F(x) ≠ 0 ,
su producto se define como El producto de dos fracciones algebraicas es otra fracción algebraica donde el numerador es el producto de los numeradores y el denominador es el producto de los denominadores. FORMALIZACIÓN
( )
( )
( )
( )
( )
( ( )
( ) ( ))
Efectúa el producto de:
Solución: APLICACIÓN
Antes de comenzar a hacer el producto debes fijarte en cada término del numerador y denominador para ver si hay factores comunes para después simplificar y trabajar con expresiones más simples.
2 Escuela de Matemáticas y Estadística UPTC Duitama
60
factorizamos y multiplicamos
simplificamos factores comunes
DIVISION DE FRACCIONES ARITMÉTICAS Dos fracciones son reciprocas si el resultado de la multiplicación entre ellas es 1. Así, el reciproco de
, porque
Escribe el reciproco de cada fracción, justifica tu respuesta.
El reciproco de REVISION DE CONCEPTOS PREVIOS
es:
El reciproco de
es: es:
, porque , porque
Un labrador ha dividido su campo en 8 parcelas iguales. ¿Cuántas parcelas contienen los 3/4 del campo? Cada parcela es 1/8 del campo. Luego basta ver cuántas veces 1/8 está contenido en 3/4. ¿Qué procedimiento matemático puede utilizar para encontrar el resultado? Rta. Una división.
¿Cuántas parcelas contienen los 3/4 del campo?
2 Escuela de Matemáticas y Estadística UPTC Duitama
61
Rta. :
FORMALIZACIÓN
en
del campo hay 6 parcelas de
Para dividir dos fracciones, multiplicamos el dividendo por el reciproco del divisor, y cuando sea posible, simplificamos el resultado. Estableceremos en general que: observemos que
es el reciproco de
con c ≠ 0
DIVISION DE FRACCIONES ALGEBRAICAS REFLEXIÓN +ACCIÓN= CONSTRUCCI ÓN LÓGICA
Efectúa la siguiente división.
, multiplicamos y, de ser posible, simplificamos
Hallamos el reciproco de
multiplicación por el reciproco de
= simplificación
( (
)
)( (
)
diferencia de cuadrados y
)
Efectúa la siguiente división.
Para dividir multiplicamos por el reciproco del divisor
( (
)( ) (
)
( )
2 Escuela de Matemáticas y Estadística UPTC Duitama
(
)( )(
)( )(
) )
factorizamos los polinomios
62
( (
) (
)
(
)(
( )
( )
( )
( )
)
(
)
simplificamos factores
)
comunes
FORMALIZACIÓN
La división de fracciones algebraicas
donde Q(x) ≠ 0 y G(x) ≠ 0 y F(x) ≠ 0 , se
define como
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( )
Para dividir fracciones algebraicas multiplicamos por el reciproco del divisor, factorizamos los polinomios, simplificamos factores comunes y luego multiplicamos los factores restantes.
Efectuar la siguiente operación
Convertimos la división en multiplicación hallando el reciproco del divisor
APLICACIÓN
Simplificamos factores comunes
(
)
(
2 Escuela de Matemáticas y Estadística UPTC Duitama
(
) ( (
Multiplicamos factores restantes
)(
(
Factorizamos los polinomios
)
( (
)(
)
)
) (
(
)(
(
)
)(
(
)
(
)
)(
)
)
)
)
63
UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA LICENCIATURA EN MATEMATICAS Y ESTADISTICA COLEGIO GUILLERMO LEÓN VALENCIA DUITAMA
PRUEBA 5
Nombre:_____________________________________ Fecha:_____________
Grado:_______
Efectúa la siguientes operaciones
CRITERIOS Y DISEÑO DE EVALUACION
1)
2)
)(
(
( (
) )
)(
(
) ( ) (
) )
)(
(
)( )(
)(
(
)( )(
)(
(
)
(
) (
=
BIBLIOGRAFIA
CASTRO, Rafael. (2005), Serie de MATEMÁTICAS para básica secundaria y media (ESPIRAL) 8°. 20 Ed. Bogotá: EDITORIAL NORMA. SAMPER, Carmen. (2006), Conexiones matemáticas 8°. 19 Ed. Bogotá: EDITORIAL NORMA. FONSECA, Luis. (2004), Conexiones matemáticas 5°. Bogotá: GRUPO EDITORIAL NORMA.
2 Escuela de Matemáticas y Estadística UPTC Duitama
64
)(
)
)
)
2 Escuela de Matemáticas y Estadística UPTC Duitama
65