C1_1a_Fis_final_prof
11.11.09
13:08
Página 65
Cinemática – Módulos 1 – Conceito de função 2 – Como representar uma função em um gráfico 3 – Proporcionalidade entre duas grandezas 4 – Trigonometria no triângulo retângulo 5 – O que é uma grandeza física vetorial? 6 – Introdução à Física 7 – Você sabe medir? 8 – Fundamentos da Cinemática I 9 – Fundamentos da Cinemática II 10 – Fundamentos da Cinemática III 11 – Velocidade escalar média I
1
12 – Velocidade escalar média II 13 – Velocidade escalar instantânea I 14 – Velocidade escalar instantânea II 15 – Aceleração escalar 16 – Classificação dos movimentos I 17 – Classificação dos movimentos II 18 – Movimento uniforme I 19 – Movimento uniforme II 20 – Movimento uniforme III 21 – Movimento uniforme IV 22 – Movimento uniforme V 23 – Movimento uniforme VI 24 – Velocidade relativa
Conceito de função
1. Um exemplo para você entender a necessidade da ideia de função Admita que você queira calcular o custo de uma corrida de táxi ao se percorrer uma certa distância. Para tanto, você é informado de que a “bandeirada” custa R$ 4,00 e, para cada quilômetro rodado, o preço adicional é de R$ 1,50. Vamos chamar de y o preço total da corrida (em reais) e de x a distância percorrida pelo táxi (em km) no percurso realizado. Devemos encontrar uma igualdade matemática que nos permita, para cada valor da distância x, calcular o respectivo valor do custo y. Dizemos então que y será uma função de x, isto é, para cada valor da distância x, existe, em correspondência, um único valor do custo y. A expressão matemática que relaciona y e x, no exemplo mencionado, será: y = 4,00 + 1,50x em que x é a distância percorrida medida em quilômetros (km) e y é o preço da corrida calculado em reais.
• Função
Exemplificando 1) Se o percurso do carro for de 4km, teremos: x = 4km ⇒ y = 4,00 + 1,50 . 4 (em reais) y = 4,00 + 6,00 (reais) ⇒
y = 10,00 reais
2) Se o percurso do carro for de 10km, teremos: x = 10km ⇒ y = 4,00 + 1,50 . 10 (em reais) y = 4,00 + 15,00 (reais) ⇒
y = 19,00 reais
2. Generalizando o conceito de função Imagine dois conjuntos, A e B. Vamos indicar pela letra x um elemento pertencente ao conjunto A e pela letra y um elemento pertencente ao conjunto B. Em linguagem matemática, escrevemos: x ∈ A (x pertence ao conjunto A) y ∈ B (y pertence ao conjunto B) O símbolo ∈ significa pertence. FÍSICA
65