Powers Math Powers Math Exponents are shorthand for repeated multiplication of the same thing by itself. For instance, the shorthand for multiplying three copies of the number 5 is shown on the right-hand side of the "equals" sign in (5)(5)(5) = 53. The "exponent", being 3 in this example, stands for however many times the value is being multiplied. The thing that's being multiplied, being 5 in this example, is called the "base". This process of using exponents is called "raising to a power", where the exponent is the "power". The expression "53" is pronounced as "five, raised to the third power" or "five to the third". There are two specially-named powers: "to the second power" is generally pronounced as "squared", and "to the third power" is generally pronounced as "cubed". So "53" is commonly pronounced as "five cubed". When we deal with numbers, we usually just simplify; we'd rather deal with "27" than with "33". But with variables, we need the exponents, because we'd rather deal with "x6" than with "xxxxxx". The first root that comes from a plant is called the radicle. The four major functions of roots are 1) absorption of water and inorganic nutrients, 2) anchoring of the plant body to the ground, and supporting it, 3) storage of food and nutrients, 4) vegetative reproduction. In response to the concentration of nutrients, roots also synthesise cytokinin, which acts as a signal as to how fast the shoots can grow. Roots often function in storage of food and nutrients. Know More About :- Solving Rational Expressions
Math.Edurite.com
Page : 1/3
In mathematics, that which is represented by an exponent or index, denoted by a superior numeral. A number or symbol raised to the power of 2 – that is, multiplied by itself – is said to be squared (for example, 32, x2), and when raised to the power of 3, it is said to be cubed (for example, 23, y3). Any number to the power zero always equals 1. Powers can be negative. Negative powers produce fractions, with the numerator as one, as a number is divided by itself, rather than being multiplied by itself, so for example 2-1 = 1/2 and 3-3 = 1/27. Exponents are sometimes referred to as powers and means the number of times the 'base' is being multiplied. In the study of algebra, exponents are used frequently. In the example to the right, one would say: Four to the power of 2 or four raised to the second power or four to the second. This would mean 4 x 4 or (4) (4) or 4 · 4 . Simplified the example would be 16. If the power/exponent of a number is 1, the number will always equal itself. In other words, in our example if the exponent 2 was a 1, simplified the example would then be 4. Exponent Rules :- When working with exponents there are certain rules you'll need to remember. When you are multiplying terms with the same base you can add the exponents. This means: 4 x 4 x 4 x 4 x 4 x 4 x 4 or 4 · 4 · 4 · 4 · 4 · 4 · 4 When you are dividing terms with the same base you can subtract the exponents. This means: 4 x 4 x 4 or 4 · 4 · 4 When parenthesis are involved - you multiply. (83)2 =86 yayb = y (a+b) yaxa = (yx)a Squared and Cubed and 0's ;- When you multiply a number by itself it is referred to as being 'squared'. 42 is the same as saying "4 squared" which is equal to 16. If you multiply 4 x 4 x 4 which is 43 it is called 4 cubed. Squaring is raising to the second power, cubing is raising to the third power. Raising something to a 1 means nothing at all, the base term remains the same. Now for the part that doesn't seem logical. When you raise a base to the power of 0, it equals 1. Any number raised to the power 0 equals 1 and 0 raised to any exponent or power is 0! Read More About :- Slope Of A Line
Math.Edurite.com
Page : 2/3
Thank You
Math.Edurite.Com