inverse trigonometric function

Page 1

Inverse Trigonometric Function Inverse Trigonometric Function The inverse trigonometric functions (occasionally called cyclometric functions[1]) are the inverse functions of the trigonometric functions with suitably restricted domains. The notations sin−1, cos−1, etc. are often used for arcsin, arccos, etc., but this convention logically conflicts with the common semantics for expressions like sin2(x), which refer to numeric power rather than function composition, and therefore may result in confusion between multiplicative inverse and compositional inverse. In computer programming languages the functions arcsin, arccos, arctan, are usually called asin, acos, atan. Principal values :- Since none of the six trigonometric functions are one-to-one, they are restricted in order to have inverse functions. Therefore the ranges of the inverse functions are proper subsets of the domains of the original functions For example, just as the square root function is defined such that y2 = x, the function y = arcsin(x) is defined so that sin(y) = x. There are multiple numbers y such that sin(y) = x; for example, sin(0) = 0, but also sin(π) = 0, sin(2π) = 0, etc. It follows that the arcsine function is multivalued: arcsin(0) = 0, but also arcsin(0) = π, arcsin(0) = 2π, etc. When only one value is desired, the function may be restricted to its principal branch. With this restriction, for each x in the domain the expression arcsin(x) will evaluate only to a single value, called its principal value. Know More About :- Round Whole Numbers

Math.Edurite.com

Page : 1/3


General solutions Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π. Sine and cosecant begin their period at 2πk − π/2 (where k is an integer), finish it at 2πk + π/2, and then reverse themselves over 2πk + π/2 to 2πk + 3π/2. Cosine and secant begin their period at 2πk, finish it at 2πk + π, and then reverse themselves over 2πk + π to 2πk + 2π. Tangent begins its period at 2πk − π/2, finishes it at 2πk + π/2, and then repeats it (forward) over 2πk + π/2 to 2πk + 3π/2. Cotangent begins its period at 2πk, finishes it at 2πk + π, and then repeats it (forward) over 2πk + π to 2πk + 2π. The two-argument atan2 function computes the arctangent of y / x given y and x, but with a range of (−π, π]. In other words, atan2(y, x) is the angle between the positive x-axis of a plane and the point (x, y) on it, with positive sign for counter-clockwise angles (upper half-plane, y > 0), and negative sign for clockwise angles (lower half-plane, y < 0). It was first introduced in many computer programming languages, but it is now also common in other fields of science and engineering. Inverse trigonometric functions are useful when trying to determine the remaining two angles of a right triangle when the lengths of the sides of the triangle are known. Recalling the right-triangle definitions of sine. There are enormous number of trigonometric inequalities and equations in trigonometry. And if we consider the modern time, then we have six trigonometric functions: sine, cosine, tangent, secant, cosecant and cotangent. Out of these six the last three are derived from the first three functions. Secant is the trigonometric function which is the reciprocal of the function cosine. Cosecant is the reciprocal of the trigonometric function sine and the last one cotangent is the reciprocal of the trigonometric function tangent. And tangent can also be represented as the ratio of two trigonometric functions which are sine and cosine. All these formulae are also true for inverse trig functions. There is one another term in trigonometry, which is inverse trig functions or occasionally called cyclometric functions are nothing but the inverse functions of the trigonometric functions with different restricted domains. We use notations for inverse trig functions and they are: sin−1, cos−1, tan-1, cosec-1, sec-1 and cot-1 , and they are often used as arc(sin), arc(cos), arc(tan), arc(cosec), arc(sec) and arc(cot).

Read More About :- Define Rational Expression

Math.Edurite.com

Page : 2/3


Thank You

Math.Edurite.Com


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.