Personalized Recommendation Based on the Information Matching

Page 1

Scientific Journal of Information Engineering December 2015, Volume 5, Issue 6, PP.182-189

Personalized Recommendation Based on the Information Matching Bo Shao †, Gui Li, Zhengyu Li, Ziyang Han, Pin Sun Faculty of Information & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China †

Email: 171518784@qq.com

Abstract Personalized recommendation is becoming one of the main research issues in the field of the current web recommendation. At present, given the good application of the technology of the information match in information retrieval, for personalized recommendation, the concept of information matching is introduced, and a personalized recommendation model based on information matching is proposed. The probability of correlation between the user and each item can be calculated by this model, and then according to the personalized recommendation ranking strategies, the probability values of correlation between user and each item are sorted and generate the recommendation list at last. Experiment based on the MovieLens data sets, by comparing the performance of the typical algorithm and information matching algorithm on the personalized recommendation, validates the effectiveness of the personalized recommendation model based on information matching. Keywords: Information Matching; Feature Vectors; Personalized Recommendation; Probabilistic Modeling

基于信息匹配的个性化推荐 邵波,李贵,李征宇,韩子扬,孙平 沈阳建筑大学 信息与控制工程学院,辽宁 沈阳 110168 摘 要:个性化推荐正成为当前 Web 推荐领域中主要研究问题之一。目前,鉴于信息匹配技术在信息检索上的良好应 用,针对个性化推荐,引入信息匹配概念,提出一个基于信息匹配的个性化推荐模型。通过这个模型,计算用户与每个 物品之间的相关性概率,然后根据个性化推荐的排名策略,对用户与每个物品的相关性概率值进行排序,生成用户的推 荐列表。使用 MovieLens 数据集,通过比较典型算法与信息匹配算法在个性化推荐上的性能,验证了基于信息匹配的个 性化推荐模型的有效性。 关键词:信息匹配;特征向量;个性化推荐;概率模型

引言 目前,协同过滤(CF)算法[1]已经成为 Web 推荐的标志性算法,推荐系统通过评分或用户的行为数据实 现个性化推荐。个性化推荐[2,3]在互联网中用于多种形式的 Web 推荐,例如新闻推荐、节假日旅游推荐、音 乐推荐、电视节目和电影推荐等。 鉴于信息匹配技术在信息检索[4]上的良好应用,我们引入信息匹配的概念,针对个性化推荐,提出一个 新的概率模型。我们这样做的目的是:生成更高质量的个性化推荐列表。本文主要的工作包括如下方面: 首先,引入信息匹配的概念,结合用户对物品的喜好和物品对用户的吸引关系,提出一个基于信息匹 配的个性化推荐的概率模型。 然后,根据这个概率模型,计算用户与每个物品的相关性概率,同时对这些相关性概率值进行排名, 生成用户的推荐列表。 - 182 http://www.sjie.org


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.