1 minute read

Structural Steel Reuse as a Cost-Effective Carbon Mitigation Strategy

Juliana Berglund-Brown SMBT

Advisor: John Ochsendorf

Steel building structures typically have the highest embodied carbon impacts when compared to masonry, wood, concrete, and reinforced concrete projects (De Wolf et al 2014). Designing with salvaged structural steel is a beneficial alternative for structural engineers to reduce embodied carbon in the built environment and implement life-cycle oriented and cost conscious design of steel structures. However, there are still many barriers that inhibit designing with reused gravity elements in buildings at scale.

This thesis establishes more certainty about the supply of steel elements, quantifies potential carbon and cost savings, and identifies the variables that most impact such savings to better enable designing steel frames. This work first provides the context and terminology to connect structural systems to circular economy and reuse, and then outlines why reusing gravity beams and columns is particularly advantageous via a state-of-the-art overview of the steel value-chain.

Next, a high-level material flow analysis is conducted for three of the largest steel producing markets globally, indicating that the quantity of the existing steel heavy section scrap covers 140% of the demand for imports of steel. A partial LCA utilizing a comparative cut-off method is then performed coupled with cost estimation, which demonstrates a potential for around an 87% reduction in carbon emissions from steel reuse instead of recycling. Based on the findings of the partial LCA, an exploratory data analysis is performed with both a stochastic sampling and nine real building projects to identify the variables most impacting carbon cost associated with reuse. Structural weight was found to have the largest impact on reuse emissions, followed by number of elements, and then transportation distance.

In short, this thesis presents the case for steel reuse, and the intrinsic carbon, cost, and structural value that has the potential to be captured.

This article is from: