P12-12

Page 1

Influence of ferromagnetic layer thickness and blocking temperature in symmetric exchange bias spin valve systems

1

1,3

, U.D Chacon , J. Quispe-Marcatoma & E. Baggio-Saitovitch 1 2 3 CBPF- Brasil, SRMU-India and UNMSM-Peru

Exchange biased spin valves [1] have played important roles in the magnetoelectronic devices, for example, read heads for high-density magnetic recording, high sensitive magnetic field sensors and magnetic memory cells [2] Experimentally, exchange bias effect manifests itself in a field shift, Hex, of the hysteresis loop along the field axis, typically accompanied by an increase of the Coercivity. This is due to an interaction between the AF and F materials when cooled in applied magnetic fields field cooling, FC below the Néel temperature TN of the AF layer

FM thickness (20 nm) 0,0008

Exchange bias field for Single pinned layer

100 K

0,0002 0,0000 -0,0002 -0,0004

FeMn (10 nm) NiFe (t)

The interfacial unidirectional energy density [3]

-0,0008

0,0004

0,0000

-400

-200

0

200

-0,0006

400 -300

-200

Magnetic Field (Oe)

-100

-400

0

-200

0

200

-0,0008 400

-400

-200

Magnetic Field (Oe)

Magnetic Field (Oe)

0

200

400

Magnetic Field (Oe)

FM thickness (30 nm) 0,0008 0,0006

0,0008

50K

0,0006

200 K 0,0004

0,0004

0,0004 M o m en t (em u )

M o m en t (em u )

0,0004

100 K

0,0002 0,0000 -0,0002 -0,0004 -0,0006

0,0002

M o m en t (em u )

Si (111)

0,0000 -0,0002 -0,0004

0

500

-0,0008 1000 1500 2000 -2000

Magnetic Field (O e)

0,0000

-0,0004

-0,0006

-0,0008 -2000 -1500 -1000 -500

-1000

0

1000

2000

Magnetic Field (O e)

ZFC and FC curve Magnetic moment for NiFe(0.75 μB) and for CoFe(2.4 μB)

When FM thickness increases, hysteresis loop behaviour reveals the shrinkage in coercive field and reduction in exchange bias

-0,0004

-800

-400

0

400

@ lower FM thickness and soft magnetic nature enhances the exchange bias And coercive field No training effect observed but coercivity trend changes

800

-600

Magnetic Field (O e)

0

600

Magnetic Field (Oe)

2646

10 nm

2647

2648

50 nm -800

The hitherto, puzzling role of FM thickness has been convincingly explained

0,0000

2650

CONCLUSION Substantial progress has been made in elucidating some qualitative details concerning the phenomenon of exchange anisotropy

300 K

FM thickness

Blocking temperature for FeMn 390-470 K

ACKNOWLEDGEMENTS

0,0000

-0,0004

Ru (5 nm)

Temperature dependance follows, this equation

0,0002

-0,0002

-0,0004

-0,0006

300 K

0,0006

0,0004

0,0004

Ru (5 nm)

200 K

M o m en t (em u )

CoFe (t)

50K

M o m en t (em u )

0,0006

0,0008

M o m en t (em u )

FeMn (10 nm)

RESULTS

M o m en t (em u )

Ru (5 nm)

The samples were grown over non-etched Si(111) substrates Deposition method: DC magnetron sequential sputtering ( 5 target) Base pressure Pb=5*10-8torr; working pressure Pt=2*10-3torr; Deposition rate: Ru= 1.02Å/s, NiFe=0.39Å/s,CoFe=0.82Å/s and FeMn=0.83Å/s. Si(111)/ Ru50Å/NiFe(t)/FeMn100Å/Ru50Å/ CoFe(t)/FeMn100Å/Ru50Å tFM={100, 200, 300, 400 and 500 Å} X-ray reflectivity measurement was used to measure the thickness. Polynomial function was used to calculate the deposition rate. Magnetization measurements - Cryofree Versalab, @ CBPF

Mo m ent (em u )

MAGNETIC MEASUREMENTS

1

EXPERIMENTAL

Introduction

Normalized magnetization (a.u)

K. Ashok

1,2

REFERENCES

-400

0

400

800

Magnetic Field (Oe)

[1]J.C.S.Kools, IEEE TRANSACTIONS ON MAGNETICS, 32 (1996) 3165; [2] S.H. Jang, T. Kang, H.J. Kim, K.Y Kim, JMMM 239 (2002) 179 [3]A.E. Berkowitz!, Kentaro Takano, JMMM 200 (1999) 552}570 [4] J. Nogue, Ivan K. Schuller, JMMM192 (1999) 203Ð232


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.